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Abstract: Blood pressure (BP) is one of the most common vital signs related to cardiovascular 
diseases. BP is traditionally measured by mercury, aneroid, or digital sphygmomanometers; 
however, these approaches are restrictive, inconvenient, and need a pressure cuff to be attached 
directly to the patient. Therefore, it is clinically important to develop an innovative system that can 
accurately measure BP without the need for any direct physical contact with the people. This work 
aims to create a new computer vision system that remotely measures BP using a digital camera 
without a pressure cuff. The proposed BP system extracts the optical properties of 
photoplethysmographic signals in two regions in the forehead captured by a digital camera and 
calculates BP based on specific formulas. The experiments were performed on 25 human 
participants with different skin tones and repeated at different times under ambient light conditions. 
Compared to the systolic/diastolic BP readings obtained from a commercial digital 
sphygmomanometer, the proposed BP system achieves an accuracy of 94.6% with a root mean 
square error (RMSE) of 9.2 mmHg for systolic BP readings and an accuracy of 95.4% with an RMSE 
of 7.6 mmHg for diastolic BP readings. Thus, the proposed BP system has the potential of being a 
promising tool in the upcoming generation of BP monitoring systems. 
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1. Introduction 
Monitoring of blood pressure (BP) is considered one of the essential indicators of 

human health that helps to detect and manage cardiovascular diseases. According to the 
World Health Organization (WHO) [1], cardiovascular diseases are the leading cause of 
32% of all global deaths, and about 17.9 million people globally died in 2019 from 
cardiovascular diseases. Furthermore, in the last three decades, the number of adults 
diagnosed with hypertension has risen from 650 million to 1.28 billion worldwide [2]. 
Current instrumentations for measuring BP are based on mechanical or oscillometric 
recordings, such as a mercury sphygmomanometer, an aneroid sphygmomanometer, or 
a digital sphygmomanometer. These instrumentations, however, are cuff-based 
measurement methods that are directly attached to the patient’s upper arm or wrist, 
which can be uncomfortable and cumbersome for repeated measurements or for long-
term monitoring. Moreover, the BP readings are easily affected by unskilled examiners 
and cannot achieve continuous BP monitoring [3]. In addition, physical access to patients 
during the COVID-19 pandemic is another challenge for these contact instruments [4]. 
Therefore, a significant need exists for innovative systems that can accurately measure BP 
and assess cardiovascular risk when physical contact with the patients is either 
undesirable or unsafe. 

In recent years, a computer vision system based on plethysmographic signals 
(extracting color variations at the skin’s surface that contains a wealth of physiological 
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information using a camera as a photodetector) has attracted considerable attention as a 
technique to measure BP. Previous attempts have tested contact finger-based video 
plethysmography using smartphones along with the corresponding electrocardiogram 
(ECG) signal to measure pulse transit time (PTT) and to estimate the related BP [5–10]. 
Despite the contact finger-based video plethysmography offering some advantages, it 
may expose patients to the risk of infection and skin irritation as well as being unsuitable 
for people with skin ulcers, burns, congenital and contagious conditions [11–14]. To 
address the limitations mentioned above while reducing the wiring and increasing safety, 
the development of contactless BP monitoring systems is increasingly desirable. 

Recent studies have proved that video plethysmography could be used to remotely 
measure cardiac activity, including BP. For example, McDuff et al. [15] proposed a new 
imaging system based on a digital camera to remotely measure the cardiovascular blood 
volume pulse (BVP) detected via plethysmographic signals from the face using ambient 
light at a distance of 3 m. Then, they used an independent component analysis (ICA) 
technique followed by a bandpass filter (0.75–4.5 Hz) to extract the signal of interest and 
applied a peak detection method to detect the systolic and diastolic peaks, where the head 
motion and light conditions were the main challenges in their study. Another example, a 
study by Murakami et al. [16] measured PTT signals from two regions (wrist and ankle) 
using a digital camera. The study used a finite impulse response (FIR) low pass filter (2 
Hz) as noise removal, phase delay compensation, and a peak detection method to extract 
pulse peaks at both regions and investigated their relationship to systolic blood pressure. 
However, the regions of interest (ROI) should be clear, and the subject should lie down 
on a bed during the measurement, and removal of garments may be required. Another 
study by Secerbegovic et al. [17] used a digital camera as a plethysmographic detector in 
combination with an electrocardiogram (ECG) to measure PTT signals from two regions 
(forehead and palm) and predict only systolic blood pressure using the ICA technique. 
The selected signal was then filtered with a band of 0.6 to 4 Hz. However, synchronizing 
plethysmographic signals with ECG signals was required due to the reflection of the 
pressure waves, sensor noise, and some movement considerations. Patil et al. [18] 
proposed a non-contact imaging system for BP measurement using plethysmographic 
signals from the forehead captured by a webcam. Their study also used ICA on the 
plethysmographic signal, and then leveraging features extracted from the output signals 
as inputs to a neural network system. However, their study was affected by lighting 
conditions and noise because the PTT is affected by variations in distance between the 
camera sensor and the selected ROIs. Another work by Sugita et al. [19] presented a new 
imaging system to predict BP variability using a pulse wave obtained from video 
plethysmography at three regions (right palm, forehead, and right cheek) without 
calculating the PTT. The plethysmographic signals were then directly filtered (around 1 
Hz) to extract the heartbeat-related component. This study, however, was tested using an 
external LED light source, and there were individual differences in the correlation of the 
proposed system with BP. Fan et al. [20] proposed a developed contactless imaging system 
to estimate BP after improving and detecting the peaks in the PTT signal obtained from 
video plethysmography from two regions (face and palm). The study improved the PTT 
using an adaptive Gaussian fitting model because the relationship between BP and PTT is 
not completely linear. A remote estimation of pulse wave features related to BP and 
arterial stiffness based on a computer vision system was proposed by Djeldjli et al. [11]. A 
digital camera and contact probes (finger and earlobe sensors) in association with an 
external light source were utilized to capture the video plethysmography and contact 
plethysmographic signals. The extracted signals were then filtered using a finite impulse 
response high-pass filter and continuous wavelet transform with a bandwidth of 0.5–4 
Hz. A Contactless BP measurement based on video plethysmography and PTT was also 
proposed by [21]. The proposed system was then improved by using a neural network for 
training and BP prediction. A recent study by Iuchi et al. [22] used a digital camera to 
estimate continuous BP by continually tracking spatial information of facial pulse waves 
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based on a convolutional neural network (CNN). However, the accuracy of the neural 
network systems remains dependent on the accuracy of the training data. Due to the 
natural characteristics of the plethysmographic signal, some physiological information 
often disappears for two reasons. The first reason is the surrounding environment, camera 
sensor, and light-transmitting properties of the skin, and the second reason is the loss of 
physiological information due to component analysis, signal filtering, and peak detection, 
requiring a number of challenges to be considered. As reported in Cheng et al. [23], the 
plethysmographic signals could be recovered from the effect of lighting changes by 
decomposing the green channel of the facial ROI into a set of signals with different scales 
of time series using an ensemble empirical mode decomposition of the Hilbert–Huang 
transform instead of ICA that works with motion artifacts. Therefore, this study proposes 
a contactless imaging system based on video plethysmography that overcomes the 
limitations mentioned above using an effective method that is tolerant of lighting changes 
during measurement. The proposed BP system used an adaptive decomposition method 
called a complete ensemble empirical mode to decompose the plethysmographic signals 
captured in two regions on the forehead into a set of signals with different scales of time 
series, and selecting the signals with the best frequency spectra that correspond to cardiac 
activity to achieve a remote estimate of BP without using component analysis, filtering 
and peak detection that will operate under ambient illumination conditions. 

The remainder of this paper consists of the following: Section 2 describes the 
materials and methods of the study, including research ethics and participants, 
experimental setup, and system overview. Section 3 presents the results and statistical 
analysis of the proposed imaging system performed on human participants with 
discussion. Finally, Section 4 concludes the paper. 

2. Materials and Methods 
2.1. Research Ethics and Participants 

The study followed the principles outlined in the Declaration of Helsinki and 
received ethical approval from the research committee in the Training and Human 
Development Centre, Ministry of Health and Environment, Iraq (research protocol 
number: 1040). The participant information sheet and written consent forms were 
collected electronically with the possibility of withdrawing before the completion of data 
collection. Before starting the experiment, all participants were informed about how they 
will save and protect their personal data after completing the study. A total of 25 
participants (18 males and 7 females) without any known cardiovascular disease aged 
from 18 to 60 years with different skin tones took part in the research study. 

2.2. Experimental Setup 
The experimental setup includes a digital camera (Nikon D5300, 10 MP, 18–55 mm 

Lens) mounted on a tripod and a commercial blood pressure monitor (Rossmax, 
Harrisburg, PA, USA) as a benchmark device. Prior to the measurements, all participants 
were asked to rest on a chair for several minutes to ensure a stable physiological state and 
then asked to face the camera at a distance of approximately 50 cm, as shown in Figure 1. 
They were also asked not to move and to breathe gently during video capture. Four video 
recordings from each participant were performed at different times. A total of 100 video 
data (10 s length) were collected with a resolution of 1920 × 1080 pixels at a frame rate of 
60 frames per second and saved in MOV format without any compression. The 
experiments were conducted under ambient illumination conditions without any 
additional light sources. 
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Figure 1. Demonstrating the proposed imaging system that recorded videos by a digital camera and 
processed the obtained signals while simultaneously recording the BP readings from a contact 
pressure cuff device for validation purposes. 

2.3. System Overview 
The framework of the proposed imaging system was designed to extract the cardiac 

relevant plethysmographic signals from the selected forehead regions and decompose the 
extracted plethysmographic signals into a set of signals with different scales of time series, 
as demonstrated in Figure 1. 

The block diagram of the proposed imaging system is shown in Figure 2. As can be 
seen, the proposed imaging system consists of several main parts, including face and 
forehead detection, ROIs selection, signal decomposition, features extraction, and a 
determination of blood pressure ratio. 

 
Figure 2. The block diagram of the proposed imaging system. 

The process is conducted by firstly converting the videos into frames. Then, the Viola-
Jones detection method [24] is used to detect the facial region automatically. Kanade 
Lucas-Tomasi (KLT) feature extraction is used to detect the face in the first frame and then 
the extracted features across the video frames were used to continue tracking the facial 
region. This method is used due to its accuracy and low computational cost [25,26]. To 
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increase the robustness of the proposed imaging system, a skin detection method based 
on multi-level thresholding is used as an alternative for face detection if the Viola-Jones 
detection method fails to detect the face due to background clutter issues. Multi-level 
thresholding is an image segmentation method that applies two or more threshold values 
in YCbCr color space. The forehead region is chosen as ROI because it is least affected by 
facial expressions, talking, and eye blinking. The selected ROI is then divided into two 
regions: the middle region (ROI1) and the side region (ROI2), as shown in Figure 3. 

 
Figure 3. The selected forehead regions: the middle region (ROI1) and the side region (ROI2). 

Green channel (G) was selected from RGB color space since this component 
reportedly contains the strongest plethysmographic signals [27–29]. The required G 
values in the ROIs are processed for the computation of the photoplethysmograph. The 
time-series plethysmographic signals from ROI1 and ROI2 were extracted by averaging 
the pixels values for each frame in the selected video as follows: [30] 

𝑖ீభ (𝑡) = ∑ ∑ 𝐹௜ (𝑥, 𝑦)ௐభ௬ுభ௫ 𝐻ଵ × 𝑊ଵ   (1)

𝑖ீమ (𝑡) = ∑ ∑ 𝐹௜ (𝑥, 𝑦)ௐమ௬ுమ௫ 𝐻ଶ × 𝑊ଶ   (2)

where 𝐻ଵ is the height of the selected middle forehead region ROI1 in pixels, 𝑊ଵ is the 
width of the ROI1 in pixels, 𝐻ଶ is the height of the selected side forehead region ROI2 in 
pixels, 𝑊ଶ is the width of the ROI2 in pixels, and 𝐹௜ (𝑥, 𝑦) represents the light level of the 
G component plane at the (𝑥, 𝑦) coordinates of frame 𝑖, where the averaged values for 
Equations (1) and (2) are in a range from 0–255. 

Since the averaged pixel values can be affected by illumination variation noise, a 
complete ensemble empirical mode decomposition method [31] is used to separate the 
cardiac pulse signal in plethysmographic signals from the illumination variation noise 
without the need to filter the signal. This decomposition method is commonly used to 
remove illumination noise artifacts from plethysmographic signals [23,32,33]. This 
method is a noise-assisted adaptive data analysis method developed by Colominas et al. 
[31] to improve the decomposition of nonstationary and nonlinear signals into several 
signals with different scales of time series, called intrinsic mode functions (IMFs). It 
decomposes signals based on local characteristics of signals by adding positive and 
negative white noises to signals, thus avoiding the undesired mode mixing problem and 
achieving a negligible reconstruction error, presented in previous mode decomposition 
methods [34–36]. This method adds a noise-adding scheme at each stage of the 
decomposition and calculates a unique residue to obtain each IMF, making the obtained 
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signals almost complete. In addition, selecting the optimal maximum number of sifting 
iterations can reduce execution time for this decomposition method. By applying this 
decomposition method, 𝑖ீ (𝑡) from each region is composed into a finite number of IMFs, 
as shown in Figure 4. 

 
Figure 4. Signal decomposition of 𝑖ீଵ (𝑡)  and 𝑖ீଶ (𝑡)  using a decomposition method with 100 
realizations and 100 iterations. 

As illustrated in Figure 4, each signal is decomposed into five signals with different 
frequencies. IMFs signals were analyzed in the time-frequency domains using MATLAB 
built-in command, called “pspectrum”. This command uses spectrogram function to 
returns a vector of time-series signal corresponding to the centers of the windowed 
segments used to estimate power spectrum of the selected signal. This function helps to 
visualize interference features embedded within the selected signal at a time resolution of 
0.5 s and zero overlap between adjoining segments. Three IMFs (IMF3, IMF4 and IMF5) 
from each region with the largest maximal amplitude are selected as candidates to 
estimate BP and neglecting IMF1 and IMF2 that fall within the possible light changes 
frequencies to reduce the illumination noise artifacts, as shown in Figure 5. 

 
Figure 5. The selected IMF spectrums from ROI1 and ROI2 at a time resolution of 0.5 s. 
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Then, the features (locations of peaks and the distance between the consecutive 
peaks) from the selected IMFs are extracted to estimate BP. The following formula is used 
to estimate the ratio of systolic BP as follows: 𝑋௦௬௦ =  𝑑𝑥ଵ ൅ 𝑑𝑦ଵ𝑑𝑧ଵ   (3)

where 𝑥 is the distance between the first two consecutive peaks from IMF4 (ROI1), 𝑦 is 
the distance between the first two consecutive peaks from IMF5 (ROI1), 𝑧 is the average 
distance among the peaks from IMF3 (ROI2), 𝑑𝑥ଵ = 𝑥଴.ଷଷ, 𝑑𝑦ଵ = 𝑦଴.ଶହ and 𝑑𝑧ଵ = 2(1 ൅𝑧). The systolic BP can then be calculated using the following formula Systolic BP =  (190 െ ሾ(190 െ 120)ሿ × 𝑋௦௬௦) േ  𝑑𝑡1 (4)

where 𝑑௧ଵ = 10(ଵ.ସସି௑ೞ೤ೞ) where 1.44 is a value of 𝑋௦௬௦ corresponding to systolic BP that 
equals approximately 90 mmHg. 

If (𝑋௦௬௦ > 1), the value of 𝑑௧ଵ will be added to Equation (4) 
If (𝑋௦௬௦ ൏ 1), the value of 𝑑௧ଵ will be subtracted from Equation (4) 
If (𝑋௦௬௦ = 1), the value of 𝑑௧ଵ will be ignored. 
The following formula is used to estimate the ratio of diastolic BP as follows: 

𝑋ௗ௜௔௦ = ൦𝑑𝑥ଶ ൅ 𝑑𝑦ଶ ൅ 1𝑑𝑥ଶ2 ൪ െ 𝑑𝑧ଶ  (5)

where 𝑑𝑥ଶ = 𝑥଴.ଶହ, 𝑑𝑦ଶ = 𝑦଴.ଷଷ, and 𝑑𝑧ଶ = 2z Diastolic BP =  (130 െ ሾ(130 െ 80)ሿ × 𝑋ௗ௜௔௦) േ  𝑑𝑡2 (6)

where 𝑑௧ଶ = 10(ଵ.ସି௑೏೔ೌೞ) where 1.4 is a value of 𝑋ௗ௜௔௦ corresponding to diastolic BP that 
equals approximately to 60 mmHg. 

If (𝑋ௗ௜௔௦ > 1), the value of 𝑑௧ଶ will be added to Equation (6) 
If (𝑋ௗ௜௔௦ ൏ 1), the value of 𝑑௧ଶ will be subtracted from Equation (6) 
If (𝑋ௗ௜௔௦ = 1), the value of 𝑑௧ଶ will be ignored. 

3. Experimental Results and Discussion 
The videos and extracted signals were processed offline using the MATLAB program 

(MathWork Inc., Natick, MA, USA). For system verification, the results of the proposed 
imaging system were evaluated against their corresponding benchmark (BM) 
measurements using statistical parameters, such as accuracy, root mean square error 
(RMSE), mean absolute error (MAE), absolute percentage error (APE), mean absolute 
percentage error (MAPE). The comparison between systolic/diastolic BP readings against 
their BM readings for all collected data is shown in Figure 6. 

 
Figure 6. The systolic and diastolic BP comparison between the proposed imaging system and BM 
measurements. 
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It is clear from Figure 6 that the accuracy of the proposed imaging system for systolic 
BP measurements was 94.6% with an RMSE of 9.2 mmHg, while it was 95.4% for diastolic 
BP measurements with an RMSE of 7.6 mmHg. The error ratios, including MAE and 
MAPE of the measured systolic BP readings, were also examined with respect to those of 
the BM measurements, as shown in Figure 7. 

 
Figure 7. Error measurements of the systolic BP readings (a) an error with the number of samples 
(b) APE (%) relative to the systolic BM readings. 

Figure 7a shows that the systolic BP error differs over the range from 0 mmHg to 27 
mmHg with an MAE of 7.27 mmHg, whereas Figure 7b illustrates that the APE of the 
systolic BP readings differs over the 0–20.56% range of percentage with a MAPE of 5.865%. 
For the diastolic BP measurements, the error ratio is illustrated in Figure 8. 

 
Figure 8. Error measurements of the diastolic BP readings (a) an error with the number of samples 
(b) APE (%) relative to the systolic BM readings. 
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Figure 8a shows that the diastolic error differs over the range from 0 mmHg to 23 
mmHg with an MAE of 5.47 mmHg, and Figure 8b illustrates that the APE of the diastolic 
BP readings differs over the 0–28.125% range of percentage with a MAPE of 7%. 

The proposed imaging system was also examined via statistical analysis, such as 
histogram test, probability density function (PDF), and cumulative density function 
(CDF). The measured BP readings by the proposed system firstly determined whether 
they were compatible with the benchmark measurements or not using a histogram test. 
The histogram test of the systolic BP data obtained from the proposed imaging system 
and the systolic BP data obtained from the benchmark is shown in Figure 9. 

 
Figure 9. The histogram test of systolic BP data. 

Figure 9 illustrates peaks of 35 and 28 points in the 133 and 124 mmHg classes for the 
proposed imaging system and the benchmark, respectively, leading to a good 
convergence between the proposed imaging system and the benchmark measurements. 
The histogram test of the diastolic BP data is shown in Figure 10. 

 
Figure 10. Histogram of the diastolic BP data. 

Figure 10 reveals peaks of 29 and 30 points in the 88 and 88 mmHg classes for the 
proposed and the BM, respectively, leading to good convergence between the data 
measured by the proposed system and those measured by the benchmark. The measured 
BP data gained from the proposed imaging system were also investigated through a 
statistical metric based on a PDF test, as shown in Figures 11 and 12. 
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Figure 11. The PDF test of the systolic BP measurements against their corresponding benchmark 
measurements. 

 
Figure 12. The PDF test of the diastolic BP measurements against their corresponding benchmark 
measurements. 

Finally, the CDF plot was used for adjusting the distribution of BP measurements 
against their corresponding benchmark measurements, which preserves the relative 
relationship of the main data with a reference range. In this work, the CDF plot 
demonstrated a large agreement between systolic and diastolic BP measurements and the 
benchmark measurements, as shown in Figures 13 and 14, respectively. 

 
Figure 13. The CDF plot for systolic BP measurements. 
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Figure 14. The CDF plot for diastolic BP measurements. 

It is clear from Figure 13 that the CDF plot indicates a good agreement of 90% and 
92% for systolic BP measurements values of 143 and 144 mmHg, respectively, whereas the 
CDF plot in Figure 14 indicates a better agreement of 94% and 95% for diastolic BP 
measurements values of 95 and 94 mmHg, respectively. The proposed imaging system 
achieves an average error percentage of 5.865% (Systolic BP) and 7% (Diastolic BP) 
compared to an average error percentage of 9.62% (Systolic BP) and 11.63% (Diastolic BP) 
obtained by [18], an average error percentage of 8.42% (Systolic BP) and 12.34% (Diastolic 
BP) obtained by [20], and an average error percentage of 9.28% (Systolic BP) and 9.84% 
(Diastolic BP) obtained by [21]. 

In addition to the lighting changes effects, the plethysmographic signals may be 
slightly affected by changing the subject’s skin tone; therefore, this study recruited 
participants with different skin tones to increase the performance and accuracy of the 
proposed system. Through the data obtained, the error range of the obtained systolic BP 
falls within 7.27–9.2 mmHg, while it was 5.47–7.6 mmHg for the obtained diastolic BP 
compared to the benchmark measurements; this is because the benchmark measurements 
were also affected by movement artifacts and were inaccurate under some conditions, 
creating difficulty in the validation process with the proposed imaging system. Therefore, 
we tried to repeat the reference measurements until a steady reading was obtained. 
Additionally, the efficiency of the proposed imaging system is affected by subject 
movements, such as head rotation and facial expressions. It was also noticed that the 
proposed imaging system was inaccurate when perspiration was present on the forehead 
region or when it was covered with makeup, so all participants in the study were asked 
to clean and wipe the forehead region before filming. Finally, changing the distances 
between the camera and the face was not considered in this study. 

4. Conclusions 
In this study, a non-interventional imaging system was proposed to remotely 

estimate BP using plethysmographic video signals obtained from two regions of the 
forehead. The issue of illumination conditions that highly affected the plethysmographic 
signal was addressed using an efficient noise removal decomposition method. System 
performance was tested by comparing the error and the accuracy of the BP readings from 
the proposed imaging system, with the method showing promising results compared to 
the benchmark measurements. Thus, the proposed system makes the BP measurement 
potentially feasible and convenient for subjects, and also inexpensive, which is of great 
significance for healthcare applications and continuous vital signs monitoring. 
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