
inventions

Article

Biologically Inspired Intra-Uterine Nanofluid Flow
under the Suspension of Magnetized Gold (Au) Nanoparticles:
Applications in Nanomedicine

Muhammad Mubashir Bhatti

����������
�������

Citation: Bhatti, M.M. Biologically

Inspired Intra-Uterine Nanofluid

Flow under the Suspension of

Magnetized Gold (Au) Nanoparticles:

Applications in Nanomedicine.

Inventions 2021, 6, 28.

https://doi.org/

10.3390/inventions6020028

Academic Editor: Dimitris Drikakis

Received: 18 February 2021

Accepted: 13 April 2021

Published: 15 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Mathematics and Systems Science, Shandong University of Science and Technology,
Qingdao 266590, China; mmbhatti@sdust.edu.cn

Abstract: The present analysis deals with the intra-uterine nanofluid flow of a Jeffrey fluid through
a finite asymmetric channel filled with gold nanoparticles. Gold nanoparticles are helpful in
biomedicine to treat various diseases and locate blood flow motion through tiny vessels. The
governing fluid is electrically conducting due to the presence of an extrinsic magnetic field while
the magnetic Reynolds number is small; therefore, the induced magnetic effects are neglected. The
thermal radiation and viscous dissipation effects are also contemplated with the energy equation.
The lubrication approach has been utilized by taking a long wavelength and ignoring the inertial
forces. The formulated equations are coupled and nonlinear; therefore, a perturbation approach is
used to derive the series results. The results are obtained up to the second-order and plotted against
various parameters for velocity mechanism, trapping profile, pressure rise, and temperature profile.

Keywords: gold (Au) nanoparticles; magnetic field; peristaltic motion; heat transfer; thermal radia-
tion; perturbation approach

1. Introduction

Peristaltic flows occur due to the movement of waves along the stretchable (or flexible)
walls through a channel. These flows give a well-organized way for sanitary fluid motion;
therefore, they are examined in various industrial processes. In biomedical and physiologi-
cal applications, peristaltic flows are beneficial to propagate blood through small vessels
and artificial blood devices. Two engrossing mechanisms related to peristaltic flows are
fluid trapping and material reflux. The trapping mechanism is the occurrence and down-
stream propagation of free eddies (also known as boluses). The material reflux is associated
with the net upstream convection of fluid particles in opposition to the moving boundary
waves. These two mechanisms have great importance because they are accountable for
forming the thrombus in blood and bacteria’s pathological movement. Therefore, initially
various authors determined peristaltic flows in different geometrical conditions for simple
fluid models [1–8].

For the last several years, nanotechnology has played a fascinating role in various
fields of science. Nanotechnology has performed as a bridge between physical and bio-
logical sciences by employing nano-based structures and nano-phases in distinct areas
of science [9], especially in nanomedicine and drug-delivery systems based on nanotech-
nology, in which such kinds of particles are of paramount interest [10,11]. The size of the
nanoparticles lies in the range of 1 to 100 nm, which significantly affects the frontiers of
nanomedicine initiated from microfluidics, biosensors, drug delivery, and tissue engineer-
ing [12–14]. Nanotechnology applies therapeutic agents to manufacture medicine at the
nanoscale level. The field of nano-biomedicine [15] includes biosensors, tissue engineering,
drug delivery, nanobiotechnology, etc. Nanoparticles are designed at the molecular or
atomic level; therefore, they can travel freely in the human body compared to other materi-
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als of a larger size. Nanoparticles reveal unique chemical, magnetic, electrical, biological,
structural, and mechanical properties.

In addition, gold nanoparticles have a notable performance in treating various diseases
in the human body. They have an important class due to their distinctive physiochemical
features, i.e., the adsorption of near-infrared light producing thermal energy helps treat
various diseases [16–18] through methods such as thermal therapy, contrast agents, ra-
diosensitizers, tumor treatment, and cancer therapy. Recently, scientists have discovered
that gold nanoparticles (size < 100 nm) are also beneficial for locating the blood flow
through the tiny vessels in the human body [19]. The ability to locate the blood flow
through tiny vessels helps to obtain indispensable information to comprehend the disease
process, i.e., vascular inflammation and thrombosis.

Magnetized nanoparticles have gained attention in nanomedicine and analytical sens-
ing over the past two decades due to the interaction of magnetic nanomaterials with field
gradients and magnetic fields. The interaction between magnetic fields and magnetized
nanoparticles means that (i) the position of magnetized nanoparticles can be controlled
using magnets [20]; (ii) a variable magnetic field is beneficial for heating the particles,
so that they can be applied in nanomedicine [21]; (iii) the magnetic features of magnetic
nanoparticles will produce an impact on the magnetic fields so that they can be used
as contrast agents in magnetic resonance imaging [22,23]. Applications of magnetized
gold-coated nanoparticles include targeted drug delivery [24,25], downstream process-
ing [26], and contrast agents [27]. The reason behind multiple applications of magnetic
gold nanoparticles is they are highly adaptable; the magnetic and optical features of these
particles can be modulated and customized to the applications by changing the shape, size,
surface modification, and gold shell thickness.

Eldabe et al. [28] used a Carreau fluid model to examine the mechanism of gold
nanoparticles propagating peristaltically through a non-Darcian porous medium. Prakash
et al. [29] examined the behavior of nanofluid flow through a porous channel using a
blood flow model. Ellahi et al. [30] inspected the couple stress fluid as blood under the
suspension of nanoparticles in the presence of activation energy and a chemical reaction.
Mekheimer et al. [31] scrutinized the behavior of gold nanoparticles using a peristaltic
blood flow mechanism through an artery having overlapping stenosis. Bibi and Xu [32]
elaborated the peristaltic mechanism of Carreau nanofluid flow with hybrid models under
heterogeneous/homogenous reactions. Sadaf and Abdelsalam [33] explored the adverse
impact of hybrid nanofluid through an annulus with convective and wavy conditions.
Asproulis and Dimitris Drikakis [34] studied prototype flows, i.e., the slip Couette flow
with heat transfer and the isothermal Couette flow with slip boundary conditions. They
proposed a new artificial neural-network-based coupling method. This method inherits
properties of the embedded framework and enhance the computational efficiency of the
embedded modeling approaches utilizing artificial intelligence techniques. Some major
studies on the nanoparticles with blood flow are given in refs. [35–40].

After reviewing various applications of magnetized gold nanoparticles, the main
objective of this study is to examine the biologically inspired intra-uterine Jeffrey fluid
flow under the suspension of magnetic gold nanoparticles through an asymmetric channel.
Gold nanoparticles are helpful in biomedicine for treating various diseases and locating the
motion of blood flow through tiny vessels. The fluid is electrically conducting due to the
influence of the extrinsic magnetic field. The energy equation is contemplated with viscous
and thermal radiation effects. The lubrication theory is applied to formulate mathematical
modeling. The resulting equations are finalized by ignoring the inertial forces, and the
Reynolds number is contemplated to be very low. A perturbation approach is used to obtain
the solutions. The solutions are presented up to second-order approximation. Numerical
computation is used to inspect the pumping characteristics.
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2. Modeling of Two-Dimensional Intra-Uterine Nanofluid Flow

Consider a asymmetric intra-uterine motion (peristaltic in nature) of a Jeffery nanofluid
through a finite channel under the suspension of gold nanoparticles. The Jeffrey fluid
model is contemplated as a blood. The fluid is propagating in an axial direction (x̃−axis),
while the ỹ−axis is allocated along the normal direction as given in Figure 1. The fluid
is irrotational, incompressible, and electrically conducting in the existence of an extrinsic
magnetic field. A consistent magnetic field is contemplated in the normal direction while
taking the magnetic Reynolds number to be very low. The mathematical expression for the
time-dependent fluid–wall interface is defined as

h− = −ha + η−, η− = hb cos
[

2π

λ
(x̃− wct)− Φ

2

]
, (1)

h+ = ha + η+, η+ = hb cos
[

2π

λ
(x̃− wct) +

Φ
2

]
, (2)

where 2ha denotes the unperturbed width of the channel; hb denotes the amplitude of lower
and upper waves; wc is the wave speed; t denotes the time; λ represents the wavelength.
The channel width is smaller compared with the wavelength, i.e., ha/λ � 1. The phase
difference is denoted by Φ having range (0 ≤ Φ ≤ π), where the symmetric contractions
can be recovered by taking Φ = π.
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Figure 1. Geometrical structure of the intra-uterine nanofluid flow through asymmeteric channel.

The proposed Jeffrey fluid model is defined as

ς =
µn f

1 + ω1

(
χ′ + ω2χ′′

)
, (3)

where µ is the viscosity; ω1 is the ratio of the relaxation to retardation time; ω2 represents the
delay time; n f denotes the nanofluid; χ is the shear rate and (′) denotes the differentiation
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with the time. The proposed models against continuity, momentum, and energy equations
in two-dimensions are defined as [41–43]:

∇ · W̃ = 0, (4)

ρn f

(
∂W̃
∂t

+ W̃ · ∇W̃
)
= −∇P +∇ς + g(ρβ)n f

(
T − T0

)
+ J× B, (5)

where J× B =
(
−σn f B0U, 0, 0

)
; the velocity field is defined as W̃ =

(
U, V, 0

)
; σ is the

electrical conductivity; ρ denotes the density; P is the pressure; β denotes the thermal
expansion coefficient; T is the temperature; the current density is denoted by J; and
B(= B0) is the magnetic field.

The energy equation with thermal radiation and viscous dissipation effects is defined as

(
ρcp
)

hn f

(
∂T
∂t

+ W̃ · ∇T
)
= κn f∇2T + ς · ∇W̃− ∂qr

∂y
+

J · J
σn f

, (6)

where κn f is the nanofluid’s thermal conductivity;
(
ρcp
)

n f is the specific heat capacity of
the nanofluid; and qr is the radiative heat flux, which is defined as

qr = −
16σ̃T3

3k̃
∂T
∂y

, (7)

where σ̃, k̃ are the Stefan–Boltzmann constant and the mean absorption coefficient.
The boundary conditions are defined as

U = 0, T = T0, y = h−, (8)

U = 0, T = T1, y = h+. (9)

The thermo-physical properties of effective density, heat capacity, effective dynamic
viscosity, thermal conductivity, electrical conductivity, and the thermal expansion coeffi-
cient are defined as

ρn f = (1− ϑ)ρ f + ϑρnp,(
ρcp
)

n f =
(
ρcp
)

f (1− ϑ) + ϑ
(
ρcp
)

np,

µn f =
µ f

(1− ϑ)2.5 ,

κn f

κ f
=

κnp + 2κ f − 2ϑ(κ f − κnp)

κnp + 2κ f + ϑ(κ f − κnp)
,

σn f = σf ×
(

σnp(1 + 2ϑ) + 2σf (1− ϑ)

σnp(1− ϑ) + σf (2 + ϑ)

)
,

(ρβ)n f = (ρβ) f (1− ϑ) + ϑ(ρβ)np. (10)

We now define the dimensionless variables using a lubrication approach. These
variables are described as

X =
x̃
λ

, Y =
ỹ
b

, H− =
h−
ha

, H+ =
h+
ha

, U =
U
wc

, V =
V

wcδ
, δ =

b
λ

,

T =
T − T0

T1 − T0
, P =

b2P
µ f wcλ

, t =
wct
λ

. (11)
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Employing the dimensionless variables of Equation (11) into the governing equations,
we obtain the following coupled systems (after ignoring the inertial forces):

D1

1 + ω1

∂2U
∂Y2 − D2Ha2U + D3TgT − ∂P

∂X
= 0, (12)

∂P
∂Y

= 0, (13)

∂2T
∂Y2 +

BrD1

(D4 + Tr)(1 + ω1)

(
∂U
∂Y

)2
+

D2Br Ha2

D4 + Tr
U2 = 0, (14)

where Ha is the Hartmann number; Tg is the thermal Grashof number; Br is the Brinkman
number; Tr is the thermal radiation, and D1, D2, D3, D4 are defined as

Ha =

√
σf

µ f
B0b, Ec =

w2
c(

cp
)

f
(
T1 − T0

) , Br = Ec × Pr, Gr =
(ρβ) f gb2

µ f wc

(
T1 − T0

)
,

Pr =
ν f (ρcp) f

κ f
, Tr = −

16σ̃T3

3k̃κ f
, D1 =

µn f

µ f
, D2 =

σn f

σf
, D3 =

(ρβ)n f

(ρβ) f
, D4 =

κn f

κ f
. (15)

Their boundary conditions reduce to the following form:

U = 0, T = 0, at Y = H− = −1 + Ψ cos
[

2π(X− t)− Φ
2

]
, (16)

U = 0, T = 1, at Y = H+ = 1 + Ψ cos
[

2π(X− t) +
Φ
2

]
, (17)

where Ψ = hb/ha denotes the amplitude ratio.

3. Series Solutions Via Perturbation Approach

To find the solutions of Equations (12)–(14), we employ a perturbation approach. The
perturbation approach was first introduced by J. H. He [44]. The proposed methodology
has been applied to many linear and nonlinear problems [45,46]. Defining the perturbation
process for the formulated Equations (12)–(14):

p(u, ξ) = (1− ξ)[LU(u)− LU(U0)] + ξ

[
LU(u)−

D2

D1
Ha2u +

D3

D1
Tgθ − 1

D1

dP
dX

]
, (18)

p(θ, ξ) = (1− ξ)[LT(θ)− LT(T0)] + ξ

[
LT(θ) +

BrD1

(D4 + Tr)(1 + ω1)

(
∂u
∂Y

)2

+
D2Br Ha2

D4 + Tr
u2
]

, (19)

where LU , LT are the linear operators, which are defined as

LU =
1

1 + ω1

∂2

∂Y2 , LT =
∂2

∂Y2 , (20)
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with their initial guesses

U0 =
(Y− H−)(Y + H+)

2(1 + ω1)
, T0 =

H− −Y
H− + H+

. (21)

Defining the expansions

u = u0 + ξu1 + ξ2u2 + · · · , (22)

θ = θ0 + ξθ1 + ξ2θ2 + · · · . (23)

Using Equations (22) and (23) in the governing Equations (18) and (19), we obtain a
set of differential equations at each order of approximation.

3.1. Zeroth-Order System

The zeroth-order system is found as

LU(u0)− LU(U0) = 0,

u0 = 0 at Y = H−, u0 = 0 at Y = H+, (24)

LT(θ0)− LT(T0) = 0,

θ0 = 0 at Y = H−, θ0 = 1 at Y = H+, (25)

The zeroth-order solutions are obtained as

u0 = U0 =
(Y− H−)(Y− H+)

2(1 + ω1)
, (26)

θ0 = T0 =
H− −Y

H− + H+
, (27)

3.2. First-Order System

The first-order system is found as

LU(u1) + LU(U0)−
D2

D1
Ha2u0 +

D3

D1
Tgθ0 −

1
D1

∂P
∂X

u1 = 0 at Y = H−, u1 = 0 at Y = H+, (28)

LT(θ1) + LT(T0) +
BrD1

(D4 + Tr)(1 + ω1)

(
∂u0

∂Y

)2
+

D2Br Ha2

D4 + Tr
u2

0,

θ1 = 0 at Y = H−, θ1 = 0 at Y = H+. (29)

The first-order solutions are obtained as

u1 = u0 + u1y + u2y2 + u3y3 + u4y4,

θ0 = θ0 + θ1y + θ2y2 + θ3y3 + θ4y4 + θ5y5 + θ6y6. (30)
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3.3. Second-Order System

The second-order system is found as

LU(u2)−
D2

D1
Ha2u1 +

D3

D1
Tgθ1

u2 = 0 at Y = H−, u2 = 0 at Y = H+, (31)

LT(θ2) +
2BrD1

(D4 + Tr)(1 + ω1)

∂u0

∂Y
∂u1

∂Y
+

D2Br Ha2

D4 + Tr
u2

1,

θ2 = 0 at Y = H−, θ2 = 0 at Y = H+. (32)

The second-order solutions are obtained as

u2 = u5 + u6y + u7y2 + u8y3 + u9y4 + u10y5 + u11y6 + u12y7 + u13y8,

θ2 = θ7 + θ8y + θ9y2 + θ10y3 + θ11y4 + θ12y5 + θ13y6 + θ14y7 + θ15y8 + θ16y9 + θ17y10. (33)

The constants, i.e., un; θn, n = 0, 1, 2, · · · , in the above equations are too long, therefore,
we omit the constant values here. These constants can easily be found from the computa-
tional software Mathematica. We will stop our calculations here and proceed towards the
graphical results.

Using the properties of the perturbation approach [44,46], i.e., ξ → 1, the solutions in
the final form can be written as

U = u = u0 + u1 + u2 + · · · , (34)

T = θ = θ0 + θ1 + θ2 + · · · . (35)

The instantaneous volumetric flow rate is calculated using the following expression:

Q =
∫ H+

H−
UdY. (36)

The pressure rise is calculated numerically with the help of given expression

∆P =
∫ 1

0

dP
dX

dX. (37)

4. Graphical Outcomes and Discussion

This part deals with the graphical outcomes of the different parameters on velocity
curves U, temperature distribution T, pressure rise profile ∆P, and trapping mechanism.
We have selected the following parametric values for the computational procedure, for
instance Ψ = 0.1, Ha = 0.5, ω1 = 0.5, Br = 2, Tr = 2, ϑ = 0.1, and Q = 2, whereas the
thermo-physical properties of the nanofluid and blood are given in Table 1 [47].

Table 1. Thermo-physical properties of blood and Gold nanoparticles.

Physical Properties cp (J/Kg·K) ρ (Kg/m3) κ (W/mK) σ (S/m)

Blood 1050 3617 0.52 1.33

Gold (Au) 129.1 19300 320 4.5 × 107

4.1. Velocity Mechanism

Figure 2a was plotted to see the behavior of magnetic field Ha on the velocity profile.
It is noted here that closer to the walls of the channel, the effects are negligible or minimal;
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however, in the middle of the channel, the magnetic field shows resistance to the fluid
motion. Figure 2b was plotted to determine the Jeffrey fluid parameter on velocity curves.
It can be noted here that the Jeffrey fluid parameter ω1 indicates dual behavior. When
Y < 0.2, it opposes the fluid motion, whereas when Y > 0.2, it increases. It is essential to
describe here that the Newtonian fluid results can be achieved by contemplating ω1 = 0. It
is shown from Figure 2c that the thermal Grashof number Tg boosts the velocity profile
when Y > 0.2, whereas in the remaining region, its behavior is converse. It is shown in
Figure 2d that the velocity profile has a dual mechanism against the nanoparticle volume
fraction ϑ. The velocity profile is increasing closer to the wall, but on the other wall, it is
decreasing.

Ha = 0.0

Ha = 0.8

Ha = 1.0

Ha = 1.1

-0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

Y

U

(a)

ω1 = 0.0

ω1 = 0.4

ω1 = 0.7

ω1 = 1.0

-0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

Y
U

(b)

Tg = 0.0

Tg = 0.4

Tg = 0.7

Tg = 1.0

-0.5 0.0 0.5 1.0
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Y

U

(c)

ϑ = 0.00

ϑ = 0.05

ϑ = 0.10

ϑ = 0.20

-0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

Y

U

(d)

Figure 2. Velocity curves against multiple values of different parameters. (a) Ha, (b) ω1, (c) Tg, (d) ϑ.

4.2. Pressure Rise Profile

Figure 3 shows the pressure rise profile ∆P versus volumetric flow rate Q against
different parameters. In Figure 3a, we can see that the Hartmann number Ha enhances the
flow rate in the retrograde pumping zone (Q < 0, ∆P > 0), whereas the behavior is con-
verse in the peristaltic pumping (Q > 0, ∆P > 0) and co-pumping zones (Q > 0, ∆P < 0).
Similar behavior for the three-dimensional flow of the Jeffrey fluid model was observed by
Ellahi et al. [48]. In Figure 3b, we can see that pumping rate diminishes in the retrograde
pumping zone against the higher values of Jeffery fluid parameter ω1, while it increases
in the peristaltic pumping zone. The thermal Grashof number Tg and the particle volume
fraction ϑ show similar and promising results on the pressure rise (see Figure 3c,d). We
can see that both parameters uniformly enhance the pressure rise along the whole region
Q ∈ [−1, 1].
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Figure 3. Pressure rise versus volumetric flow rate against multiple values of different parameters.
(a) Ha, (b) ω1, (c) Tg, (d) ϑ.

4.3. Temperature Distribution

Figure 4 was plotted to examine the mechanism of temperature curves against the
Hartmann number Ha, Brinkman number Br, and thermal radiation parameter Tr. We
can observe in Figure 4a that the magnetic field significantly enhances the temperature
profile and shows a parabolic shape. Physically, strengthening the values of the Hartmann
number tends to raise the electromagnetic forces, which significantly boost the temperature
profile. It is observed in Figure 4b that the Brinkman number Br significantly uplifts
the temperature profile. Increasing the values of the Brinkman number tends to reduce
the conduction process reductions that occur due to viscous dissipation, which causes
augmentation in the temperature profile. It is noted in Figure 4c that the temperature profile
decreases in the parabolic shape due to an increment in the thermal radiation parameter.

4.4. Trapping Phenomena

The following figures were plotted to analyze the behavior of the trapping process
by plotting contours. Trapping is known as the internally moving free eddies (or bolus)
bounded by streamlines. Physiologically, this mechanism has tremendous importance
because it helps the production of thrombus in the blood and a pathological transport of
bacteria. Figure 5 shows the effects of the Hartmann number Ha on the trapping process.
It is noted here that increasing values of Hartmann number Ha oppose the generation of
free eddies and the streamlines dispersed. In Figure 6, we observe that by increasing the
values of the thermal Grashof number Tg, the free eddies reduce as well as the streamlines
scattered, which also affects the magnitude of the free eddies. It can be seen from Figure 7
that the Jeffrey fluid parameter ω1 reveals versatile behavior on the trapping profile. Due
to an increment in the values of ω1, we found that new free eddies of different shapes
occur as well as a few free eddies disappearing. Lastly, by enhancing the values of particle
volume fraction ϑ, the free eddies changes in shape and reduce in number as plotted in
Figure 8.
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Figure 4. Temperature curves against multiple values of different parameters. (a) Ha, (b) Br, (c) Tr.
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Figure 5. Streamline patterns against multiple values of Ha.
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Figure 6. Streamline patterns against multiple values of Tg.
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Figure 7. Streamline patterns against multiple values of ω1.
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Figure 8. Streamline mechanisms against multiple values of ϑ.

5. Conclusions

We have examined the behavior of gold nanoparticles suspended in a Jeffrey fluid
propagating peristaltically through an asymmetric channel. The proposed fluid is incom-
pressible, irrotational, and electrically conducting due to the extrinsic uniform magnetic
field. The impact of thermal radiation and viscous dissipation was also contemplated with
the energy equation. The lubrication approach was utilized to formulate the mathematical
modeling and then the formulated equations were finalized using long wavelength and
ignoring the inertial forces. A perturbation approach was used to solve the coupled non-
linear differential equations. The series solutions up to second-order approximation were
presented, while a numerical computation was performed to determine the expression
for pressure rise. Some important outcomes from the current computational results are
summarized as follows.

(i) The presence of a magnetic field substantially opposes the flow in the central zone
of the channel. At the same time, closer to the walls, the behavior seems to be
negligible or very small.

(ii) The fluid parameter, particle volume fraction, and thermal Grashof number show
a reduction in the fluid motion when Y < 0.1, whereas a significant increment is
observed when Y > 0.1.

(iii) The pressure rise reveals an increasing behavior against the thermal Grashof
number and particle volume fraction in the retrograde and peristaltic pumping
zones. In contrast, the fluid parameter and Hartmann number show a converse
process in both regions.

(iv) Temperature profile remarkably rises due to strengthening in the magnetic field
and Brinkmann number, while the thermal radiation opposes the increment of the
temperature profile.

(v) We can see that the magnetic field tends to diminish the free eddies, while the
thermal Grashof number significantly affects the magnitude and number of free
eddies.
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(vi) We also found that the particle volume fraction and fluid parameter markedly
change the shape and the number of free eddies.

We have ignored the different effects during the present investigation, i.e., porosity,
electric field, and induced magnetic field, which can be contemplated shortly using various
fluid models.
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