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Abstract: The purpose of this paper is to discuss an optimal operation and schedule of commerce air-
conditioning system by considering the demand response in order to obtain the maximal benefit; this
paper first collects the operating data of the chiller units in commercial users, calculates the cooling
load of each unit, and derives the relationship between the cooling loads and power consumption
of each unit. The weather information, such as temperature and humidity of inside/outside, are
collected in the EXECL database, and the cooling load of the mall’s space is simulated by using the
Least Square Support Vector Machine (LSSVM). Under the selected plan of power reduction, the
requirement of space cooling loads, and the various operation constraints, the dispatch model of
the commerce air-conditioning system with demand response strategies is formulated to minimize
the total cost. A Modify Particle Swarm Optimization with Time-Varying Acceleration Coefficients
(MPSO-TVAC) is proposed to solve the daily economic dispatch of the air-conditioning system. In
the MPSO-TVAC procedure, the dynamic control parameters are embedded in the particle swarm
of the PSO-TVAC in order to improve the behavior patterns of each particle swarm and increase its
search efficiency in high dimensions. Different modifications in moving patterns of MPSO-TVAC are
proposed to search the feasible space more effectively. By using MPSO-TVAC, it provides an optimal
mechanism for variables regulated to increase the efficiency of the performing search and look for the
probability of an optimal solution. Simulation results also provide an efficient method for commercial
users to reduce their electricity bills and raise the ability of the market’s competition.

Keywords: air-conditioning system; particle swarm optimization; demand response; least square
support vector machine

1. Introduction

Energy, as the basic power to promote social development and economic activities,
can improve the living quality and provide a convenient environment for human beings. In
2021, Taiwan’s energy import dependency was 97%, and electricity consumption accounted
for 49.4% of its final energy consumption. Stable energy and power supply are very impor-
tant for Taiwan. Taiwan, as an island country, has to generate 100% of its own electricity, for
its power system is not connected to the national power grids of other countries. Sufficient
power supply has become the sincere expectation of people, industrialists, and businessper-
sons. In Taiwan, it is doomed that the future power supply will be changed, with thermal
power accounting for 80% and renewable power accounting for 20%, which will inevitably
lead to an increase in power generation costs. Accordingly, the electricity price will rise,
which will impose considerable burdens on the electricity expenditures of enterprises. As a
result, their power management technologies are important. Demand response plays an
important role in power management strategies and can be adopted by power companies
to postpone power development schedules, reduce temporal or regional line congestion,
emergently relieve pressure from power rationing and provide mechanisms to maintain
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safe power systems. Users with high electricity consumption reduce power demands
by changing their electricity consumption habits and making proper use of the demand
response mechanism. In practice, current business operators gradually pay attention to
demand responses in order to achieve the most effective use of the annual electricity budget.
Therefore, demand responses have become one of the key items in the power management
strategies of business operators [1–3].

Because of industrial changes and the growth of air-conditioning electricity consump-
tion in Taiwan, the difference between summer load and peak load and off-peak load
continues to increase each year. In order to reflect the difference in power supply costs be-
tween peak load and off-peak load in summer and other seasons, Taiwan Power Company
implements the system of season-of-use price and time-of-use price to reduce peak load
and improve power supply; however, for general commercial or office buildings, the power
consumed by central air conditioning systems may account for 40% of the total electricity
consumption, indicating that they are usually the most power-hungry equipment [4,5]. De-
mand response (DR) is one of the strategies taken by power companies to reduce electricity
consumption and provide incentives for electricity bill reduction during periods of tight
power supply or high cost so that users reduce contracted load consumption [6,7]. In the
demand response mechanism, excessively high agreed suppression contracted capacity
may lead to a high reduction of basic electricity bills but will greatly improve the control
of electric equipment. As a result, the agreed suppression contracted capacity even may
not achieve, resulting in the failure of electricity bill reduction. Excessively low agreed
suppression contracted capacity is easy to be achieved but is much less than the reduction
of basic electricity bill. Without affecting their power demands or under normal operation,
users should conform to the load management of the power company, reduce peak periods,
improve participation willingness and implementation performance, get feedback and com-
pensations, and improve power equipment utilization and power quality. Users with high
electricity consumption reduce power demands by changing their electricity consumption
habits and making proper use of the demand response mechanism. In practice, current busi-
ness operators gradually pay attention to demand responses in order to achieve the most
effective use of the annual electricity budget. Therefore, demand responses have become
one of the key items in the power management strategies of business operators [8,9].

In recent years, there has been a lot of literature on the demand response scheduling
and management strategies of the power market, mainly focusing on the effects of various
operation strategies on the profits of power companies or users. Ref [10], with a virtual
power plant as the bidder, calculates the demand response exchange in the day-ahead
market by the stochastic programming method to obtain the maximum profit of the vir-
tual power plant. Refs [11–13] take heating ventilation air conditioner (HVAC) as control
load equipment to improve power quality and reduce electricity bills by implementing
demand response optimization strategies. Ref. [14] carried out demand bidding by the
time-based transferable load in and calculating users’ best interests by automatic demand
responses. In terms of electric energy management for domestic consumers, domestic air
conditioning systems and energy storage systems are used with demand response policies
of power companies to reduce users’ electricity bills, increase extra incomes arising from
electricity consumption reduction, and minimize electricity expenditures [15,16]. Some
energy management control strategies are used to construct the demand response bidding
model of integrated air conditioners, reduce load growth and evaluate users’ profits so as
to achieve the energy-saving dispatching of integrated air conditioners [17–19]; however,
now, there is a trend of large public places domestically and internationally. For exam-
ple, large public buildings such as commercial office buildings and shopping malls are
springing like mushrooms. Large central air conditioning systems, usually the biggest
electricity consumption equipment, are widely used in summer peak periods [20]. For
these large power-consuming air conditioners used in buildings, some studies explore
demand response strategies matched with energy management [21–23] and provide some
effective management measures to reduce power supply bottlenecks. Ref [24] proposed



Inventions 2022, 7, 69 3 of 12

a supervised-learning-based approach to implement demand response control strategies
for multi-regional building air-conditioning systems, seeking optimal regional energy
management and integrating demand response control strategies at different electricity
prices for maximum returns. Refs [25–27] integrated air-conditioning system scheduling,
self-adaptive control strategy, and refrigerating capacity control in commercial buildings
to provide reliable and stable demand response measures and effectively transfer peak
load; however, in implementing demand response control of commercial buildings, es-
pecially shopping malls, people’s comfort in the indoor shopping environment must be
considered [28,29]. Ref. [30] proposed a comprehensive analysis of demand response pric-
ing strategies in a smart grid environment. Most demand response periods are at peak
load, and shopping malls are enclosed, crowded, and hot. Intermittent suspension of
air-conditioning systems may cause inconvenience to people and reduce commercial trans-
actions; however, in reality, due to the high power consumed by central air conditioning
systems in large shopping malls, the demands for air conditioning should be regulated
according to external climates and comfort indexes, and demand response measures should
be coordinated, which leads to the increase of uncertain factors in electricity planning
of shopping malls. Therefore, under the existing power system architecture, regardless
of long-term or short-term scheduling and management, how to optimize economic and
comfortable scheduling strategy by developing various electricity consumption control
strategies will be a subject for commercial enterprises in sustainable operation.

The purpose of this paper is to discuss the optimal operation and schedule of the air-
conditioning system by considering the demand response in order to obtain the maximal
benefit. The weather information, such as temperature and humidity of inside/outside,
are collected in the EXECL database, and the cooling load of the mall’s space is simulated
by using the Least Square Support Vector Machine (LSSVM) [31]. Under the selected plan
of power reduction, the requirement of space cooling loads, and the various operation
constraints, the dispatch model of the air-conditioning system with demand response
strategies is formulated to minimize the total cost. A Modify Particle Swarm Optimization
with Time-Varying Acceleration Coefficients (MPSO-TVAC) is proposed to solve this prob-
lem. In the MPSO-TVAC procedure, the dynamic control parameters are embedded in the
particle swarm of the PSO-TVAC in order to improve the behavior patterns of each particle
swarm and increase its search efficiency and accuracy in high dimensions. The proposed
algorithm was tested in a shopping mall to prove its efficiency. Simulation results provide
a novel method for commercial users to reduce electricity bills and raise the ability of the
market’s competition.

2. Problem Formulation

The system architecture studied in this paper is shown in Figure 1. Utility supplies
power to the shopping mall to satisfy the load. Shopping malls then implement the demand
response strategies in consideration of the comfort of people in the mall and the schedules
of the air-conditioner system. With minimal cost as the goal, the optimal operation with
demand response strategies is established to get the maximal benefits of a shopping mall.

2.1. Demand Response

Demand response is based on incentives provided by the electricity sellers to reduce
electricity prices because power undersupply may occur during peak periods or power
transmission congestion. If users are willing to reduce their electricity consumption,
the system will change its power supply model and avoid the risk of power rationing.
The model of planning electricity consumption reduction allows users to evaluate the
business characteristics of enterprises, shopping malls, or factories and to sign electricity
consumption reduction measures with electricity sellers to reduce electricity costs; this
study took the demand response load management strategies currently developed to reduce
electricity consumption by Taiwan Power Company, as shown in Table 1, including an 8-day
monthly reduction model, 6-h daily reduction model, and 2-h daily reduction model [32].
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The targeted subjects were users with high demand over 100 KW. The implementation
period was from 1 June to 30 September each year.
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Table 1. Planned electricity reduction measures.

Planned Strategies 8-Day Monthly
Reduction Model

6-h Daily
Reduction Model

2-h Daily
Reduction Model

Suppression of
electricity

consumption period

1 June to 30 September each year.

From Monday to
Friday every month,
select the period of

8 days to reduce
electricity

consumption

From Monday to
Friday every month

From Monday to
Friday every month

Appointment date
10 a.m. to 5 p.m.

Daily 10–12 a.m.,
1–5 p.m. Daily 1–3 p.m.

Suppression of
electricity

consumption time
7 h 6 h 2 h

Scope of application The targeted subjects were users with a high demand of over 100 KW

Regardless of the type of planned strategies for electricity consumption reduction, the
bill reduction was determined by the implementation rate (x). The implementation rate is
defined as Equation (1).

x =
Actcontract

Agrcontract
× 100% (1)
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x: implementation rate.
Actcontract: actual reduced capacity.
Agrcontract: agreed reduced capacity.

There is a deduction rate (y) in the implementation rate (x) for each type of planned
strategy, as shown in Tables 2–4 [32]. There is a corresponding deduction rate for electricity
bills depending on the range of the implementation rate. The electricity bill reduced in the
demand response strategies is calculated as in Equation (2).

DEB = BEP × Agrcontract × y (2)

DEB: deduction of electricity bill.
BEP: basic electricity price.
y: deduction rate.

Table 2. The relationship between x and y in the 8-day monthly reduction model.

Implementation
Rate (x) x < 60% 60% ≤≤≤ x < 80% 80% ≤≤≤ x < 100% x ≥≥≥ 100%

Deduction rate (y) 0% 10% 20% 30%

Table 3. The relationship between x and y in 6-h daily reduction model.

Implementation
Rate (x) x < 60% 60% ≤≤≤ x < 80% 80% ≤≤≤ x < 100% x ≥≥≥ 100%

Deduction rate (y) 0% 60% 80% 100%

Table 4. The relationship between x and y in 2-h daily reduction model.

Implementation
Rate (x) x < 60% 60% ≤≤≤ x < 80% 80% ≤≤≤ x < 100% x ≥≥≥ 100%

Deduction rate (y) 0% 30% 40% 50%

2.2. The Cooling Load Forecasting of Shopping Mall

The temperature and humidity of the outdoor environment were obtained from the
Central Weather Bureau Observation Data Inquire System (CWBODIS) [33], and the indoor
temperature and humidity of commercial shopping malls were collected in the EXECL
database. Based on the above information, the cooling load forecasting of the shopping
mall was simulated by the LSSVM, as shown in Figure 2. Furthermore, body comfort was
also considered in this research. The comfort index of the human body (CI) is one of the
indexes to describe the comprehensive influences of temperature (T), humidity (H), and
spatial environment wind velocity (V) on the human body, as shown in Equation (3) [29],
indicating whether people feel comfortable at a certain temperature and relative humidity.
Different combinations of temperature and relative humidity were used to represent the
chilling capacity of an air-conditioned space.

CI = (1.818T + 18.18)(0.88 + 0.002H) +
(T − 32)
(45 − T)

− 3.2V + 18.2 (3)

The cooling load of chillers in the conditioning system must meet the cooling load
requirement of the shopping mall. The cooling load of chillers is generally calculated
based on the return water temperature, supply water temperature, and the flow rate of
chilled water. Therefore, the calculation of the cooling load capacity for the chillers is as in
Equation (4):

Qchiller = PLM × ∆Tchw × ρw × Cpw (4)

Qchiller: the cooling load of chillers.
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PLM: the flow rate of chilled water (kg/s).
ρw: the density of chilled water (1 kg/L).
Cpw: the specific heat of chilled water (4.186 kJ/kg-◦C).
∆Tchw is the temperature difference of chilled water (◦C), which is defined as Equation (5).
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∆Tchw = Tchwrt − Tchwst (5)

Tchwrt: the return temperature of chilled water (◦C).
Tchwst: the supply temperature of chilled water (◦C).

The power consumption of chillers is a convex function of the cooling load capacity as
shown in Equation (6):

Pchiller,i = ai + biQchiller,i + ciQ2
chiller,i + diQ3

chiller,i (6)

where ai, bi, ci and di are the regression coefficients of the function of cooling load capacity
and power consumption.

2.3. Objective Function and Constraints

The main purpose of this paper is to derive the best single-day schedule planning
for the air-conditioning system so that the total cooling load of the chillers can meet the
required cooling load needs of the target space. By considering the demand response
strategies, the total electricity cost can be formulated as in Equation (7).

Min Cost =
H
∑

t=1

((
N
∑

i=1
Pchiller,i(t)Ui(t) + SUi(t) + SDi(t)

)
× TOU(t)

)
−

T1 or T2
∑

t=1
DEB(t)

(7)

The constraints include both the system constraints and the unit’s constraints:

(a) load balance:

CL(t) =
H

∑
t=1

N

∑
i=1

Qchiller,i(t)Ui(t) (8)

(b) The limitation for the temperature difference of chilled water:

∆Ti
chw,min ≤ ∆Ti

chw(t) ≤ ∆Ti
chw,amx (9)

(c) the limitation of the minimal operating time Ti,on/the minimal stopping time Ti,o f f

Ti,on ≥ Ton
i , Ti,o f f ≥ To f f

i (10)
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(d) the limitation of cooling load for chillers

Qchiller,i,min ≤ Qchiller,i ≤ Qchiller,i,max (11)

Pchiller,i(t): the power consumption of the i-th chiller at time t.
Ui(t): the i-th unit on/off at time t, 1 is on and 0 is off.
TOU(t): the TOU rates [34].
SUi(t): the power consume when the i-th unit is start at time t.
SDi(t): the power consume when the i-th unit is stop at time t.
H/N: the scheduling time/the total number of chillers.
T1/T2: the duration of demand response.
DEB(t):Deduction of electricity bill at time t.
Qchiller,i(t): the cooling load of i-th chiller at time t.
CL(t): the total cooling load of shopping mall at time t.
Ton

i : the maximal operating time.

To f f
i : the maximal stopping time.

Qchiller,i,min/Qchiller,i,max: the minimal cooling load/the maximal cooling load of the chiller.

3. Solution Algorithm

In a PSO system, birds (particles) flocking optimize a certain objective function. Each
particle knows its current optimal position (pbest), which is analogous to the personal
experiences of each particle. Each particle also knows the current global optimal position
(gbest) among all of the particles in the population. Particle Swarm Optimization with
Time-Varying Acceleration Coefficients (PSO-TVAC) is developed in [35]. Although PSO-
TVAC can search in a wide range and has a high probability of obtaining the best solution,
because there is no weight values, in the later search process, the regional optimal solution
(pbest) and the global optimal solution (gbest) have no exchange ability. If the particles fall
into the local optimal area, it still lacks the ability to escape from the local area; this paper
proposes that MPSO-TVAC appropriately introduce the exchange mode of feasible and
infeasible solutions of particles to increase its search ability and improve the ability of the
population to search for particles in the whole area of the algorithm. The formulation of
MPSO-TVAC is described as follows.

The velocity with PSO-TVAC can be represented in Equation (12). By using Equation (12),
a certain velocity can be calculated due to the position of individuals gradually closer to pbest
and gbest. The current position can be modified by Equation (13).

vt+1
s =

[
c1 =

(
c1 f − c1i

)
· iter

itermax
+ c1i

]
· rand ·

(
pbestt

s − pt
s

)
+
[
c2 =

(
c2 f − c2i

)
· iter

itermax
+ c2i

]
· rand ·

(
gbestt − pt

s

) (12)

Pt+1
s = Pt

s + Vt+1
s (13)

c1 f , c2 f : initial acceleration constant; in this paper, c1 f = 0.8 , c2 f = 1.9.
c1i, c2i: final acceleration constant; in this paper, c1i = 1.88 , c2i = 0.7.
itermax: the maximal iteration.
iter: the current iteration.
rand: uniform random value with a range of [0, 1].
Pt

s : the position of particle s at iteration t.
Vt

s : the velocity of particle s at iteration t.
pbestt

s: the own best position of particle s at iteration t.
gbestt: the best particle in the swarm at iteration t.

When PSO-TVAC is dealing with complex problems, it is very difficult to search
for a feasible solution; it led to more trouble if the scheduling constraints are considered
in the early stage of iteration. MPSO-TVAC introduces an operator, a “random feasible
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solution”, into the PSO-TVAC to increase the search ability. The “random feasible solution”
process adds the proper random feasible own best position into the velocity vector when
the solution is searched in each generation. MPSO-TVAC can be employed in the algorithm
to make the search method more efficient at the end of the search, and the success rate
of the search for a global optimum can be increased. The formulation of MPSO-TVAC is
expressed as Equation (14).

vt+1
s =

[
c1 =

(
c1 f − c1i

)
· iter

itermax
+ c1i

]
· rand ·

(
pbestt

r − pt
s

)
+
[
c2 =

(
c2 f − c2i

)
· iter

itermax
+ c2i

]
· rand ·

(
gbestt − pt

s

) (14)

where pbestt
r is the own best position of random particle r in all feasible particles at iteration t.

Figure 3 shows the flowchart of the solution algorithm.
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4. Case Study

The proposed algorithm was tested in a commercial shopping mall. The shopping
mall evaluated in this study covered an area of about 62,810 square meters and has roughly
170 stores. The mall had four large chiller units, three 860 HP chiller units, and one 560 HP
chiller unit, totaling 3140 HP, to provide air conditioning for the mall. The electricity cost
for the chillers was calculated based on the announced summer and non-summer prices
from the TOU rate [32]. The temperature and relative humidity in the shopping mall
were initially set as 26 ◦C and 45%, respectively. According to the electricity consumption
model, the power demand rose greatly after 10:00 a.m.; moreover decline sharply after
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10:00 p.m. In this study, Case 1 to Case 6 were designed based on the comfort index (CI).
The temperature ranged from 26 ◦C to 28 ◦C, the relative humidity ranged from 45% to 55%,
and the wind velocity was fixed at 1 m/s, indicating that the ambient temperature could
make people feel warm and comfortable. Table 5 shows the corresponding parameters of
the studied cases.

Table 5. The corresponding parameters of studied cases.

Cases Temperature (◦C) Relative Humidity (%) CI

Case 1 26 45 72.337
Case 2 26 55 72.350
Case 3 27 45 73.977
Case 4 27 55 73.990
Case 5 28 45 75.621
Case 6 28 55 75.635

4.1. The Power Consumption of Different Cases

Table 6 shows the power consumption of the different cases in a single period. The
demand with different comfort index is calculated by the least squares support vector
machine, as shown in Figure 4. Then, MPSO-TVAC is applied to optimize the scheduling
of the air conditioning system. The total electricity consumption of the system is shown
in Figure 5.

Table 6. The power consumption of the different cases in a single period.

Case Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

maximal cooling
load (RT) 609.1354 593.4087 569.5376 563.4378 518.3609 488.8008

maximal electricity
consumption (kW) 2086.093 2004.096 1965.254 1913.659 1757.882 1612.157

total maximal
electricity

consumption (kW)
6518.093 6483.879 6339.254 6292.916 5995.656 5986.157

4.2. 6-h Daily Reduction Model

In the 6-h daily reduction model of the planned strategies for electricity consumption
reduction, the base contract capacity is 5383 kW and the basic bill is 223.6 NT/KW. In test
cases with different CI, the optimal agreed reduced capacity in this study was calculated
by MPSO-TVAC. Table 7 shows the simulation results of the 6-h daily reduction model. In
test cases, the optimal agreed reduced capacity calculated by MPSO-TVAC was increased
from 365 kW to 1221 kW, and the actual reduced capacity was increased from 365.024 kW
to 976.949 kW, making the reduction of the basic electricity bill increase from 81,614 NT to
218,412.50 NT.

4.3. 2-h Daily Reduction Model

In the 2-h daily reduction model, the electricity consumption of the original system is
used for evaluation. The Basic contract capacity from 10:00 a.m. to 12:00 p.m.; moreover
from 3:00 p.m. to 5:00 p.m. on working days in August is 5042 kW. In the 2-h daily
reduction model, the average power demand during the reduction period is from 1:00 p.m.
to 3:00 p.m. As mentioned previously, the base power capacity is lower than the average
power consumption during the reduction period. Hence, it is difficult to achieve the
goal of the 2-h daily reduction model. Table 8 shows the simulation results of 2-h daily
reduction model.
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Table 7. The simulation results of 6-h daily reduction model.

Cases Basic Contract
Capacity (kW)

Basic Bill
(NT/kW)

The Average
Power

Consumption
(kW)

Actual
Reduced
Capacity

(kW)

Agreed
Reduced
Capacity

(kW)

Implement
Rate (%)

Deduction
Rate (%)

Deduction
Bill (NT)

Case 1 5383 223.6 5018.142 365.024 365 100.01 100 81,614.00
Case 2 5383 223.6 4981.512 401.655 502 80.01 80 89,797.76
Case 3 5383 223.6 4718.968 664.199 664 100.00 100 148,470.40
Case 4 5383 223.6 4702.757 680.409 1134 60.00 60 152,137.40
Case 5 5383 223.6 4419.673 963.494 1204 80.02 80 215,371.50
Case 6 5383 223.6 4406.217 976.949 1221 80.01 80 218,412.50

Table 8. The simulation results of 2-h daily reduction model.

Cases
Basic

Contract
Capacity

(kW)

Basic Bill
(NT/kw)

The Average
Power

Consumption
(kW)

Actual
Reduced
Capacity

(kW)

Agreed
Reduced
Capacity

(kW)

Implement
Rate
(%)

Deduction
Rate (%)

Deduction
Bill (NT)

Case 1 5042 223.6 5414.284 0 0 0 0 0
Case 2 5042 223.6 5350.107 0 0 0 0 0
Case 3 5042 223.6 5099.841 0 0 0 0 0
Case 4 5042 223.6 5066.662 0 0 0 0 0
Case 5 5042 223.6 4797.349 244.775 407 60 30 27,301.56
Case 6 5042 223.6 4782.205 259.920 433 60 30 29,045.64
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In test cases, the optimal agreed reduced capacity calculated by MPSO-TVAC is
increased from 0 kW to 433 kW, the actual reduced capacity is increased from 0 kW
to 259.920 kW, and the reduction of the basic electricity bill is increased from 0 NT to
29,045.64 NT. If the internal ambient temperature is set above 28 ◦C, the actual reduced
capacity will be greater than 0 in Case 5 to Case 6, so that the basic electricity bill can
be reduced. Therefore, if the total electricity consumption of the system can be reduced
overall, the 6-h daily reduction model in the planned strategies for electricity consumption
reduction will be the most beneficial.

5. Conclusions

This paper takes a shopping mall enterprise as the point of view to determine the
optimal operation and schedule of air-conditioning systems by considering the demand
response; this paper proposed to use MPSO-TVAC to implement the comfort energy-saving
control of the air-conditioning systems and the optimal agreement to reduce the contracted
capacity under different conditions of air-conditioning load, comfort index, and demand
response strategies. Operation planning, providing incentive feedback from the power com-
pany to obtain more benefit compensation, will be of great help to improve the use efficiency
of its own power equipment and the ability of business operators to operate and manage.
Through case tests, the planned strategies for electricity consumption reduction taken by
the shopping mall under different comfort indexes were effectively evaluated. In the face of
the power company’s implementation of demand response, business users have a strategy
to follow when they invest in energy-saving operation evaluation of air-conditioning sys-
tems to increase their own competitiveness and sustainable operation capabilities. Results
are also shown that business users can obtain more benefit compensation from the power
company to reduce electricity bills and obtain maximum operating benefits.
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