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Abstract: In this research, drones were used to capture thermal images and detect different types of
failure of solar modules, and MATLAB® image analysis was also conducted to evaluate the health of
the solar modules. The processes included image acquisition and transmission by drone, grayscale
conversion, filtering, 3D image construction, and analysis. The analyzed targets were the solar
modules installed on buildings. The results showed that the employment of drones to monitor
solar module farms could significantly improve inspection efficiency. Moreover, by combining the
mean and median filtering techniques, an innovative box filtering method was successfully created.
Additionally, this study compared the differences between the mean, median, and box filtering
techniques, and proved that the 3D image improved by box filtering is a more convenient and
accurate way to check the health of solar modules than the mean and median filtering methods. In
addition, this new method can simplify the maintenance process, as it helps maintenance personnel
to determine whether to replace the solar modules on site, achieving the goal of power generation
efficiency enhancement. It is worth noting that 3D image recognition technology can enhance the
clarity of thermal images, thereby providing maintenance personnel with better defect diagnosis
capability. It is also able to provide the temperature value of the defect zone, and to indicate the scale
of defects through the cumulative temperature chart, so the 3D image is qualified as a quantitative
and qualitative indicator. The analysis of the transmitted image is innovative that it not only can
locate the defect area of the module, but also can display the temperature of the module, providing
more information for maintenance personnel.

Keywords: drone application; image processing; IR image analysis

1. Introduction

The Sustainable Development Goals (SDGs) and global climate change are important
global issues today. There is a mandate for all countries to cooperate and take practical
and appropriate transnational actions to rapidly reduce greenhouse gas emissions on a
global scale [1]. Against this backdrop, further research and extensive application of green
energy are all the more important and critical. The purpose of this research is to develop
an advanced solar module monitoring and analysis system that can effectively analyze
the health status of solar modules and provide maintenance personnel with accurate
information for regular maintenance, aiming to extend the service lifespan of solar modules.

Currently, “power generation efficiency” is the parameter to monitor the performance
of both large and small solar photovoltaic plants. This monitoring method fails to satisfy
the daily and preventive maintenance requirements to extend the service lifespan of photo-
voltaic systems. In addition, many solar modules are installed on buildings and vast areas
such as lakes. It is a considerable challenge to carry out maintenance and monitoring of
solar modules in such locations.
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A solar plant is composed of a series of connected modules. The shadow on one
solar cell affects the whole series, thereby reducing the power generation efficiency of
the entire solar system. However, module shadow can be caused by many factors. One
such factor is the onsite environmental impact of things such as forests, nearby buildings,
clouds, sand and dust accumulation, bird droppings, etc. The power generation efficiency
of solar modules and the energy reduction caused by partial shadow are counted at 5–25%
a year [2]. This is mainly because the shadow increases the internal impedance of the solar
cell and blocks the current path, and then a reverse-current situation occurs. Under this
situation, the blocked current is converted into heat loss, which makes the solar cell heat
up locally and, finally, causes hot spots, yellowing, and glass breakage [2].

As mentioned above, the temperature of the solar module is an essential factor to
demonstrate power generation efficiency. For instance, when the temperature rises by
1 ◦C, the power generation efficiency of the solar cell module with the defect decreases by
0.5% [3–6]. Alsafasfeh et al. proposed a safer and low-cost real-time model combining two
cameras, a thermal imager, and a charge-coupled device (CCD) mounted on a drone, to
indicate and detect the faults in a PV system [4]. According to the experiment, it could
detect internal and external faults. Rosell and Ibanez proposed a methodology to estimate
PV electrical production by modifying the I–V model curve. This adjustment could create a
new maximum power output expression and provide PV module performance parameters
for all operating conditions [5]. Hwang et al. presented a method to analyze the defects of
PV systems by using modules’ temperature, power output, and panel images. This method
is able to check for failures rapidly, such as hot spots, panel breakage, connector breakage,
busbar breakage, panel cell overheating, and diode failure [6].

Many scientists have been endeavoring to develop an accurate and effective method
to monitor and identify solar module failures [7,8]. Yahyaoui and Segatto proposed a
technology to monitor and detect the faults of a single-phase grid-connected PV plant. This
method used two current and voltage indicators to analyze the faults affected by bypassed
PV modules, open-circuit strings, and partial shading to discover the total number of faulty
PV modules and strings [7].

Liao and Lu employed an unmanned aerial vehicle (UAV) to conduct the detection
of solar panel faults by inspecting solar panel infrared (IR) images. These infrared image
displays could be divided into three health conditions using the MATLAB® image analysis
toolbox [8].

As timely detection of solar module failures can prolong the service lifespan and
maintain the solar system’s performance [8,9], Madeti and Singh proposed a review of
a monitoring system for photovoltaic plants. The sensors, the controller used in the
data collection systems, and their working principles, as well as data transmission, data
storage, and analysis methodologies, are to be examined in this paper, with the aim to
build an effective, low-cost, and viable PV monitoring system that can reach our desired
performance [9].

It is also important to improve the safety of maintenance personnel when performing
maintenance duties in high-risk areas such as high-rise buildings and lakes. Jeong proposed
an effective matching method for feature points and a homography translation technique.
The temperature data derivation method and the standard/abnormal decision method
were adopted to enhance the performance [10]. However, solar defect module analysis was
not performed in Jeong’s research; our proposed method (improved box filtering) can fill
in the missing pieces.

Navid et al. and their proposed methodologies were compared and validated by
our team using thermal imaging. The results showed that the proposed fault monitoring
scheme can effectively monitor and characterize faults compared with traditional thermal
imaging [11–17]. Therefore, our study adopted UAVs installed with a thermal imager as
the acquisition tool for solar module images.

Ballestín-Fuertes attached mechanical components to the current solar PV modules
to enhance the automation of monitoring. In this study, the add-on components and their
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configuration were investigated, and a control strategy for applying this technology to
large photovoltaic plants was developed. A PV inverter was designed to validate the
proposed methodology on a small-scale solar plant to obtain onsite EL images of an actual
plant [18]. It was found that the cost of this method is high, and is not applicable for
large-area monitoring.

Sciuto et al. proposed an elliptical neural network method with feature extraction
based on the co-occurrence matrix and SVD decomposition. This technology effectively
detects different types of organic solar cell (OSC) surface defects, such as cracks, breaks,
and scratches. Its classification accuracy is up to 95.4% [19]. Moreover, in 2021, Sciuto
et al. proposed a new method to possibly detect and classify the different kinds of defects
occurring in OSCs’ manufacturing process. The Zernike moments were used to extract the
features from the scanning electron microscope images. These features were then used as
the input for the feedforward probabilistic neural network model (EBFNN). After training,
the correct classification of the model was 89.3% over the testing dataset [20].

As it is urgent to develop viable and sustainable green energy, the maintenance of solar
modules and monitoring of their conditions has become an important issue recently. Many
studies have been conducted to find a quick and reliable method of fault detection. A review
of the recently published papers is listed in Table 1, illustrating how these investigations
were conducted. This clearly indicates that UAVs are a convenient tool for large-scale
monitoring. Many researchers use drones for collecting data, and IR image detection is
widely adopted, with many researchers using it for fault detection.

Table 1. A comparison of references related to solar panel monitoring using drones.

References
Method

Drones + IR Image Defect Detection Post-Detection Analysis

Alsafasfeh, M., et al. [4] Yes
Jeong, H., et al. [10] Yes Diagnosis
Navid, Q., et al. [11] Yes
Henry, C., et al. [12] Yes
Pierdicca, R., et al. [13] Yes Deep learning
Boulhidja, S., et al. [14] Yes
Tsanakas, J.A., et al. [15] Yes
Gallardo-Saavedra, S., et al. [16] Yes
Herraiz, Á.H., et al. [17] Yes
Ballestín-Fuertes, J., et al. [18] EL 1

Zhang, H., et al. [21] Stacking model
López Gómez, J., et al. [22] Artificial neural networks
Ponce-Jara, M.A., et al. [23] IoT monitoring system

1 Electroluminescence technique.

Utilizing two PV datasets, Zhang developed four different stacking models—based on
extreme gradient boosting, random forests, light gradient boosting, and gradient boosting
decision trees—to predict photovoltaic power generation [21].

López Gómez fed GDAS weather data into an ANN model; the tested numerical
weather model could be combined with machine learning tools to model the output of
PV systems with less than 10% error, even when in situ weather measurements were not
available [22]. The above two scholars were able to predict the defects by estimating the
power generation, although the defective areas could not be precisely located.

Ponce-Jara proposed that a photovoltaic system connected to an IoT monitoring
system with dual-axis tracking produces 19.62% more energy than a static photovoltaic
system [23]. The above research can improve energy efficiency, but it neglects the aspect
of physical defect monitoring. It is suggested that the method proposed by Ponce-Jara
can be used for back-end analysis to determine the real-time defect status of PV modules.
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Table 2 summarizes other researchers’ relevant methods and their key points in solar
module monitoring.

Table 2. Key points of each study in the literature review.

No. Authors Reference Key Point

1 Jeong, H., et al. [10]

Using the maximally stable extremal regions (MSER) method,
which proposes an effective matching method for feature
points and a homography translation technique. The
derivation method and the normal/abnormal decision
method are described.

2 Pierdicca, R., et al. [13]
Intersection over union (IoU) is trained and evaluated on the
photovoltaic thermal image dataset—a publicly available
dataset collected for this work.

3 Ballestín-Fuertes, J., et al. [18]
Demonstrates the technical feasibility of onsite EL inspection
of photovoltaic power plants without measuring and
analyzing panel defects of photovoltaic installations.

4 Zhang, H., et al. [21]
Using two PV datasets for gradient boosting, random forests,
light gradient boosting, and gradient boosting decision trees
to predict photovoltaic power generation.

5 López Gómez, J., et al. [22]
Feeds GDAS weather data into an ANN model; the tested
numerical weather model can be combined with machine
learning tools to model the output of PV systems.

6 Ponce-Jara, M.A., et al. [23] PV modules are connected to an IoT monitoring system with
dual-axis tracking.

Given the above, this study proposes an innovative approach utilizing an infrared
imaging system with UAV functionality to detect faults in solar power systems; the acquired
IR images were also reproduced to construct 3D images for analysis and comparison
purposes. Furthermore, the defect location and relative temperature of the solar module
were obtained by comparison with the normal operating module and the color bar of the
3D image. The defect locations were then analyzed using an IR image with an irradiance of
500 W/m2 instead of above 700 W/m2, which was the parameter proposed by previous
studies for IR imaging. Our proposed new method is obviously a breakthrough, as it can
be applied to obtain the best IR image even at an irradiance of 500 W/m2.

2. Detection Method and Experimental Setup
2.1. Visual Inspection

Visual inspection is regarded as one of the key inspection methods. Nevertheless, solar
modules are usually installed on building rooftops or in vast areas, where it is not easy for
maintenance personnel to perform inspections. Utilizing flexible and maneuverable drones
equipped with visible light sensors to perform inspection tasks can effectively increase
inspection efficiency and save manpower. Despite this, inspection of visible-light images
can only be used to inspect the appearance of defects, and cannot further investigate the
interior of the solar cells. Hence, electroluminescence technology (EL) or thermal image
evaluation is required for in-depth examination.

2.2. Electroluminescence (EL)

Electroluminescence (EL) technology makes use of electroluminescence images to
show material defects, microcracks, process contamination, sintering waves, and broken
fingers of solar modules [24,25].

The mechanism is to add a forward current to the solar panel to make it become a
light-emitting diode. If there exists cracks or flaws, defect voids will be generated, and
light will be emitted. The light intensity is proportional to the input current, and can
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reflect the density of defects; the part with fewer defects has a stronger luminous intensity,
whereas the part with more defects has a relatively weak luminous intensity. By means
of electroluminescence images, defects such as material defects, microcracks, and circuit
breakages in solar cells can be clearly identified.

Although electroluminescence technology can help diagnose faults or defects, this
technology can only detect one solar module at a time, and the EL equipment has to
be placed close to the solar module to perform the inspection. Therefore, this method
is considered to be labor-intensive and time-consuming. Therefore, the application of
electroluminescence technology is mainly confined to laboratories.

2.3. Thermal Imaging Inspection (IR)

Thermal imaging inspection is a novel method that provides data about the condition
of solar modules. Usually, it is performed using a sensor with thermal images (IR images).
Thermal image evaluation is a harmless and non-contact monitoring technology that can
directly diagnose the defects and failures of most solar modules, but this inspection method
is applicable only under appropriate ambient temperature, wind speed, and sunlight (at
least 700 W/m2 radiation) [26,27]. Despite this, this method is still valid, as it can inspect
the interior conditions of solar cell modules. In addition, hot spots (defects) caused by
abnormally high temperatures can be detected by comparing the visible and infrared
images taken at the exact location of the solar photovoltaic farm. One noteworthy point is
that IR detection produces noise, so filtering is needed to reform the image features and
improve defect recognition ability. Furthermore, if the shooting angle is not directly facing
the solar module, misjudgment will occur.

2.4. Comparison of Detection Methods

The typical solar module testing methods are described in Table 3. In this study,
analyses and comparison were carried out to devise a fast, time-saving, and low-cost
method for solar system inspection. It is shown in Table 3 that the drone + IR image
method can meet all of our criteria. As mentioned earlier, IR detection produces noise, and
the shooting angle must directly face the solar module in order to prevent misjudgment
and other problems. In this research, drones integrated with IR sensors were evaluated
thoroughly. Our ultimate goal is to develop a real-time detection system that is efficient,
time-saving, and safe, and at the same time can be used sustainably to monitor and identify
defects in solar modules.

Table 3. Comparison of solar module detection methods and purposes.

Detection Method
Inspection Purpose and Requirements

Cell Surface Inspection Cell Internal Inspection Fast Save Time Safety Outdoor

Visual inspection Yes Yes

EL 1 Yes Yes

IR image 2 Yes Yes Yes Yes

Drone + IR image Yes Yes Yes Yes Yes
1 Electroluminescence; 2 thermal imaging inspection. The table is derived from [3,4,24–29].

2.5. Typical Filtering Techniques Introduction

Image filtering is a technique to eliminate the image’s noise while keeping the image’s
main features as much as possible. This is essential in the execution of image preprocessing.
Given the fact that the quality of the processing result directly affects the validity and
reliability of image processing and analysis, different types of filtering techniques—such as
median filtering and mean filtering—are introduced below.
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2.5.1. Median Filtering

This filtering method is a nonlinear signal processing technology that can effectively
suppress noise using the statistical sorting theory [30]. The primary filtering principle
is to select the median value from the digital image or digital sequence and then adopt
the median value. As the discounted value replaces its neighboring value to draw the
surrounding pixel values closer to the actual value, independent noise points are then
successfully eliminated.

Median filtering can remove intense high-frequency noise while still maintaining the
sharpness of the edges. Nevertheless, this filtering method is not suitable for removing
significant area noise, and can best tackle spot noise only, such as salt and pepper noise.
The method uses a two-dimensional matrix to sort the pixels in the matrix according to the
size of the pixel values to form a two-dimensional data sequence, as shown in Equation (1):

N

∑
i=1
|xmed − xi| ≤

N

∑
i=1

∣∣xj − xi for j = 1 . . . N (1)

Figure 1 is an example of filtering using a 3 × 3 two-dimensional matrix. After
reordering the pixel values in the 3 × 3 matrix—10, 15, 20, 20, 20, 20, 20, 25, 100—the
median value is 20, and the middle value and the gray of the pixels in the matrix can
be defined. Finally, the order value is replaced by the intermediate value. It can be seen
that the median filter can remove high-frequency solid noise while still maintaining the
sharpness of the edge.
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2.5.2. Mean Filtering

The averaging filter converts the image into pixel values (0–255), and then adds the
pixel values in the matrix and averages them, as shown in Equation (2):

g(x, y) =
1
m

f (x, y) (2)

m: Pixels in the matrix.
The mean filter is also a low-pass filter. Having averaged the values in the matrix, the

values in the original matrix are replaced. As shown in Figure 2 (3 × 3 matrix), the matrix
of the mean filter is averaged by standard pixels. The primary purpose is to use fuzzy
pictures to deduce a rough description of the beautified image, in which irrelevant noise in
the image is eliminated.

2.6. Experimental Setup and Innovative Methods

The experimental setup used UASs (unmanned aircraft systems) equipped with ther-
mal image sensors. This is a more economical solar module monitoring system, with fast
detection and efficient analysis capabilities. The drone flew over the solar photovoltaic
farm and took photos of the solar modules, and then the images were sent back to the
ground control station for analysis.
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2.6.1. Experimental Setup

The drone model was DJI-Mavic 2 Enterprise (Da-Jiang Innovations, Shenzhen, China),
as shown in Figure 3a. This is a light and portable drone that can be assembled quickly,
so that the setting time of the ground control station can be shortened to facilitate rapid
detection. Functioning as a planned system for monitoring solar modules, FLIR Lepton®

thermal image microsensors were also integrated (shown in Table 4) for capturing visible-
light and IR images. The inspection procedures were as follows: (1) drones were equipped
with sensors to fly over the solar module and take aerial images, including visible-light
images and IR images, and take temperature records of the solar module; (2) images were
transmitted to the ground station for image analysis through the radio frequency (RF)
channel; (3) the ground station recorded the module’s images and conducted real-time
analysis of the module’s health status. However, the image quality may be affected by
many factors; for example, weather conditions, irradiance, shadow, or sunlight reflection
during the inspection may cause the quality of infrared images to deteriorate, leading to
failure in defect identification. Therefore, practical analysis tools should also be applied to
facilitate defect and failure detection.
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Table 4. FLIR Lepton® specifications.

No. LEPTON 3.5 Specification

1 Effective frame rate 8.7 Hz

2 Output format 14-bit, 8-bit, 24-bit RGB

3 Pixel size 12 µm

4 Scene dynamic range Low-gain mode: −10 to 400 ◦C;
High-gain mode: −10 to 140 ◦C

5 Spectral range 8 µm to 14 µm

6 Thermal sensitivity <50 mK (0.050 ◦C)

7 Visual angle 57

8 Resolution 160 × 120

It is generally known that the defects of solar modules may be caused by different
physical properties, leading to the malfunction or reduced efficiency of the modules. Physi-
cal defects such as snail trails, shadows, hot spots, microcracks, etc., can lead to the increase
in the cell’s temperature and the formation of hot spots, or even malfunction of the cell.
Therefore, this study focuses on analyzing solar modules’ surface temperature changes.
With the help of these temperature changes, the zone and the exact area of possible defects
can be indicated, thereby providing valuable information and references for maintenance
personnel (as shown in Figure 3).

2.6.2. Innovative Methods

More than 40 years ago, J.-S. Lee, V. Frost, etc., proposed different principles to elimi-
nate noise filtering [31–38]. Today, there has been prominent progress and achievements
in noise elimination technology, but there is still no common opinion on the best filter
and its related parameters. Therefore, a new filtering method—improved box filtering—is
proposed for IR images in this research. This improved box filter is different from the
traditional box filter [39]. It combines the advantages of both the median and mean filters.
In addition to highlighting module defects, it can also suppress noise generation. The
normal/defect areas in the module can thus be clearly displayed.

This is an innovative method for IR image analysis for solar modules. The use of
median filtering in the MATLAB® (The MathWorks, Natick, MA, USA) environment is able
to retain characteristic edges, and mean filtering is able to eliminate noise and edit related
filtering parameters. Hence, box filtering not only can retain the distinctive edges, but also
can achieve better filtering and smoothing effects, as shown in Equation (3):

b(x, y) =
1
n

f (x, y) (3)

n: Pixels around the center of the matrix;
b: Matrix center pixel.
In addition, the improved box filter can be presented in a matrix (hsize.width* hsize.height),

as shown in Figure 4.
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Based on the abovementioned experimental configuration and image analysis, this
research used drones to take images of solar modules and send them back to the ground
station for immediate image analysis [38]. The analysis procedures are indicated in Figure 5.
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The flowchart shows the process of solar module monitoring. The first step in the
algorithm is to convert the original color image to a grayscale image so that the final output
image is more evident than the original image for easy identification of the defect location.

Following the primary analysis guidelines, the second step is to determine the bright-
ness of the solar module surface. The clarity of brightness helps to distinguish defects, and
the grayscale image can facilitate the identification of the defect location better than the
original color image. By converting the grayscale and filtered images into a 3D image, it is
a lot easier to identify the defect location. Therefore, the filtering is a critical step in order
to achieve our desired results.

In the third step, the mean and median filters are utilized to improve the block filter.
Beforehand, image analysis has to be performed to confirm the suitability of various filters.

Finally, the best analysis method is selected and processed. The post-analysis images
are then provided for maintenance personnel as a reference.

3. Results

The identification of the solar cell defect depends upon the comparison of the deviation
of the cell surface temperature. It is also related to the ambient temperature, wind speed,
and weather conditions. It is known that at least 700 W/m2 of irradiance is required for the
solar module inspection. Moreover, there are a series of external factors that affect the solar
cell’s working environment temperature, such as sunlight intensity, ambient temperature,
particle radiation, etc. These all are performance indicators of the solar cell. This study
compares the normal and defective modules with different sunlight intensities and ambient
temperatures. Firstly, the experiment was conducted from 8 a.m. to 1 p.m. on 9 July 2021.
The outdoor temperature was 27–32 ◦C, and the wind speed was 1 m/s. The irradiance
during the experiment was about 500–850 W/m2. This experiment was carried out under
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the same sunlight intensity and ambient temperature, with two solar modules selected
for the investigation. One of them was a normal operating module, and the other had a
prefabricated “shadow” defect, which was sprayed with waterproof paint on the surface
of the cells. The shaded (yellow) fault was divided into two regional defect locations, as
shown in Figure 6. There was a total of 10 defective solar cells (defect rate of about 16.7%).
If the purple area affected by the junction box (which is 1.5%) was included, the total defect
rate reached about 18.2%. The junction box, as shown in Figure 6c, is a relay station for solar
modules to convert to electrical energy. Its primary function is to connect the electricity
generated by the solar module to the external circuit. The junction box was fixed at the back
position above/below the middle of the module, and it covered about 1.5% of the module
area. Under normal operation, the thermal energy generated by the junction box affects the
cell surface temperature. Therefore, the temperature of the junction box area (about 1.5% of
the cell) is likely to be relatively higher, as shown in the grey frame in Figure 6b.
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Figure 6. Schematic diagram of preset normal and defective solar modules: (a) Preset normal and
defective solar modules. (b) Junction box for the IR image. (c) Junction box.

In this section, the differences between the box, median, and mean filters are compared.
We found that defect locations cannot be accurately distinguished by median and mean
filtering, but the scope of the defects can be easily identified by box filtering. Significantly,
the contribution of this research was more significant at 500 W/m2. This method can
not only clearly determine the position of the defect, but also can obtain the relative
temperature of the defect by using the analyzed color bar. In the following paragraphs,
the box, median, and mean filtering methods for three different degrees of defects are
described. In accordance with other studies, the irradiance of 700 W/m2 was used for the
experimental control group.

3.1. Irradiance at 700 W/m2

Figure 7a shows the original IR image of the normal operating module (left side) and
the defective preset module (right side, green frame). As it is difficult to identify the defect
location and range in the original IR image, we used image analysis to strengthen defect
recognition in this research. After processing with the mean filter and grayscale, it was
found that the average filter could remove the noise caused by the IR image, as shown in
Figure 7b. Figure 7c indicates that the image processed with median filtering can highlight
the preset defects. At the same time, this study also developed a box filter for comparison,
as shown in Figure 7d. The preset defects could then be identified under the irradiance of
700 W/m2.
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Figure 7. Comparison of different filtering methods with irradiance at 700 W/m2: (a) Original IR
image. (b) Mean filter after grayscale treatment. (c) Median filter after grayscale treatment. (d) Im-
proved box filter after grayscale treatment. (e) Improved box filter after 3D image. (f) Cumulative
chart comparison of normal operation and abnormal conditions of solar modules.

Furthermore, the box-filtered image after grayscale treatment is presented in 3D
(Figure 7e) to illustrate a better recognition effect. By comparing the temperature of the
relative positions of the two modules, it can also be seen that the cell’s face temperature of
the defect position is about 2–3 ◦C higher than the temperature of the normal operating
module. At the same time, this study converted the temperature of the IR image into a
cumulative chart, and compared the temperature of the normal operating module and
the defective module, as shown in Figure 7f. The red line in the accumulation graph is
the temperature accumulation line of the normal operating module, and the blue line is
the defective module. By comparing the two modules, we found that the temperature
of the defective module was about 2–3 ◦C higher than that of the normal module. In the
cumulative chart, there is a 16% temperature difference between the red and blue lines at
47.7 ◦C, which is consistent with the preset module defect area (approximately 10 cells,
occupying 16.7% of the total area).

3.2. Irradiance at 500 W/m2

As shown in Figure 8a, it is difficult to identify the defect location and range in the
original IR image under the irradiance of 500 W/m2. It was found that the mean filtering
after grayscale treatment could remove the noise caused by the IR image, but the preset
defect area could not be fully revealed, as shown in Figure 8b. On the other hand, the
image processed by median filtering could highlight preset defects, as shown in Figure 8c,
but it also expanded the scope of defects, leading to misjudgment of defective areas. It
is noteworthy that when the cell’s temperature was not entirely converted into electrical
energy, the temperature of the defective area was higher than that of the normal area.
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Figure 8. Comparison of different filtering methods with irradiance at 500 W/m2: (a) Original IR
image. (b) Mean filter after grayscale treatment. (c) Median filter after grayscale treatment. (d) Im-
proved box filter after grayscale treatment. (e) Improved box filter after 3D image. (f) Cumulative
chart comparison of normal operation and abnormal conditions of solar modules.

By the same token, when the sunlight is insufficient, the temperature difference
between the defective and normal areas is less obvious. Therefore, one of the reasons for
the expansion of the defective area is that there is no significant temperature difference
between the faulty and normal-functioning cells. The box filtering technology developed
in this research is advantageous in that it combines the median filter’s retention of edge
characteristics and the mean filter’s effective noise elimination capabilities. With the
application of box filtering technology, the analysis results of the defect range are closer to
the actual preset defect range, as shown in Figure 8d.

Furthermore, the box-filtered image after grayscale treatment is presented in 3D
to generate a better defect recognition effect. Under the irradiance of 500 W/m2, the
preset defects were fully apparent and the temperature was 45 ◦C (red zone), as shown
in Figure 8e. After conducting the temperature comparison, it can also be seen that the
surface temperature of the cell at the defective location is about 2–3 ◦C higher than the
temperature at the normal location.

In the module comparison, as shown in Figure 8f, it can also be seen that the temper-
ature of the defective modules is about 2–3 ◦C higher than that of the normal modules.
In the cumulative chart, there is about 15% temperature difference between the red and
blue lines at 40.9 ◦C, which is also close to the 16.7% module defect area (approximately
10 cells).

3.3. Irradiance at 850 W/m2

In this part, the irradiance of 150 W/m2 higher than that of the control group was
adopted for comparison. When the irradiance was 850 W/m2, it was not easy to identify
the defect location and range in the original IR image, as shown in Figure 9a.
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Figure 9. Comparison of different filtering methods with irradiance at 850 W/m2: (a) Original IR
image. (b) Mean filter after grayscale treatment. (c) Median filter after grayscale treatment. (d) Im-
proved box filter after grayscale treatment. (e) Improved box filter after 3D image. (f) Cumulative
chart comparison of normal operation and abnormal conditions of solar modules.

The mean filter after grayscale treatment was used to remove the noise caused by the
IR image, and still the IR image could not fully reveal the preset defect area, as shown in
Figure 9b. The image after median filtering also could not fully indicate the preset defects,
as shown in Figure 9c. Such conditions may lead to a misjudgment of defective areas. After
using the improved box filter analysis, the defect range, which is the red zone of the green
frame shown in Figure 9e, could be seen. At the same time, the result was closer to the
actual preset defect range, as shown in Figure 9d.

In the module comparison as shown in Figure 9f, it can also be seen that the tempera-
ture of the defective modules is about 2–3 ◦C higher than that of the normal modules. In
the cumulative chart, there is about 18% temperature difference between the red and blue
lines at 51 ◦C, which is also consistent with the 16.7% module defect area (approximately
10 cells). At the same time, this study found that the higher the irradiance intensity, the
larger the defect area. Conversely, when the irradiance was lower (e.g., at 500 W/m2), the
defect area was reduced.

3.4. The Practical Verification Experiment

The experiment was conducted on panels with unknown defects. The location of these
panels was at the GPS coordinates of 24◦12′31” N and 120◦29′40” E, with an altitude of 1 m.
The experiment was carried out at 10 a.m. on June 3, 2022. The outdoor temperature was
30 ◦C, and the irradiance was 515 W/m2.

There was a defective cell in the lower left of the panel. Figure 10a shows the original
IR image, with a clear and bright area in the lower left (green frame) that corresponds to
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the defected cell, and a less bright area located in the upper middle (the junction box area,
as mentioned in Section 3 (grey frame)).
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There was an inconspicuous crack or snail trail on the top left of the panel (red frame),
while a less bright area located in the middle was the hot spot (blue frame). Figure 10a
shows purple lines on the left and right margins, which are the frames of the panel.
Figure 10b shows an image converted to grayscale after improved box filtering. The grid
lines of the panel are blurred due to the filtering effect, but the bright region can still be seen
clearly. Figure 10c displays a 3D color image after improved box filtering to differentiate
temperatures, and the image shows that the hot spot is at about 54 ◦C, while the panel
frames are at a temperature of 35 ◦C, and the rest of the panel is at around 40~45 ◦C.

Common causes of solar module failures include resistive or solder failures, cell
failures, and cell interconnection defects. In the case of cell cracks and snail traces, they
may cause an increase in temperature for part of the module, and gradually cause overall
cell defects. At the same time, the overall temperature of the cell surface will increase or be
higher than that of the adjacent cells. This study aimed to assess the resulting cell defects.
During the process, method validation in different regions was carried out, and the results
were as follows:

In Figure 10a, about 2–3 hot spots are shown on the solar module; the hot spot on the
left bottom corner is visible (green frame). The hot spot within the grey frame is also easily
seen, but that hot spot is caused by the junction box’s rising temperature, and should not be
considered a defect. The hot spot near the blue frame is not visible, but after treatment with
greyscale (Figure 10b) and 3D image processing (Figure 10c), the defect location and scope
can be clearly identified; finally, the three hot spots are clearly shown on the solar module
in Figure 10c. Returning to Figure 10a, the crack on the upper left corner (red frame) of
the module leads to a hot spot, but it does not yet cause a cell failure (cell hot spot), so
no abnormal condition is detected. This experiment demonstrates that our new method
involving the construction of 3D images can identify and analyze the defect zone when the
irradiance is about 500 W/m2. The most important contribution of this method is that it
overcomes IR detection’s obscurity problem.

4. Discussions

In this study, a more accurate monitoring method for checking the health of solar
modules was successfully developed by integrating drones and IR cameras, along with an
improved box filter to improve 3D image analysis technology. In addition, measurements
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and comparisons were also carried out under different weather conditions, and the acquired
images were also analyzed under varied sunlight conditions, with 500 W/m2 or higher
irradiance. As listed in Table 5, a comparison was made for different filtering methods.
When the irradiance was 700 W/m2, misjudgments occurred, as the defect scope was
exaggerated as a result of the median filter. Otherwise, other filtering methods could
successfully pinpoint the defect location and scope.

Table 5. Comparison of different irradiance and filtering methods.

Irradiance W/m2
Filter and Methods

Mean Filter Median Filter Improve Box Filter Improve Box Filter
and 3D Image

700 W/m2 O O O V

500 W/m2 X O O V

850 W/m2 O O O V

V: easy to identify; O: not easy to identify; X: unrecognizable.

When the irradiance was 500 W/m2, the mean filter could not define the defect
position clearly, while the median and box filters could also not easily pinpoint the defect
location. It was found that when the box filter was converted into a 3D image, the defect
area could then be easily located. Similarly, when the irradiance was 850 W/m2, the mean
and median filtering could not easily pinpoint the defect location, but when the box filter
was converted into a 3D image, the defect area could then be located, as shown in the green
box in Figure 9e. The above findings demonstrate that our innovative method of improved
box filtering and the establishment of 3D images could be effectively applied in the analysis
of solar modules.

Furthermore, the analyzed images could generate temperature information using
different colors. By matching with the color bar on the right-hand side of the image (color
bar’s temperature is in ◦C), the temperature value could be known. Finally, the temperature
difference between normal and defective cells was obtained, and the defect position could
be successfully located. The innovative method of this study uses improved box filtering
for analysis. To sum up, we cannot simply take the color and temperature of the IR image
as the indicators for judging defects. The method of filtering after grayscale is suitable for
use as a qualitative indicator, as it determines the hot-spot zone by the degree of whiteness.
Through this research, it was found that the grayscale image could not easily define the
scope and extent of the defect (i.e., the temperature in the white area), but 3D images could
fulfill that purpose.

The 3D image can not only illustrate the defect zone, but also is able to provide
the temperature value of the defect zone, and can indicate the scale of defects through
the cumulative temperature chart. Hence, 3D images are qualified as a quantitative and
qualitative indicator.

5. Conclusions

This research used a drone equipped with an IR camera and instant image transmission
function, as well as utilizing the MATLAB image analysis method to analyze the IR images.
This methodology can generate an instant IR image for monitoring the health conditions of
solar modules. In particular, the relative temperature of the detected solar module can be
read in the 3D image. By doing so, the problem of unrecognizable IR images is overcome,
and the best solution is identified.

The goal of this innovative method is to use an infrared imaging system with drone
functionality to detect faults in solar power generation systems, and to analyze the health
status of the module based on the box-filtered IR image obtained from the drone. The
results prove that this method is more accurate than median and mean filtering, and is
able to pinpoint the defect location, while the health and the defect scope of the cell can
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also be judged. The most significant contribution of this study is to show that the IR image
with irradiance of 500 W/m2 can be analyzed by means of a 3D image processed with
improved box filtering. Utilizing this method, the defect location can be precisely identified,
and monitoring can be conducted in wider time zones even during cloudy days, or when
irradiance is just around 500 W/m2.

Together with this research, four image analysis steps are proposed: In the first step,
the original IR image is filtered and converted into a grayscale image. Secondly, the image is
transformed into a 3D image, and the temperature value can be obtained through matching
the temperature color with the relative color bar. This innovative method can not only
significantly shorten the inspection time, but also can analyze the defect location of the IR
image immediately. This is particularly convenient for maintenance personnel, as they can
locate the defective area and simultaneously deduce the quantity of the faulty cells.

These research experiments were conducted in solar photovoltaic farms and solar
modules installed on the rooftops of high-rise buildings. It was found that these monitoring
procedures are also applicable to small solar photovoltaic installations in metropolitan
areas, thereby facilitating the construction of diversified solar farms in crowded areas.

Looking forward, the next phase of this research will be continued. More information
about solar module images with different defects will be collected to create a database for
future in-depth investigation and development of learning-based methods to identify solar
panel defects. It is hoped that by combining the image analysis technology of this study
with AI technology, the ability of automated identification can be further strengthened, so
as to save inspection manpower and improve maintenance efficiency in a significant way.
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