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Abstract: In recent years, machine learning (ML) tools have gained tremendous momentum
and received wide-spread attention in different segments of modern-day life. As part of digital
transformation, the power system industry is one of the pioneers in adopting such attractive and
efficient tools for various applications. Apparently, a nonthreatening, but slow-burning issue of the
electric power systems is the low-frequency oscillations (LFO), which, if not dealt with appropriately
and on time, could result in complete network failure. This paper addresses the role of a prominent
ML family member, particle swarm optimization (PSO) tuned adaptive neuro-fuzzy inference system
(ANFIS) for real-time enhancement of LFO damping in electric power system networks. It adopts
and models two power system networks where in the first network, the synchronous machine is
equipped with only a power system stabilizer (PSS), and in the other, the PSS of the synchronous
machine is coordinated with the unified power flow controller (UPFC), a second-generation flexible
alternating current transmission system (FACTS) device. Then, it develops the proposed ML approach
to enhance LFO damping for both adopted networks based on the customary practices of statistical
judgment. The performance measuring metrics of power system stability, including the minimum
damping ratio (MDR), eigenvalue, and time-domain simulation, were used to analyze the developed
approach. Moreover, the paper presents a comparative analysis and discussion with the referenced
works’ achieved results to conclude the proposed PSO-ANFIS technique’s ability to enhance power
system stability in real-time by damping out the unwanted LFO.

Keywords: ANFIS; eigenvalues; FACTS; low-frequency oscillation; minimum damping ratio; PSO;
PSS; stability; statistical performance indices; time domain analysis

1. Introduction

Energy demand is increasing gradually due to the growing population. To meet this increased
energy demand, modern power systems are typically operated at their highest capacity. Under this
situation, the power systems utilize their maximum ability, and therefore, the operation is economical.
However, this situation leads the system to violate the system constraints. As a result, the system
parameters become oscillatory, which eventually leads to system instability. In addition, recently,
the trend in power systems has been to integrate renewable energy sources at the maximum possible
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capacity, which helps to decrease the dependency on fossil fuels and make the overall system
environmentally friendly. However, the intermittent nature of these renewable energy sources causes
low-frequency oscillations (LFO) in power networks. The frequency range of 0.1–2.5 Hz is the main
dominating frequency for LFO [1], and it severely affects those power networks that are interconnected
through weak tie lines. Poor damping of LFO causes dynamic instability and leads to the whole grid’s
blackouts in some cases [2].

To protect the power networks from such a scenario, necessary damping must be provided at
the right time to manage the LFO. Although a healthy number of research works were conducted
during the last few decades, there is further scope for contributions in this area. An automatic voltage
regulator (AVR) is one possible solution proposed by the researchers, where the generator excitation
is controlled to manage the LFO issue. However, the synchronous generators with high-gain AVR
decrease the damping torque of rotors, which increases the LFO [3]. In such cases, system stability
can be enhanced by mitigating the LFO problem using a power system stabilizer with an AVR-based
excitation control technique [4]. Appropriate adjustment of the PSS parameters is the critical factor
in terms of achieving a highly effective approach. Different approaches to this challenging task are
addressed in [5].

On the other hand, the development of the power electronics technology introduced wide-spread
use of the flexible alternating current transmission system (FACTS) devices in electric power networks.
In references [6–8], the authors analyzed the power system networks’ steady-state performance by
incorporating the FACTS devices and shown significant improvement. The dynamic parameters of the
power networks, including voltage, current, phase angle, and impedance, were also improved with the
aid of FACTS devices [9]. Typically, FACTS devices are employed in power systems to improve overall
system performance. The improvement of the power network stability by mitigating inter-area LFO,
maintaining a satisfactory voltage profile, supplying optimal power, and dispatching reactive power
to the network was reported successively [10–13]. Incorporating the FACTS devices into the system,
the analysis of these power system parameters was conducted through artificial intelligence algorithms.
The available three common structures of these devices are shunt, series, and a combination of them.
One of the most comprehensive multifunctional FACTS devices is the unified power flow controller
(UPFC), which comprises both the functional effects of series and shunt systems [14]. The power system
network parameters, such as line reactance, bus voltage, and phase angle of the bus voltages, can be
adjusted with the deployment of UPFC. They can increase the controlling profile of the steady-state
power flow among the transmission lines. It can also improve the transient stability, voltage regulation,
LFO profile, and minimization of power loss [15–17]. The stability of the single machine infinite
bus (SMIB) network was investigated through a static series synchronous compensator, where the
parameters were optimized by particle swarm optimization (PSO) [18] and teacher learner-based
optimization (TLBO) [19]. The continuous coordination of PSS and a thyristor controlled series
capacitor was designed using the dolphin echolocation optimization (DEO) technique for the SMIB
network stability improvement, as reported in [20]. The damping out of LFO employing UPFC
mainly depends on the tuning strategy of its control parameters. Proper coordination between power
system stabilizer (PSS) and UPFC must be ensured to achieve system stability through the necessary
suppression of the LFO [21]. Therefore, several artificial intelligence techniques were implemented
previously to optimize the PSS parameters coordinated with/without FACTS devices, which include
the water cycle algorithm (WCA) [21], genetic algorithm (GA) [22], backtracking search algorithm
(BSA) [23,24], particle swarm optimization (PSO) [25], and differential evolution (DE) [26]. However,
most of these methods are implemented in offline mode operations and can tune the PSS parameters
for a particular operating condition. As a result, the mentioned parameter-setting techniques for
PSS are not suitable for the real-time operation of power systems as the operating points of power
networks are constantly changing. On the other hand, online/real-time parameter tuning of PSS
was conducted using some artificial intelligence techniques, which include support vector machine
(SVM) [27], artificial neural network (ANN) [28], genetic programming (GP) [29], and extreme learning
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machine (ELM) [30]. Hybridization of ANN with other algorithms was also applied successfully in
many other power system applications [31] besides PSS parameter tuning. A neuro-fuzzy algorithm
based nonlinear model-free robust controller was proposed for damping out the LFO from any power
system to replace the conventional PSS in [32]. An intelligent control approach, namely the neuro-fuzzy
intelligent controlling technique, was applied to control newly developed real-time dynamics [33].
However, real-time based parameter settings can be achieved by employing another highly efficient
machine learning approach, PSO tuned adaptive neuro-fuzzy inference system (ANFIS) to improve
the overall system stability. PSO tuned ANFIS models were implemented in various scenarios, such as
viscosity estimation of an oil mixture [34] and predicting the wave reflection coefficient for semicircular
breakwater considering a range of wave heights [35]. Therefore, in this paper, a PSO-tuned ANFIS
approach was implemented to achieve real-time tuning of the PSS parameters. The stability indicators
of the power system were analyzed to determine the performance. The technique was implemented in
two different electric networks to show the effectiveness of the approach. One electric power network
is made of a SMIB system with PSS only, and the other one is a SMIB system with UPFC coordinated
PSS. The efficiency of the PSO-ANFIS machine learning tool was investigated through minimum
damping ratio (MDR) and eigenvalue analyses. The proposed technique’s superiority was established
by comparing it with the conventional and the literature reported approaches for several loading
conditions. Some other statistical performance indices (SPI) including the root mean squared error
(RMSE), mean absolute percentage error (MAPE), RMSE-observations to standard deviation ratio
(RSR), coefficient of determination (R2), and Willmott’s index of agreement (WIA) were also evaluated
to explore the robustness of the proposed machine learning model. The superiority of the proposed
method over the conventional one was determined by comparing time-domain simulation results.
The main contributions of this research are as follows:

• Two versions of SMIB electric networks were considered to demonstrate the proposed approach
of LFO mitigation. For both the networks, optimized PSS parameters were found offline for a
large number of operating conditions using a heuristic optimization technique.

• The PSO inspired ANFIS model was developed by taking the range of operating points as the
inputs and the PSS key parameters as the outputs. Different statistical parameters were used to
check the efficacy of the developed model.

• The proposed ANFIS model was assessed to provide the optimal PSS parameter in real-time,
under any loading condition. Time-domain analysis, eigenvalues, and the damping ratios were
used to measure the developed approach’s performance.

The rest of the paper is organized as follows: Section 2 illustrates the dynamic models of electric
networks under investigation. Section 3 presents the proposed machine learning (PSO inspired ANFIS)
tool for real-time tuning of the PSS parameters. Section 4 demonstrates the proposed machine learning
model development along with the data generation and processing technique. Section 5 offers a
detailed discussion of the obtained results and the developed ML model’s compatibility and superiority.
Finally, Section 6 provides concluding remarks along with the future research directions on the topic
under investigation.

2. Power System Models

This article analyzed two different power system networks’ stability employing the proposed
PSO-ANFIS tool by tuning the PSS parameters in real-time. This section briefly describes the modeling
of these two networks under investigation.

2.1. Example 1: SMIB Electric Network without UPFC

Figure 1a shows the PSS integrated SMIB electric power network, where the synchronous generator
is connected to an infinite bus system through a transmission line of specific reactance. The fourth-order
nonlinear model of the SMIB system and its linearized form can be found in [36–39]. The incorporated
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PSS is one of the commonly used single-stage lead-lag controllers, as shown in Figure 1b. The state-space
model of the overall network after inclusion of the PSS is available in Ref. [36] and represented as (1)
where the number of states is six.

.
X1 = Ac1∆X1 (1)

Figure 1. First test network; (a) single machine infinite bus (SMIB) system with power system stabilizer
(PSS) only and (b) single-stage lead-lag PSS [30].

The modes of a power network are represented by the eigenvalues of its state matrix (Ac1)
corresponding to the system states. Any small disturbances on the system are reflected on the
eigenvalues. The electric network’s stability is ensured if all the eigenvalues lie within the left
half-plane of the complex plane, meaning real parts of the eigenvalues should take negative numbers.
On the contrary, the positive real part of any one of the eigenvalues leads towards system instability.
Therefore, appropriate tuning of the PSS parameters is the key to locate all the eigenvalues of the
state matrix of the targeted electric network in the left half-plane that ensures the system stability.
Additionally, proper placement of the eigenvalues on the complex plane enhances the system stability
by suppressing the low-frequency oscillations. This article tuned the PSS parameters of the SMIB system
employing the developed PSO-ANFIS tool where the inputs were the system operating conditions,
e.g., terminal voltage, real power, and reactive power of the machine.

2.2. Example 2: SMIB Electric Network Equipped with PSS and UPFC

In the second test network, a SMIB system is equipped with a UPFC, as shown in Figure 2a,
where the synchronous machine is connected with an infinite bus through a transmission line. In this
case, a PSS is also connected with the synchronous machine and coordinated with the UPFC to improve
the system stability. A boosting transformer (BT) and an excitation transformer (ET) link the UPFC
with the network. With a voltage source converter (VSC-E) aid, a DC link capacitor is coupled with the
ET. Likewise, the BT is coupled with that capacitor through another voltage source converter (VSC-B).
The UPFC has a total of four control parameters consisting of two-phase angles and two-amplitude
modulation ratios. Therefore, according to the specification in Figure 2a, the phase angles of boosting
and excitation transformers are δB and δE. The amplitude modulation ratios of boosting and excitation
transformers are mB and mE. A detailed explanation of these control parameters and the considered
system can be found in [26–29]. The structure of a two-stage lead-lag PSS is shown in Figure 2b.
Like the first network of Figure 1b, this two-stage lead-lag PSS is coupled with the synchronous
generator and coordinated with the UPFC. After incorporating both the PSS and UPFC into the system
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and linearization, the final state-space model can be formulated, consisting of nine states. This overall
model of the PSS-UPFC incorporated SMIB system can be represented by Equation (2) [36].

.
X2 = Ac2∆X2 (2)

Figure 2. Second test network; (a) SMIB system with unified power flow controller (UPFC) coordinated
PSS [40] and (b) double-stage lead-lag PSS [24].

As mentioned earlier, the state matrix’s eigenvalues (Ac2) indicate the modes of operation of the
system after being subjected to any disturbances. The electric network’s stability is ensured when all
eigenvalues lie within the complex plane’s left half-side, meaning all eigenvalues should have negative
real parts. On the other hand, the positive real part of anyone of the state matrix’s eigenvalues leads
the system into instability. Therefore, the proper selection of PSS parameters is the key to placing
the system eigenvalues in the left half-plane to enhances system stability by damping out the LFO.
This article proposed a strategy to tune the UPFC coordinated PSS parameters of the SMIB system
employing the PSO-ANFIS tool where the inputs were the system operating conditions.

3. Proposed Optimization Method

In this article, PSO optimized ANFIS models were employed to estimate the PSS parameters of
the SMIB systems either incorporated the UPFC or functioning alone. The successful performance
of ANFIS models depends on the appropriate parameter selection through rigorous training and
testing processes. Both the derivative and metaheuristic-based approaches for selecting appropriate
parameters of ANFIS can be found in [41]. In the following subsections, the ANFIS model and the PSO
algorithm are described briefly.

3.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS integrates the property of two machine learning algorithms: neural network and fuzzy
logic. It was first proposed in 1993 [42] and demonstrated significant success in diverse application
fields for its unique features [43,44]. It uses fuzzy logic to convert the given inputs to a targeted output,
with the help of highly interconnected neural network processing elements. Figure 3 shows the basic
structure of the ANFIS consisting of two inputs, one output, two membership functions, and two
fuzzy rules that works in five different stages [41]. The first stage (M1

i ), also known as the fuzzification
stage, obtains the fuzzy clusters from the provided inputs (a and b) through the membership functions.
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The premise parameters (x, y, and z) determine the nature of the membership function. The degree of
membership, µAi(a), can be calculated from the following Equation (3) for the first input. Similarly,
it can be calculated for the second input as µBi(b).

M1
i = µAi(a) = gbellm f (a; x, y, z) =

1

1 +
∣∣∣ a−z

x

∣∣∣2y (3)

a b 

Layer l 

Layer 4 

Figure 3. Structure of the adaptive neuro-fuzzy inference system (ANFIS).

The next layer (M2
i ), also known as the rule layer, uses the membership values of the previous

layer and calculates the firing strengths (ki) of the applied rules by multiplying the membership values
as in (4).

M2
i = ki = µAi(a).µBi(b) i = 1, 2, . . . (4)

The third layer (M3
i ), known as the normalization layer, calculates the normalized firing strengths

(kl) for all the applied rules. The normalization approach is shown below in (5), where the corresponding
value of k is divided by the total firing strength.

M3
i = kl =

ki
k1 + k2 + k3 + k4

i ∈ {1, 2, 3, 4} (5)

In the next stage (M4
i ), defuzzification is performed, as shown in (6), where all the rules’ weighted

values are found for each node. The first-order polynomial determines these values where mi, ni, and oi
represent the coefficients. The number of coefficients, known as the consequence parameters, is one
more than the given inputs.

M4
i = kl fi = kl(mia + nib + oi) (6)

Finally, the ANFIS model’s output is calculated in the fifth stage (M5
i ) by adding all the weighted

outputs according to (7).

M5
i =

∑
i

kl fi =
∑

i ki fi∑
i ki

(7)

The above-mentioned parameters of the ANFIS models are optimized using the PSO algorithm in
this article through comprehensive training and testing processes.
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3.2. Particle Swarm Optimization (PSO)

The PSO, a swarm-based metaheuristic technique, is used to search the global solution from
the search space. This optimization technique is inspired by biological populations’ swarming
characteristics like a flock of birds or school of fishes that move together in the multi-directional search
spaces to find the food source, inhabitation place, or other objectives. During this searching process,
the swarm particles (birds/fishes) can change and adjust their movements and positions based on their
social and cognitive experiences. Kennedy and Eberhart introduced this global search optimization
algorithm in Ref. [45]. In PSO, every particle locates a position in the search space and continually
changes its position to find the optimal location. Thus, the global solution can be exploited by any
particle of the swarm. Initially, a random set of particles is assumed with a probable location of each
particle, and the velocity of each particle within the swarm is also generated. The algorithm then
evaluates the fitness of the particle’s positions based on the objective function of the optimization
problem under investigation. The particles’ positions are stored as the individual best solutions and the
best position as the global best solution. In each iteration, the PSO algorithm updates the inertia weight
and velocities of the particles, hence the particles’ positions. The update of the particles’ velocities
depends on three main factors: the inertia component, the cognitive component, and the social
component. According to the PSO model proposed by Kennedy and Eberhart, each swarm particle’s
new position is translated/enhanced from the old position with respect to the corresponding particle’s
new velocity. A detailed explanation of the PSO algorithm model can be found in [46]. Hence, this
procedure of updating the particles’ velocities and positions is repeated in each iteration until the
targeted convergence criteria are satisfied. The flow diagram of the PSO algorithm is shown in Figure 4.
According to this flow diagram, the initial positions and velocities are generated randomly, and after
evaluation of their fitness, the individual and the global best solutions are stored. After that, if the
stopping criteria are satisfied for the stored solutions, the algorithm is terminated; otherwise, the inertia
weight, velocities, and positions of the swarm particles are updated again. Then, after checking the
boundary violation condition, the particles’ positions’ fitness is evaluated, and the algorithm continues
as illustrated in the flow diagram.

Figure 4. Flowchart of particle swarm optimization (PSO).
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4. Data Processing and ANFIS Model Development

Details of data generation and processing and the ANFIS model development steps are illustrated
in the following subsections.

4.1. Data Generation and Processing

In this research, a total of 1000 loading conditions for each of the considered power system networks
from the ranges of operating conditions given in Table 1 were generated. These data sets were prepared
with the variation and combination of three parameters of the power systems: terminal voltage (Vt),
real power (Pe), and reactive power (Qe). Each variety of selected parameters was considered as a
distinct loading condition of the corresponding electric network. The PSO algorithm was then employed
to optimize the PSS’s key parameters (K and T1) in offline mode for all generated loading conditions.
For the first network, the objective was to maximize the system minimum damping ratio. In contrast,
the second network’s objective function was to minimize a multi-objective function combining two major
decision-taking parameters, e.g., damping factor and damping ratio. Details about the optimization
problem formulation and solution methodologies using the PSO can be found in [47] and in [48] for the
first and second networks. As shown in Figure 5, the PSO algorithm converged the objective functions to
the specific values for both networks for five different runs that signified the algorithm’s robustness and
efficacy in finding PSS key parameters.

Table 1. Ranges of the operating condition in per unit (pu) for the selected power system networks.

Limit Real Power (Pe) Reactive Power (Qe) Terminal Voltage (Vt)

Minimum 0.40 −0.30 0.90
Maximum 1.10 0.40 1.10

Figure 5. Convergence curves of objective functions for the selected test networks for five different
runs using PSO; (a) An arbitrarily generated operating situation of the first test network (Pe = 1.0951 pu,
Qe = −0.0279 pu, and Vt = 1.0299 pu) and (b) An arbitrarily generated operating situation of the second
test network (Pe = 0.6245 pu, Qe = −0.2626 pu, and Vt = 1.0604 pu).

4.2. PSO-ANFIS Model Development

In this work, the ANFIS toolbox available in [49] was employed, where 70% of data were
used for training, and 30% of data were used for the testing purposes of the proposed machine
learning tool. A continually regulated trial and error process was taken into account to adjust the
ANFIS models’ parameters. Statistical performance indices, including the RMSE, MAPE, RSR, R2,
and WIA, were measured to evaluate the proposed PSO-ANFIS models’ effectiveness in predicting
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PSS key parameters. The higher values of RMSE, MAPE, and RSR refer to more unsatisfactory model
performance. On the contrary, the remaining indices, R2 and WIA, maintain the unity values for
perfect matching between the model predicted output and the actual system output. In contrast,
the variation of R2 and WIA values from “1” to “0” indicates matching the predicted and actual data
from 100% to 0%. To investigate the efficiency of the proposed PSO-ANFIS models in predicting
PSS key parameters, the mentioned SPI values were evaluated and summarized in Table 5 for both
networks’ testing datasets.

Based on the obtained MAPE and R2 values of Tables 2 and 3, this research selected 8 and 9
clusters for the first and second networks, respectively. The selected clusters were used to model the
PSS key parameters (K and T1). It is worth noting that it selected 10,000, 1, and 0.99 as the maximum
number of iterations, inertia weight, and inertia weight damping ratio, respectively. The cognitive and
social learning coefficients were selected as 1 and 2, respectively. The total numbers of parameters
of the ANFIS models for the first and the second networks were 80 and 90, respectively, as per their
preselected number of clusters. The particle positions corresponding to the ANFIS parameters to be
optimized were found from the ‘GetFISParams’ function of the employed toolbox of Ref. [49]. In the
ANFIS models, the parameters related to the input (fuzzification) and output (defuzzification) sides
are known as the premise and the consequence parameters [41]. Out of the 80 parameters of the ANFIS
models of the first electric network, 48 of them were the premise parameters, and the remaining 32
were the consequence parameters.

Table 2. Mean absolute percentage error (MAPE) and R2 values with the different number of clusters
for the ANFIS model (first test network).

Cluster Number
Gain Parameter (K) Time Constant Parameter (T1)

MAPE R2 MAPE R2

2 3.5455 0.9867 2.1450 0.9900
3 4.3358 0.9882 2.3695 0.9887
4 2.4405 0.9939 2.5640 0.9873
5 4.8319 0.9836 2.0364 0.9903
6 2.8576 0.9935 2.2844 0.9884
7 4.0036 0.9868 2.6272 0.9862
8 3.7293 0.9874 1.9038 0.9928
9 2.4318 0.9948 1.9486 0.9926
10 3.9331 0.9872 2.1869 0.9854
11 3.2829 0.9911 1.9155 0.9924
12 3.3876 0.9895 2.1047 0.9915

Table 3. MAPE and R2 values with the different number of clusters for the ANFIS model (second
test network).

Cluster Number
Gain Parameter (K) Time Constant Parameter (T1)

MAPE R2 MAPE R2

2 1.3557 0.9779 0.2414 0.8196
3 2.1198 0.9564 0.2667 0.7990
4 1.0857 0.9864 0.1834 0.8838
5 2.0702 0.9522 0.1039 0.9703
6 0.8781 0.9915 0.1213 0.9548
7 0.7446 0.9942 0.1376 0.9277
8 1.4883 0.9774 0.1553 0.9356
9 1.5006 0.9781 0.0786 0.9824
10 1.2636 0.9807 0.1255 0.9607
11 1.3736 0.9770 0.1305 0.9484
12 1.4426 0.9770 0.1304 0.9497



Inventions 2020, 5, 61 10 of 21

Similarly, there were 54 premise and 36 consequence parameters of ANFIS models of the second
electric network. Table 4 presents the optimized parameters of the ANFIS model while tuning the
T1 parameter of the second electric network. Moreover, to set the PSO algorithm-generated values
of the premise and consequence parameters, the ‘SetFISParams’ function inside the ‘TrainFISCost’ of
the toolbox was employed. However, as can be seen from Table 5, the SPI indices, RMSE, MAPE,
and RSR values are minimal, while the other two SPI indices’ values are close to unity for both electric
networks. Furthermore, the MAPE and R2 were improved significantly with the PSO optimized ANFIS
model over the nonoptimized ANFIS model for both test networks (comparison of Tables 2, 3 and 5).
Therefore, SPI’s obtained values confirmed the proposed PSO tuned ANFIS models’ effectiveness in
estimating PSS parameters.

Table 4. Optimized parameters of the ANFIS model for the second test network during tuning of
Table 1. parameter.

#ID Value #ID Value #ID Value #ID Value #ID Value #ID Value

1 0.0912 16 0.9188 31 0.0841 46 25.1397 61 0.0215 76 0.0742
2 0.7817 17 −1.8641 32 0.0125 47 0.0235 62 0.9653 77 0.0230
3 0.0919 18 18.7428 33 0.0822 48 0.9688 63 0.0247 78 0.9509
4 0.7248 19 0.0799 34 0.7026 49 0.0238 64 0.4873 79 −0.0283
5 0.1297 20 −0.1893 35 −2.1530 50 0.9967 65 −0.5668 80 0.0102
6 0.4261 21 0.0835 36 4.9097 51 0.0308 66 6.0841 81 0.0159
7 0.0994 22 −0.1487 37 0.0237 52 1.0634 67 −0.0078 82 0.9918
8 0.5793 23 −2.1377 38 0.9641 53 −0.3098 68 0.0228 83 −0.0069
9 −0.4695 24 −1.0173 39 0.0233 54 24.8816 69 0.0219 84 0.0181
10 −18.226 25 0.0832 40 0.9745 55 0.0026 70 0.9659 85 0.0208
11 0.0987 26 −0.0634 41 −0.0309 56 −0.0072 71 −0.0717 86 0.9667
12 0.7177 27 −2.1694 42 1.3100 57 0.0218 72 0.1264 87 0.1009
13 0.1114 28 1.3801 43 0.0235 58 0.9682 73 −0.2241 88 −0.2637
14 0.3909 29 0.0810 44 0.9856 59 −0.0049 74 3.6773 89 0.0768
15 0.0294 30 −0.1725 45 0.0525 60 0.0149 75 0.0033 90 −24.141

Table 5. Test datasets statistical performance indices (SPI) values of the developed PSO-ANFIS models
for both networks.

Parameter RMSE MAPE RSR PIBIAS R2 WIA

K
First network 0.2640 0.0032 0.0401 −0.0736 0.9992 0.9996

Second network 0.2003 0.0058 0.0853 0.0539 0.9964 0.9982

T1

First network 0.0011 0.0032 0.0219 0.0248 0.9998 0.9999
Second network 0.0001 0.0001 0.0187 −0.0004 0.9998 0.9999

Figures 6 and 7 show the RMSE values convergence curves, and the scatter plots for the PSS key
parameters (K and T1) of the first network test dataset. Figure 8 shows the expected and approximated
gain parameter (K) and time constant parameter (T1) values for randomly chosen thirty different
operating/loading conditions from the first electric network’s test dataset. In this case, the actual
values were evaluated using the offline mode PSO algorithm, whereas the estimated ones were
the output from the PSO-ANFIS model. It can be observed from Figure 8 that the predicted and
actual values of the PSS parameters (K and T1) are entirely overlapped with each other. Therefore,
the proposed PSO-ANFIS model showed confidence in the online estimation of the first electric
network’s PSS parameters. Likewise, Figures 9 and 10 show the RMSE values convergence curves,
and the scatter plots for the UPFC coordinated PSS key parameters (K and T1) of the second network
test dataset. Furthermore, Figure 11 proved the efficiency of estimating the PSS parameters employing
the proposed PSO-ANFIS learning model for the second electric network. Therefore, Figure 6 to
Figure 11 confirmed the developed PSO-ANFIS models’ effectiveness in predicting PSS key parameters
for both electric networks.
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Figure 6. RMSE values convergence curves for the PSS key parameters of the first network test datasets;
(a) PSS gain parameter (K) and (b) PSS time constant parameter (T1).

Figure 7. Scatter plots for the PSS key parameters of the first network test datasets; (a) PSS gain
parameter (K) and (b) PSS time constant parameter (T1).

Lastly, it is essential to mention that this research was carried out using the MATLAB simulation
environment in a desktop computer with an Intel Core i5 (3.5 GHz Processors, 8 GB RAM). It required
several hours to develop the PSO-ANFIS models. However, the developed PSO-ANFIS models
estimated the first network’s PSS parameters around 0.285 s for 700 arbitrarily produced operating
situations. Hence, the proposed model required an average of around 0.000407 s to estimate the PSS
parameters for a single operating situation. For the second test system, the developed PSO-ANFIS
models took 0.30 s to estimate UPFC coordinated PSS parameters for another 700 loading conditions;
thus, it required an average of 0.000429 s for a single loading condition. As mentioned, the times needed
for PSS parameters estimation employing the developed PSO-ANFIS models are almost 35 times
smaller than a period of 60 Hz electric network. Therefore, a conclusion can be made that the faster
response of the developed PSO-ANFIS models makes them suitable to be implemented online in
tuning the PSS parameters.
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Figure 8. Comparisons of the actual and the PSO-ANFIS models predicted PSS key parameters values
for randomly selected 30 samples from the first network test datasets; (a) PSS gain parameter (K) and
(b) PSS time constant parameter (T1).

Figure 9. RMSE values convergence curves for the PSS key parameters of the second network test
datasets; (a) PSS gain parameter (K) and (b) PSS time constant parameter (T1).

Figure 10. Scatter plots for the PSS key parameters of the second network test datasets; (a) PSS gain
parameter (K) and (b) PSS time constant parameter (T1).
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Figure 11. Comparisons of the actual and the PSO-ANFIS models predicted PSS key parameters values
for randomly selected 30 samples from the second network test datasets; (a) PSS gain parameter (K)
and (b) PSS time constant parameter (T1).

5. Results and Discussion

It is already mentioned that this paper proposed the PSO-ANFIS models that were applied to two
different electric networks to estimate the PSS key parameters in real-time. In this section, the proposed
ANFIS models’ effectiveness was examined based on eigenvalues and minimum damping ratio for
both systems under investigation. The efficacy of the developed models was also justified in online
implementation through time-domain simulation results for some specific states of the machine.

5.1. Example 1: SMIB Electric Network with PSS only

5.1.1. Eigenvalues and Minimum Damping Ratio Analyses

Estimated PSS key parameters using the developed PSO-ANFIS model for three different operating
conditions of the first test network were evaluated and summarized in Table 6. Corresponding
eigenvalues and minimum damping ratio values of the loading conditions of Table 6 were presented in
Table 7, Table 8, and Table 9. In this case, the eigenvalues in the tables for three cases were accumulated,
including the PSO-ANFIS, conventional, and literature reported models with the same operating
conditions for comparison purposes. As mentioned earlier, the eigenvalues’ positions within the
left-side of the complex plane ensure the electric network’s stable operation. It is visible from the
tables that the presented eigenvalues were situated in the left half-plane for all mentioned approaches.
However, the PSO-ANFIS models showed effective action on the electric network in placing the
eigenvalues at better positions over the conventional one. Furthermore, both referenced and developed
models maintained higher MDR values than the conventional model. This higher MDR value ensured
the developed model’s efficacy in damping out the LFO and gaining better stability of the developed
model over the conventional one. Comparison of MDR values of the first electric network for three
different loading conditions is shown in Figure 12.
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Table 6. Estimated PSS key parameters using the developed PSO-ANFIS models for three different
operating situations (first network).

Case Pe (pu) Qe (pu) Vt (pu) Gain Parameter (K) Time Constant Parameter
(T1)

PSO-ANFIS Conventional PSO-ANFIS Conventional

Loading
condition # 1 1.000 0.015 1.050 18.365

7.090
0.263

0.685Loading
condition # 2 0.894 −0.281 0.955 13.526 0.325

Loading
condition # 3 0.955 0.276 1.031 25.639 0.194

Table 7. Eigenvalues and MDR comparison for the operating situation # 1 (first network).

Item Conventional PSS Ref. [37] Proposed

Eigenvalues

−0.337 −0.346 −0.346
−18.703

1.127 ± j4.333
−4.4618 ± j7.483

−18.207
−2.982 ± j5.6949
−3.006 ± j5.342

−18.206
−2.928 ± j5.386
−3.061 ± j5.653

MDR 0.252 0.464 0.476

Table 8. Eigenvalues and MDR comparison for the operating situation # 2 (first network).

Item Conventional PSS Ref. [37] Proposed

Eigenvalues

−0.337

Not available

−0.342
−19.123

−1.494 ± j4.408
−4.040 ± j7.551

−18.508
−2.801 ± j5.583
−3.038 ± j5.676

MDR 0.3209 0.464 0.448

Table 9. Eigenvalues and MDR comparison for the operating situation # 3 (first network).

Item Conventional PSS Ref. [37] Proposed

Eigenvalues

−0.338

Not available

−0.358
−18.379

−0.621 ± j3.596
−5.285 ± j7.414

−17.673
−2.968 ± j4.709
−3.281 ± j4.927

MDR 0.170 0.534 0.533
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Figure 12. MDR comparison for three selected operating situations (first network).

5.1.2. Time-Domain Simulation under Disturbance

This section analyzed the performance of the PSO-ANFIS and the conventional models in damping
out the LFO from the first electric system following an external disturbance. In this case, a pulse of an
extra 10% of mechanical torque was introduced as a disturbance to the input at 1.0 s for four cycles.
Following this disturbance, this research measured the responses of the two states (rotor angle and
angular frequency) of the system. These responses (changes of rotor angle and angular frequency)
of the synchronous machine were plotted in Figure 13a,b with the loading condition # 3 of Table 6.
Although both models stabilized the electric network by damping out the LFO from the system,
the PSO-ANFIS model demonstrated a faster response than the conventional one. From both figures,
it can be observed that the developed PSO-ANFIS models damped out the LFO and stabilized the
system states within 3.5 s, while the conventional model took approximately 6.0 s. Hence, it can be
concluded that the developed PSO-ANFIS technique will be well-suited for real-time prediction of PSS
parameters to damp out the LFO in the power system network.

Figure 13. System response for an external disturbance applied at 1.0 s (first network); (a) Change in
rotor angle and (b) Change in rotor angular frequency.
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5.2. Example 2: SMIB System with UPFC Coordinated PSS

5.2.1. Eigenvalues and Minimum Damping Ratio Analysis

Estimated PSS key parameters using the developed PSO-ANFIS models for three different loading
situations for the second test network were evaluated and summarized in Table 10. Table 11, Table 12,
and Table 13 tabulated the corresponding eigenvalues and MDR values. The tables also accumulated
the eigenvalues and MDR values of the literature reported and the conventional models for the same
loading conditions for comparison purposes. All models of the tables exhibited stable operation as
the eigenvalues were placed on the left half-plane. However, the PSO-ANFIS models demonstrated
better stability over the conventional one as the corresponding eigenvalues were located comparatively
far away from the imaginary axis. Additionally, the PSO-ANFIS and the referenced works models
maintained the larger MDR values over the conventional model that signified their abilities in damping
out of the LFO to gain better stability. The comparison of the second test network’s MDR values for
three different loading conditions is shown in Figure 14.

Table 10. Estimated PSS key parameters using the developed PSO-ANFIS models for three different
operating situations (second network).

Case Pe (pu) Qe (pu) Vt (pu) Gain Parameter (K) Time Constant Parameter
(T1)

PSO-ANFIS Conventional PSO-ANFIS Conventional

Loading
condition # 4 0.980 −0.160 1.000 24.005

15.000
0.984

0.500Loading
condition # 5 0.600 0.010 0.980 25.583 0.9839

Loading
condition # 6 1.300 0.400 1.060 31.873 0.986

Table 11. Eigenvalues and MDR comparison for the operating situation # 4 (second network).

Item Conventional PSS Ref. [28] Ref. [29] Proposed

Eigenvalues

−0.206
−6.695
−86.497
−110.705
−994.471

−0.419 ± j4.610
−0.676 ± j0.320

−0.199
−1.056
−80.726
−125.389
−982.089

−1.493 ± j0.438
−4.159 ± j3.708

−0.199
−1.184
−80.7544
−125.298
−982.175

−1.459 ± j0.249
−4.118 ± j3.699

−0.199
−1.683
−80.806
−125.131
−982.332

−1.248 ± j0.136
−4.059 ± j3.673

MDR 0.091 0.746 0.744 0.741

Table 12. Eigenvalues and MDR comparison for the operating situation # 5 (second network).

Item Conventional PSS Ref. [28] Ref. [29] Proposed

Eigenvalues

−0.400
−6.593
−87.562
−110.031
−993.512

−0.615 ± j3.969
−0.718 ± j0.295

−0.391
−1.089
−83.489
−126.897
−977.786

−1.463 ± j0.302
−4.092 ± j2.851

−0.391
−1.203
−83.489
−126.899
−977.784

−1.415 ± j0.160
−4.084 ± j2.853

−0.391
−1.466
−83.494
−126.867

−1.291 ± j0.078
−977.816

−4.0744 ± j2.847

MDR 0.153 0.821 0.820 0.820
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Table 13. Eigenvalues and MDR comparison for the operating situation # 6 (second network).

Item Conventional PSS Ref. [28] Ref. [29] Proposed

Eigenvalues

−0.147
−7.269
−87.048
−112.996
−991.096

−0.427 ± j4.801
−0.677 ± j0.274

−0.143
−1.936
−82.539
−136.569
−967.917

−1.1471 ± j0.169
−4.683 ± j3.141

−0.143
−2.025
−82.571
−136.306
−968.192

−1.141 ± j0.128
−4.623 ± j3.107

−0.141
−1.063
−81.860
−142.793
−961.396

−1.009 ± j0.781
−5.746 ± j3.741

MDR 0.089 0.831 0.830 0.791

Figure 14. MDR comparison for three selected operating situations (second network).

5.2.2. Time-Domain Simulation under Disturbance

Like the first electric network, this section analyzed the performance of the proposed PSO-ANFIS
and the conventional models in damping out the LFO from the second test network following an
external disturbance. A pulse of an extra 10% of mechanical torque was introduced again as a
disturbance to the input at 1.0 s for four cycles. Following the disturbance, this research recorded the
responses of the two states of the second electric network for the PSO-ANFIS and the conventional
models. The recorded responses (changes in rotor angle and angular frequency) were plotted in
Figure 15a,b for the loading condition # 4 of Table 10. As can be observed, both models stabilized
the electric network by damping out the LFO from the system. However, the PSO-ANFIS models
exhibited a faster response than the conventional one. The PSO-ANFIS models stabilized the power
system’s states within 3.5 s, while the conventional method fails to damp out the LFO from the system
even after 7.0 s. Hence, it can be concluded that the developed PSO-ANFIS technique demonstrated
better suitability in improving the power system stability in real-time.
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Figure 15. System response for an external disturbance applied at 1.0 s (second network); (a) Change
in rotor angle and (b) Change in rotor angular frequency.

6. Conclusions

This paper proposed the PSO optimized ANFIS models for real-time (online) tuning of the PSS
parameters to damp out the unwanted LFO from the electric power system networks. To evaluate the
real-time operating performance, this research implemented the developed models on two different
power system networks, namely the SMIB system with PSS only and the SMIB system with UPFC
coordinated PSS. Then, it investigated the performance of the developed models for real-time power
system stability enhancement. Superiority and compatibility of the developed models with the
conventional and the referenced works were determined through eigenvalues and MDR values
analyses for several operating situations. Additionally, the time-domain simulation results confirmed
the superiority of the developed models over the conventional models for both test networks to
damp out the LFO within reasonable times. The SPI’s fair values, including the RMSE, MAPE, RSR,
R2, and WIA, signified the developed PSO-ANFIS models’ effectiveness in predicting the PSS key
parameters. Furthermore, it also notified that the required time for the developed models in estimating
the PSS parameters was around 35 times less than that of a single cycle of 60 Hz electric network for
any operating situation. Therefore, it can be concluded that the proposed PSO-ANFIS models have
a high potentiality of deployment in electric grids for fine-tuning of the PSS parameters in real-time
for system stability enhancement via damping out of the unwanted LFO. However, the proposed
strategy’s robustness can be tested on other power system networks as the extension of this work,
especially with multi-machine power system networks.
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Abbreviations

The following abbreviations are used in this manuscript:

ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural networks
AVR Automatic voltage regulator
BT Boosting transformer
ET Excitation transformer
FACTS Flexible alternating current transmission system
LFO Low-frequency oscillations
MAPE Mean absolute percentage error
MDR Minimum damping ratio
PSO Particle swarm optimization
PSS Power system stabilizer
RMSE Root mean squared error
RSR RMSE-observations to standard deviation ratio
R2 Coefficient of determination
SMIB Single machine infinite bus
SPI Statistical performance indices
UPFC Unified power flow controller
VSC Voltage source converter
WIA Willmott’s index of agreement
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33. Açikgöz, H.; Keçecioğlu, Ö.F.; Şekkeli, M. Real-time implementation of electronic power transformer based
on intelligent controller. Turkish J. Electr. Eng. Comput. Sci. 2019, 27, 2866–2880. [CrossRef]

34. Barati-Harooni, A.; Najafi-Marghmaleki, A. Implementing a PSO-ANFIS model for prediction of viscosity of
mixed oils. Pet. Sci. Technol. 2017, 35, 155–162. [CrossRef]

35. Kundapura, S.; Hegde, A.V. PSO-ANFIS hybrid approach for prediction of wave reflection coefficient for
semicircular breakwater. ISH J. Hydraul. Eng. 2018. [CrossRef]

36. Shahriar, M.S.; Shafiullah, M.; Rana, M.J.; Ali, A.; Ahmed, A.; Rahman, S.M. Neurogenetic approach for
real-time damping of low-frequency oscillations in electric networks. Comput. Electr. Eng. 2020, 83, 1–14.
[CrossRef]

37. Shafiullah, M.; Juel Rana, M.; Shafiul Alam, M.; Abido, M.A. Online Tuning of Power System Stabilizer
Employing Genetic Programming for Stability Enhancement. J. Electr. Syst. Inf. Technol. 2018. [CrossRef]

38. Yu, Y. Electric Power System Dynamics; Academic Press: New York, NY, USA, 1983.
39. Machowski, J.; Janusz, W.B.; Bumby, D.J. Power System Dynamics: Stability and Control; John Wiley: Hoboken,

NJ, USA, 1988.
40. Hussain, A.N.; Malek, F.; Rashid, M.A.; Mohamed, L.; Mohd Affendi, N.A. Optimal coordinated design of

multiple damping controllers based on PSS and UPFC device to improve dynamic stability in the power
system. Math. Probl. Eng. 2013, 2013. [CrossRef]

41. Karaboga, D.; Kaya, E. Adaptive network based fuzzy inference system (ANFIS) training approaches:
A comprehensive survey. Artif. Intell. Rev. 2019, 52, 2263–2293. [CrossRef]

42. Jang, J.S.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993,
23, 665–685. [CrossRef]

43. Jang, J.S.R.; Sun, C.T. Neuro-Fuzzy Modeling and Control. Proc. IEEE 1995, 83, 378–406. [CrossRef]
44. Al-Hmouz, A.; Shen, J.; Al-Hmouz, R.; Yan, J. Modeling and simulation of an Adaptive Neuro-Fuzzy

Inference System (ANFIS) for mobile learning. IEEE Trans. Learn. Technol. 2012, 5, 226–237. [CrossRef]
45. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International

Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4,
pp. 1942–1948.

46. Bonyadi, M.R.; Michalewicz, Z. Particle swarm optimization for single objective continuous space problems:
A review. Evol. Comput. 2017, 25, 1–54. [CrossRef] [PubMed]

47. Shafiullah, M.; Rana, M.J.; Abido, M.A. Power system stability enhancement through optimal design of PSS
employing PSO. In Proceedings of the 4th International Conference on Advances in Electrical Engineering
ICAEE 2017, Dhaka, Bangladesh, 28–30 September 2017; Volume 2018, pp. 26–31.

48. Shahriar, M.S.; Shafiullah, M.; Asif, M.A.; Hasan, M.M.; Ishaque, A.; Rajgir, I. Comparison of Invasive Weed
Optimization (IWO) and Particle Swarm Optimization (PSO) in improving power system stability by UPFC
controller employing a multi-objective approach. In Proceedings of the 1st International Conference on
Advanced Information and Communication Technologies, Chittagong, Bangladesh, 16–17 May 2016.

49. Yapriz. ANFIS Training Using Evolutionary Algorithms and Metaheuristics; 2015; Available online: https:
//www.mathworks.com/matlabcentral/fileexchange/52971-anfis-training-using-evolutionaryalgorithms-
and-metaheuristics (accessed on 21 September 2015).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/su12229591
http://dx.doi.org/10.3906/elk-1807-315
http://dx.doi.org/10.1080/10916466.2016.1256899
http://dx.doi.org/10.1080/09715010.2018.1525688
http://dx.doi.org/10.1016/j.compeleceng.2020.106600
http://dx.doi.org/10.1016/j.jesit.2018.03.007
http://dx.doi.org/10.1155/2013/965282
http://dx.doi.org/10.1007/s10462-017-9610-2
http://dx.doi.org/10.1109/21.256541
http://dx.doi.org/10.1109/5.364486
http://dx.doi.org/10.1109/TLT.2011.36
http://dx.doi.org/10.1162/EVCO_r_00180
http://www.ncbi.nlm.nih.gov/pubmed/26953883
https://www.mathworks.com/matlabcentral/fileexchange/52971-anfis-training-using-evolutionaryalgorithms-and-metaheuristics
https://www.mathworks.com/matlabcentral/fileexchange/52971-anfis-training-using-evolutionaryalgorithms-and-metaheuristics
https://www.mathworks.com/matlabcentral/fileexchange/52971-anfis-training-using-evolutionaryalgorithms-and-metaheuristics
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Power System Models 
	Example 1: SMIB Electric Network without UPFC 
	Example 2: SMIB Electric Network Equipped with PSS and UPFC 

	Proposed Optimization Method 
	Adaptive Neuro-Fuzzy Inference System (ANFIS) 
	Particle Swarm Optimization (PSO) 

	Data Processing and ANFIS Model Development 
	Data Generation and Processing 
	PSO-ANFIS Model Development 

	Results and Discussion 
	Example 1: SMIB Electric Network with PSS only 
	Eigenvalues and Minimum Damping Ratio Analyses 
	Time-Domain Simulation under Disturbance 

	Example 2: SMIB System with UPFC Coordinated PSS 
	Eigenvalues and Minimum Damping Ratio Analysis 
	Time-Domain Simulation under Disturbance 


	Conclusions 
	References

