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Abstract: This paper developed a multi-nozzle pneumatic extrusion-based additive manufacturing
(AM) system and applied it to print multi-material polymers and conductive sensing pads. We used
pneumatic extrusion nozzles to extrude the liquid material and then cured it by an ultraviolet (UV)
light source. The multi-nozzle pneumatic extrusion-based additive manufacturing system mainly
integrates both PC-based HMI and CNC controller to operate the three-axis motion and the extrusion
flow control. Moreover, the peripheral I/Os include both positive and negative pressure and also the
curing light source. A D/A controller is also applied to control the value of the pneumatic pressure.
The coding part utilizes the numerical control software along with the PLC planning to operate
the AM machine automatically. Our experiment is conducted by using Simplify3D, a commercial
3D printing slicing software. Different requirements were set for extrusion nozzles with different
materials, and then we executed the path controlling G-code data by Python Language. Our system
successfully prints multi-material polymer structure pads which include the hard and soft material
pad fabricated in double-layers, triple-layers and also the grid structure. Finally, we find that the
printed pad has conductivity.

Keywords: additive manufacturing; Pneumatic extrusion system; Smart sensing; graphene;
Vat Polymerization

1. Introduction

Rapid prototyping (RP), currently known as three-dimensional printing (3-D printing) or additive
manufacturing (AM) was proposed in the 1980s. According to ISO/ASTM 52900:2015, it defines the
terms used in AM technology, that applies the additive shaping principle and then builds the physical
3D geometries by successive addition of material. By using a slicing software, a 3D model is converted
into a series of image files which present a digitalized layer information. After that, each layer can
be repeatedly piled up until the product is accomplished by utilizing an AM system. In comparison
with conventional subtractive manufacturing, AM also brings a lot of advantages such as customized,
rapid, novelty and zero inventory besides lowering the waste of materials and processing constraints [1].
There are many reports about the smart robot market and gripper sensors, which show the tremendous
commercial benefit and prospect [2–5]. A newly established company, ICobots, currently provides
different sizes and quantities of flexible grasping mechanisms to solve a large number of requirements
of the US food and merchandise pick-and-place applications [6]. A Swiss company, F&P Personal
Robotics, encloses the traditional mechanical arms with flexible materials and detects whether arms
touch an external object by a strength sensor.

On the other hand, the robot market also promotes collaborative robots which can sense contact
with humans. So far, additive manufacturing is the only technology that can combine multiple complex
structure, mechanical properties and functionalities of materials together. Suppose a mechanical
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object with sensing or electronic performance can be printed out by AM technology, this may bring
a big advance not only in the smart gripper part but also in intelligent robots. Utilizing sensors
made of flexible materials and embedding a lot of sensors into robot’s skin may make the electronic
skin gain more sensitivity [7]. Many research works about manufacturing sensing pads have been
launched through 3D printing PDMS (Poly-dimethylsiloxane) molds and this has to go through
post-processing [8]. In this paper, sensing pads can be printed out directly without a PDMS mold
and thus this can also reduce post-processing. A pneumatic extrusion-based additive manufacturing
system with a multi-nozzle is introduced in this paper. It is applied to print a sensing pad with soft
and hard material structure. It can potentially satisfy the concept of the flexible finger for robotic
applications in the future [9–17].

2. Theoretical Analysis and System Construction

2.1. Theoretical Analysis

To construct a pneumatic extrusion-based additive manufacturing system, a pneumatic dispensing
controller is used in this paper. The pneumatic extrusion nozzles are operated by a three-axis gantry
mechanism. The material drop per unit time can be controlled by a proper given command from the
controller during the printing process. Because the motion of pneumatic dispensing controller depends
on the mechanical platform constructed, if we want to assure whether our given extrusion pressure can
maintain a stable flow or not, we should check Poiseuille’s Law and obtain a constant pressure during
the dispensing process. Poiseuille’s Law in fluid mechanics is shown below in Figure 1. According
to Poiseuille’s Law (1), the relationship between the given pressure ∆P and outlet flow rate v can be
calculated as the following:

∆P =
8µvl

r2 (1)

where
∆P = pressure drop (kPa)
µ = viscosity coefficient (N.s/m2)
v = outlet flow rate (m / s)
l = length of pipe diameter (m)
r = diameter of the pipe (m)
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2.2. System Construction

To design a system for multi-material printing such as embedded graphene wire, multi-material
polymers and so on, we develop a multi-nozzle pneumatic extrusion additive manufacturing system
with four nozzles for printing different materials.
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2.2.1. System Configuration

The system configuration is mainly based on a SynTec controller (HC-8C) which provides complete
G/M codes so that we can customize control program by ourselves. A manual controller is also equipped
through a RS232 interface. To control the axis motors, the controller will connect to the motor driver
and send the applied pulses. On the other hand, the register R is utilized to control the switches
in peripheral IO. A DA controller is also added to control the electronically proportional valves for
regulating the pressure. The system configuration is shown below in Figures 2 and 3.
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2.2.2. System Software Development

The multi-nozzle pneumatic extrusion based additive manufacturing system is developed on a
PC Windows system. We integrate a PLC with a CNC simulator, making it control the system properly.
A CNC simulator is mainly for setting the coordinate of multinozzle and parameters of step motors,
while eHMI is for customizing the interface which can meet different requirements. Also, a PLC is
required for the operation of the I/Os or the transmission of data.

2.2.3. Multi-Nozzle Operating Coordinates Setting: G54–G59

The commands G54~G59 can be applied to select up to six different working coordinate systems
for different nozzles in a CNC controller. The offset of six different coordinates is shown below in
Figure 4. Thus, if we need different nozzles working at the same time, we can simply apply the
commands to control different nozzle position.
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2.2.4. e-HMI System Design

In the HMI part of multi-nozzle pneumatic extrusion based additive manufacturing system,
the design includes manual tunable pressure valve and manual I/Os switches that are handy for users.
Moreover, in the automatic part, the system will load the files according to the setting which G-Code
file name has already been loaded into the Line Command to do certain work as in Figure 5.
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2.2.5. The Combination of Slicing Software and G-Code Post-Processing

The Simplify 3D is a commercial slicing software that can support almost all 3D printers on the
market. There are a lot of slicing parameters that can be adjusted such as layer height, wire width and
so on. The user interface is convenient and easy to operate. We can design printing parameters for
different extrusion heads. The slicing process flowchart is shown in Figure 6. After the wire diameter
and the inner filling parameters are set, the software will output its G-code file that can be operated by
most of the FDM machines [18,19].
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In this paper, those G-code files cannot be directly operated by the system. So we need to do some
post-processing to convert them into an available file. The Python Pandas was invented to solve data
analysis tasks. The Pandas includes a large amount of built-in libraries and some standard data models
which provide us with the solutions to process data much more quickly. Figure 7 below shows the
process flowchart. First of all, we load into the Pandas data structure object, and the pre-processing of
the data such as data supplementation, null removal or replacement can be performed quickly by the
structural material. It can read the excel file by using the read_excel function. After that, the excel file
becomes the DataFrame object of pandas. DataFrame is a two-dimensional structure with lists and line
labels [18].
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3. Results and Discussion

3.1. Multi-Material Printing Pad Experimental Results

To verify the flexible gripper, we print double layers multi-materials pads and triple layers
multi-materials pads as initial models. We use hard material (HAA) and soft material (CT4) made by
our research group. HAA is a new type photocuring hard resin of high hardness, which its mechanical
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strength is high enough to simulate human finger bones. And soft material CT4 is a new type of
photocuring TPU(Thermoplastic polyurethanes) resin of high flexibility, which can simulate how
muscles protect finger bones. The information of material and printing parameters are as Tables 1
and 2, and the results are as shown in Figures 8 and 9.

Table 1. Hard material (HAA) and Soft material (CT4) Material parameters [20].

Property Hard Material (HAA) Soft Material (CT4)

Young’s modulus (MPa) 600 2.7

Elongation (%) 2.8 104

Tensile strength (MPa) 15.75 3.73

Viscosity (CP) (T = 25 °C) 338 1666

Shrinkage (%) 3.5 1.7

Density (g/cm3) 1.209 1.18

Table 2. Printing parameters of multi-materials pads.

Parameter Hard Material (HAA) Soft Material (CT4)

Extrusion pressure 300 kPa 400 kPa

Needle diameter 23G (inner 0.33 mm) 22G (inner 0.41 mm)

Printing velocity 80 mm/s 116.6 mm/s

Extrusion diameter 0.65 mm 0.4 mm
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To prove the advantage of additive manufacturing, we can find that the accuracy is high when
printing both HAA and CT4 on the same layer. The wire diameters of both can be 0.4 mm, as shown
in Figure 10.
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Another merit of additive manufacturing is that it can print out 3D mold rapidly which dispenses
with complicated traditional cutting steps. Thus, Figure 11 shows a simple mold.
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3.2. Piezoelectric Sensing Pads

To make two PVDF(Polyvinylidene difluoride)/graphene (NMP(Methylpyrrolidone) mix with
CT4 and to cure the NMP with a UV light source as we expected, the proportion of the photocuring
agent we blend into is optimal in the ratio of (PVDF/graphene/photocuring agent) (5:5:1).

After the double-layer structure pad is produced, in the future application, the design of the soft
material’s bottom layer is mainly for the purpose of causing the cross-linking reaction between the
heat generated by the light source and make the soft material accelerate the curing of the sensing layer.
In order to protect the PVDF/graphene (NMP) physical properties of the fragile part, we design a
square soft material protection, and make a three-layer structure pad of complete sandwich interlayer
with the positive and negative plates, as shown in Figure 12, with the printing parameters shown
in Table 3.
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Figure 12. Piezoelectric sensing pad schematic.

Table 3. Parameters of piezoelectric sensing pad.

Parameter Soft Material (CT4) PVDF/Graphene (NMP)

Lower layers 4 layers
1 layer

photocuring time: 10 min (60 ◦C) 3min (60 ◦C),
attain half curing status

Upper layers 1 layer

Pressure 400 kPa 300 kPa

Needle size 22G (inner diameter 0.41 mm) 22G (inner diameter 0.41 mm)

Printing speed 116.6 mm/s 28.3 mm/s

Wire diameter 0.4 mm 0.3 mm

Thickness 0.4 mm 0.3 mm

Whole size: 30 × 30 × 1.5 mm

Originally, it was hoped that the PVDF (NMP)/graphene was cured by mixing with a photocuring
agent, and the curing effect was poor. Therefore, we capitalized on the volatilization characteristics
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which experience high heat generated by the UV light source for PVDF (NMP)/graphene as shown
in Figure 13. This process must use a small piece of aluminum to illuminate it, making it slower to
dissipate heat. Because the thickness of the upper layer cannot be ensured in the process, printing
PVDF/graphene (NMP) will increase the original thickness by 0.14 mm, and at the same time increase
the pressure and reduce the printing speed.
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The proposed system can print a structure with multi-material polymers and graphene-based
sensing material which can be cured with a UV light source. A multi-nozzle head module is mounted
a 3-axis NC servo controlled platform. For a material with different viscosity, the extrusion outlet
flow rate is dependent on the used nozzle parameter and applied pneumatic pressure. However, for a
fixed outlet flow rate, the layer thickness and width of the printed wire will be affected by the printed
speed, since the shape of the printed material depends on the material properties such as viscosity,
surface tension and curing speed. Therefore, for a given material and proper needle head, a desired
width of the printed wire can be obtained by choosing proper control parameters such as pneumatic
pressure and printed speed which can be controlled by the system. From the experimental result,
a printing wire with a diameter of 0.28 mm can be achieved [20]. Hence, this system is used to print
rectangular pads with soft and hard materials including two-layer and three-layer structures with
PVDF/graphene-based sensing material. A more complicated structure can be printed by involving a
support material.

4. Conclusions

This research develops a multi-nozzle pneumatic extrusion-based additive manufacturing system,
completes the overall system design, and designs a suitable process to print a rectangular pad of soft
and hard materials. The detailed results are as follows.

(1) We develop a multi-nozzle pneumatic extrusion-based additive manufacturing system which
can select different inner diameters of needle and positive or negative pressure according to different
material characteristics and viscosity, and also we integrate a numerical controller and design
man-machine interface with PLC to undertake I/O logical control and control the moving speed of
three-axis motor.

(2) The software part is combined with the commercial 3D printing slicing software Simplify 3D,
and then through the Python Pandas data analysis library for rapid post-processing of a large amount
of data, and then accelerate the operation the multi-threading module parallelization program, in line
with the study of the multi-nozzle pneumatic extrusion-based additive manufacturing system.

(3) The multi-nozzle pneumatic pressure extrusion additive manufacturing system prints
rectangular pads with soft and hard materials including two-layer and three-layer structures and rapid
printing molds. In addition, printing soft and hard material of mesh and beehive structures can achieve
a minimum printing wire diameter of 0.28 mm.
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(4) We design a piezoelectric sensing pad including a bottom soft resin material which uses
a PVDF/graphene/light curing agent (5:5:1) and an upper protective soft material, and produce a
three-layer structure sensing pad with piezoelectric characteristics.

(5) The novelty of this study is that a piezoelectric sensing pad can be printed out directly
through the pneumatic extrusion-based system instead of printing a PDMS mold, thus it reduces a
lot of post-processing. The system can also print soft and hard materials together through Python
Pandas post-processing.
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