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Abstract: Methane, the primary component of natural gas, is a significant contributor to global
warming and climate change. It is a harmful greenhouse gas with an impact 28 times greater than
carbon dioxide over a 100-year period. Preventing methane leakage from transmission pipelines and
other oil and gas production activities is a possible solution to reduce methane emissions. In order
to detect and resolve methane leaks, reliable and cost-effective sensors need to be researched and
developed. This paper provides a comprehensive review of different types of methane detection
sensors, including optical sensors, calorimetric sensors, pyroelectric sensors, semiconducting oxide
sensors, and electrochemical sensors. The discussed material includes the definitions, mechanisms
and recent developments of these sensors. A comparison between different methods, highlighting
the advantages and disadvantages of each, is also presented to help address future research needs.

Keywords: methane detection; methane sensors; optical sensors; electrochemical sensors; calorimetric
sensors; pyroelectric sensors; semiconducting oxide sensors

1. Introduction

Methane (CH4), a flammable gas that lacks both odour and colour, is the primary component of
natural gas. It is used as a fuel worldwide as a source for electricity generation and heating and plays
a significant role in driving climate change. Methane is a powerful greenhouse gas (GHG) with a global
warming potential 28 times greater than carbon dioxide (CO2) over a 100-year period [1]. With the
onset of the industrial revolution, atmospheric methane concentration has increased dramatically
from approximately 800 parts per billion (ppb) in the early 1900s to upwards of 1800 ppb in 2016 [2].
This increase can be attributed primarily to the following anthropogenic sources of emission: landfills,
animal waste management systems, coal mining, petrochemical exploration, power transformers and
oil and gas distribution and production facilities [3]. In addition, methane gas is flammable and can be
explosive if its concentration reaches 5 to 15% in an enclosed area [4]. Despite its negative impacts on
the environment, natural gas is coveted for its abundance and clean burning process, and therefore,
will continue to be used widely in the future [5]. It replaces coal, especially in the USA power field,
due to the lower CO2 emissions compared to coal in the combustion process and the lower production
cost [6]. Moreover, it is predicted that natural gas will be the second most employed energy source
in the future [7]. Maroufmashat et al. [8] highlighted the importance of natural gas in the transition
to a fossil-free economy. The authors discussed different approaches to the power-to-gas solution
including electricity generation, energy storage systems and transportation energy systems.
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Since the use of natural gas in the future is inevitable, solutions to reduce methane emissions
should be developed. Methane emissions can be the result of equipment malfunctions such as pipe
cracking or an unsealed pipe joint, release practices such as flaring, or accidental releases during normal
transportation, storage, and distribution activities [9]. In addition, methane emissions from wells can
be caused by a loss of natural gas integrity through faulty sealed well casings, cement deterioration of
the wellbores, or lateral migration along adjacent geological formations [10]. The Conference Board
of Canada found that methane released by leakage through wells and equipment contributes 8.5%
of GHG emissions in Canada [11]. Olmer et al. [12] reported that methane emissions from global
shipping of liquified natural gas accounts for more than 5% of the 932 million tonnes of CO2 equivalent
in total. Ingraffed et al. [13] found that the average methane emissions from oil and gas wells in
Pennsylvania reach 55,600 tonnes/year. Wisen et al. [14] studied the methane leakage in northeastern
British Columbia where the shale gas basins are located and estimated that 75,000 metric tonnes/year
of emissions were released.

The Canadian Government has set a methane emissions reduction target of 40–45% by 2025
relative to the 2012 level. A 45% reduction in methane emissions corresponding to 56 billion cubic
feet of methane gas is expected to protect the environment and benefit the economy by a recovery of
251 million Canadian dollar (CAD) per year [15]. A solution to reduce methane emissions is to prevent
methane leakage from transmission pipelines and other activities from gas and oil production. In order
to detect leaks in the natural gas infrastructures, methane sensors that are reliable and cost-effective
need to be developed. This would allow polluters and policy-enforcers to detect and resolve leaks
in a timely manner. Therefore, a variety of methane sensors, each implementing a different technology,
have been developed. Depending on the type of material and technology, the sensors are built with,
they are classified as follows: optical sensor, capacitance-based sensor, calorimetric sensor, resonant
sensor, acoustic-based sensor, pyroelectric sensor, semiconducting metal oxide (SMO) sensor, and
electrochemical sensor.

Several research works have been conducted to help develop and improve different types of gas
sensor. Lu et al. [16] discussed the advantages, limitations, applicable occasions, and performance
of the existing detection methods used in oil and gas pipelines, including sensors, lidars, and radars
among some other technologies. Dey et al. [17] provided a detailed study of SMO gas sensors and
a detailed comparison of SMO gas sensors with other gas sensors, especially for ammonia gas sensing.
Wu et al. [18] presented a comprehensive and systematic overview of graphene-based optical gas sensors
regarding various aspects including sensing principles, properties, fabrication, and implementation.
However, a comprehensive review of different sensors specifically used to detect methane has not been
provided. Since the type of gas also affects the working mechanism of most sensors, methane sensors
can have different properties from other gas sensors. This paper provides a comprehensive review of
five different types of methane sensor, which are optical sensors, calorimetric sensors, pyroelectric
sensors, semiconducting metal oxide sensors, and electrochemical sensors, as they are more common
for methane detection. The basic definitions, working mechanisms, advantages and disadvantages of
each sensor are discussed. Recent research works on the sensors in terms of novel material testing
and design improvement are also reviewed. Finally, a comparison between all the discussed methane
sensors is provided to highlight opportunities for future development.

The rest of this paper is organized as follows. Sections 2–6 introduce and discuss optical sensors,
calorimetric sensors, pyroelectric sensors, semiconducting metal oxide sensors, and electrochemical
sensors, respectively. Section 7 provides a comparison of the reviewed sensors and some future
perspectives. Finally, concluding remarks are given in Section 8.

2. Optical Sensors

Optical gas sensors detect changes in visible light or in electromagnetic waves that result from
an interaction of the analyte with the receptor part [19]. In measuring emissions, scattering or absorption
are the main mechanisms of the optical gas sensor [20]. However, infrared (IR) absorption spectroscopy
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is the most common technique used for optical methane sensors, where the wavelength and the
absorption intensity of mid-IR light are measured to determine the qualitative identification of the
molecules [21]. Certain chemical bonds have specific absorption band wavelengths making it possible
to identify the gas by mid-IR absorption sensors. By this principle, methane gas can be detected by
diode laser optical sensors at wavelengths of 2.3 and 3.26 µm, which are the strong absorption lines
of methane [22]. Methane also has weak absorption lines at 1.33 and 1.66 µm, which are in near-IR
wavelength regions [23]. Figure 1 shows an example of a working optical methane gas sensor, which
consists of a light source to provide the mid-IR light, a tube to hold the gas sample being tested, and an
optical spectrum detector. The light source emits mid-IR light which reflects along the inside walls of
the tube as it passes through the gas. The gas molecules that vibrate within the IR frequency range
would then absorb the IR radiation from the light. After passing through the gas, the IR light reaches
the optical spectrum detector which produces a measurement of the output intensity of the emitted
light. Using the input and output intensity of the light source and the length of the travelled distance,
a value for the effective absorption coefficient of the gas can be determined. The effective absorption
coefficient is used to identify whether methane is present in the gas sample [24].
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The optical methane sensors on the market are often based on IR absorption spectroscopy, which
include in situ (on-site) sensors or remote sensors. An example of an in situ optical methane sensor is
a mobile methane sensor mounted on a vehicle to detect methane leaks along the natural gas pipelines.
When the sensor detects methane, audio and visual signals are sent to a display inside the vehicle to
alert the operator. The remote methane sensors also detect methane using IR spectroscopy but without
the need for a gas sample. These sensors survey a specific area and relay signals through an optical
fiber network when methane is detected [25]. Even though there are many optical methane sensors
on the market, they are still being developed and tested to optimize the sensitivity and response
time. Sensitivity is important because the sensor needs to detect methane at low concentrations.
Response time is also critical because methane leaks need to be detected quickly.

Wolfebeis et al. [26], Shemshad et al. [27], and Yin et al. [21] studied the advantages and
disadvantages of near-infrared methane sensors based on non-chemical fiber optics, tuneable diode
laser, and chemical fiber optics, respectively. One of the advantages of optical methane sensors
is that they use a non-destructive method of detecting methane, since absorption spectroscopy is
a physical analysis method, and not a chemical reaction. The components of sensors, hence, are
not significantly affected by degradation, which minimizes the maintenance costs for the sensor
operation [20]. Another advantage of optical methane sensor is their immunity to electromagnetic
interference which can sometimes cause problems for other types of sensors [28]. They also have
the ability to operate in the absence of oxygen, pre-treatment or a build-up of gas sample [29].
However, optical sensors have several disadvantages that hinder their potential for wider industrial
use. Even though absorption spectroscopy has lower costs than other forms of analysis such as mass
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spectroscopy or gas spectroscopy, its operating costs become higher when used for detection in a larger
setting [30]. Another disadvantage of optical sensors is the lack of significance and distinctiveness of
the methane optical absorption region, because methane has absorption bands in the same absorption
wavelength regions as many other hydrocarbons such as ethane and propane [24].

Recent Research Developments

There have been some studies focusing on the improvement of optical methane sensors.
Yang et al. [28] enhanced the sensitivity of a long-period fiber grating (LPFG) optical methane
sensor using high refractive index polycarbonate/cryptophane A overlay deposition. Altering the
overlay thickness caused the resonant wavelength to shift, and at the optimal thickness, a drastic
shift in resonant wavelength was observed, which led to a significant improvement in the sensor’s
sensitivity. Dong et al. [31] developed a cavity-enhanced approach for a Fabry–Perot cavity (FPC)
sensor to improve gas measurement accuracy. The technique involved recording the transmission
maxima of the cavity modes by scanning the cavity length at every laser frequency. It was found
that the FPC sensor, with the new technique integrated, was able to achieve a methane detection
sensitivity of 0.7–2.9 part per million by mass (ppm-m). Zhang et al. [32] investigated an optical
fiber-based methane sensor based on graphene-doped stannic oxide. The sensor was fabricated by
coating side-polished optical fibers with thin graphene-doped tin oxide films, and the light source of the
optical spectrum was set to a wavelength of 1550 nm. Different concentrations of methane were applied
to measure the output light intensities of the optical fibers. As the concentration of methane increased,
the conductivity of SnO2 and the refractive index increased. This resulted in an increase of the output
light intensity and a decrease in the absorption coefficient. The final results indicated that the intensity
and stability of the output light intensity, as well as the reliability, reproducibility, and sensitivity of the
sensor, were improved by the adding graphene doped SnO2. Zheng et al. [30] developed a mid-IR
methane sensor without pressure control, using a continuous-wave inter-band cascade laser to target
a methane absorption line located at 3038.5 cm−1. The sensor was found to function normally with
methane samples at 1.0, to 2.1 part per million by volume (ppm-v) concentration levels as the pressure
changed from 25 to 800 Torr. Tombez et al. [33] used the IR tunable diode-laser absorption spectroscope
with chip-scaled silicon photonic integration to develop compact, cost-effective, and versatile gas
sensors. The authors used a near-IR (1650 nm) light from a distributed-feedback laser and an uncooled
InGaAs detector, with a high-index contrast nanoscale silicon waveguide to probe ambient methane,
yielding sub-100-ppm-v detection limits. Campanella et al. [34] developed an FPC methane sensor
using the principle of absorption-induced redirection of light propagation in coupled resonant cavities.
The proposed architecture consisted of a Fabry–Pérot (FP) resonator coupled with a fiber ring resonator,
operating in the near IR. The variation of the methane gas concentration in the FP region, which
changed the absorption coefficient of the FP, allowed the redirection of the light propagation in the
fiber ring resonator. A sensitivity of 0.37 ± 0.04 [dB/%], defined as the contrast ratio between resonant
modes at different outputs, in a range of methane concentration between 0% and 5%, was achieved.
Ismaeel et al. [35] designed a simple, low-cost, and compact all-fiber methane sensor consisting of
a D-shaped cross section optical fiber in between two fiber Bragg gratings. The main improvement in
this work was the coating of the fiber with a Teflon layer that was doped with cryptophane which
has an affinity towards methane gas. The sensor achieved a high sensitivity of 0.16 nm/ppm-m with
a response time of 4 s. Hollow-core photonic crystal fiber (HC-PBF) is a promising technology that has
been investigated recently, where the gas can be stably filled into the hollow core, enabling a more
efficient light-gas interaction [36,37]. HC-PBF-based photothermal spectroscopy can detect a wide
range of gases including CH4, H2S, CO2, CO, NH3, etc., but the response time and sensitivity of the
sensor can be affected by the HC-PBF length.
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3. Calorimetric Sensors

Calorimetric sensors are used to detect methane and other combustible gases in various applications
in coal mines, petroleum drilling and processing fields, and landfills [38,39]. There are three types
of calorimetric gas sensors, which are the catalytic gas sensor, adsorbent-based gas sensor, and
thermal conductivity gas sensor. The calorimetric gas sensor often consists of a temperature sensor,
a catalytic combustor, and a heater device. The working mechanism of the calorimetric sensor
is based on the principle that a chemical reaction or a physisorption process absorbs or releases
heat as shown in Figure 2. The most important part in the calorimetric sensor is the material that
interacts with the gas. A surface layer is often utilized as a catalyst for the combustion reaction to
reduce combusting temperature. Platinum (Pt), palladium (Pd), and rhodium (Rh) are the most used
catalysts in calorimetric gas sensors [40]. Common calorimetric sensors use catalyst-coated platinum or
palladium coil, also known as the pellistor [41]. For methane, the oxidation of the gas when in contact
with the catalyst is an exothermic reaction which releases heat [42]. This results in a temperature
change of the catalytic surface, due to the chemical reaction, which is employed by the calorimetric
sensors to produce a sensing signal. Thermal equilibrium is the first state, where the analyte and
temperature signals are absent. The second state is the absorption of the analyte by the polymer, and the
temperature of the polymer increases. Finally, the signal returns to zero because of the concentration
equilibrium and constant enthalpy.

Inventions 2020, 5, x FOR PEER REVIEW 5 of 19 

sensor, a catalytic combustor, and a heater device. The working mechanism of the calorimetric sensor 
is based on the principle that a chemical reaction or a physisorption process absorbs or releases heat 
as shown in Figure 2. The most important part in the calorimetric sensor is the material that interacts 
with the gas. A surface layer is often utilized as a catalyst for the combustion reaction to reduce 
combusting temperature. Platinum (Pt), palladium (Pd), and rhodium (Rh) are the most used 
catalysts in calorimetric gas sensors [40]. Common calorimetric sensors use catalyst-coated platinum 
or palladium coil, also known as the pellistor [41]. For methane, the oxidation of the gas when in 
contact with the catalyst is an exothermic reaction which releases heat [42]. This results in a 
temperature change of the catalytic surface, due to the chemical reaction, which is employed by the 
calorimetric sensors to produce a sensing signal. Thermal equilibrium is the first state, where the 
analyte and temperature signals are absent. The second state is the absorption of the analyte by the 
polymer, and the temperature of the polymer increases. Finally, the signal returns to zero because of 
the concentration equilibrium and constant enthalpy. 

 
Figure 2. Calorimetric gas sensor principle. 

Calorimetric gas sensors have advantages such as low cost, simplistic design, and easy to 
manufacture [18]. Environmental factors such as temperature, pressure and exposure to water 
vapour influence the catalysts performance without any major consequence, which allows the sensors 
to operate in harsh environmental conditions [43]. Additionally, they are portable and have good 
selectivity for methane and other volatile hydrocarbons [44]. However, if there is a small change in 
the enthalpy due to a change in the analyte concentration, the calorimetric gas sensors might have 
poor performance and inaccurate detection. They are also susceptible to cracking, catalyst poisoning 
and oversaturation from a high concentration of gas [45]. Poisoning compounds can deactivate the 
sensor by permanently reducing its sensitivity. Some other disadvantages include high power 
consumption, the inability to operate long-term and the need for elevated temperatures [46]. 

Recent Research Developments 

The only calorimetric catalytic methane sensor available on the market is quite selective and 
accurate with approximately ±5% error [47]. A strategy to prevent incorrect readings, due to the 
possible loss of sensitivity, is to calibrate the sensor to a known concentration of methane. A relative 
response factor can be obtained to determine if there is a loss of sensitivity, and the sensor can then 
be recalibrated to adjust for the sensitivity variation. In the 1990s, Krebs et al. [48] were able to detect 
methane and other gases with a micromachined calorimetric sensor at 400 °C using a thin palladium 
film as a catalyst. More recently, Bíró et al. [49] used a pellistor-type calorimetric methane sensor with 
Pt catalyst deposited on a porous anodic aluminum oxide that was located on top of a micro heater. 
Their sensor detected methane and propane concentrations of between 20% and 100% of their lower 
explosion limit. Heater fracture and lower stability of the catalyst are the main disadvantages of the 
sensor due to the high operational temperature (570 ± 10 °C) and the frequently applied pulse mode 
operation. Park et al. [40] developed a novel miniaturized calorimetric sensor with a dual-catalyst 
structure by integrating different catalysts on the hot (Pd/θ-Al2O3) and cold (Pt/α-Al2O3) ends of the 
device. The sensor successfully detected methane with concentrations ranging between 200 and 2000 

Figure 2. Calorimetric gas sensor principle.

Calorimetric gas sensors have advantages such as low cost, simplistic design, and easy to
manufacture [18]. Environmental factors such as temperature, pressure and exposure to water vapour
influence the catalysts performance without any major consequence, which allows the sensors to
operate in harsh environmental conditions [43]. Additionally, they are portable and have good
selectivity for methane and other volatile hydrocarbons [44]. However, if there is a small change in the
enthalpy due to a change in the analyte concentration, the calorimetric gas sensors might have poor
performance and inaccurate detection. They are also susceptible to cracking, catalyst poisoning and
oversaturation from a high concentration of gas [45]. Poisoning compounds can deactivate the sensor
by permanently reducing its sensitivity. Some other disadvantages include high power consumption,
the inability to operate long-term and the need for elevated temperatures [46].

Recent Research Developments

The only calorimetric catalytic methane sensor available on the market is quite selective and
accurate with approximately ±5% error [47]. A strategy to prevent incorrect readings, due to the
possible loss of sensitivity, is to calibrate the sensor to a known concentration of methane. A relative
response factor can be obtained to determine if there is a loss of sensitivity, and the sensor can then be
recalibrated to adjust for the sensitivity variation. In the 1990s, Krebs et al. [48] were able to detect
methane and other gases with a micromachined calorimetric sensor at 400 ◦C using a thin palladium
film as a catalyst. More recently, Bíró et al. [49] used a pellistor-type calorimetric methane sensor with
Pt catalyst deposited on a porous anodic aluminum oxide that was located on top of a micro heater.
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Their sensor detected methane and propane concentrations of between 20% and 100% of their lower
explosion limit. Heater fracture and lower stability of the catalyst are the main disadvantages of the
sensor due to the high operational temperature (570 ± 10 ◦C) and the frequently applied pulse mode
operation. Park et al. [40] developed a novel miniaturized calorimetric sensor with a dual-catalyst
structure by integrating different catalysts on the hot (Pd/θ-Al2O3) and cold (Pt/α-Al2O3) ends of
the device. The sensor successfully detected methane with concentrations ranging between 200 and
2000 ppm-m at temperatures of 100–400 ◦C. Alpert et al. [50] found that the sensor can suffer from
errors due to pulse shape variation from the detector nonlinearity and readout dependence on the
sample arrival times. The authors then developed a processing method that uses a single-value
decomposition for single-pulse separation to construct a model that can account for pulse shapes with
varying amplitude and arrival time, making it suitable for detecting near-coincident events. The results
showed the required performance specifications of the sensors were reduced. Gardner et al. [51]
used 3D multi-physics finite element modeling to optimize the geometry of a calorimetric thermal
flow sensor. The optimal distance between the heating resistor and the temperature sensing diodes
within the sensor was determined, along with the heater and membrane geometries, depending on
the sensor applications. To achieve lower power consumption, Shen et al. [52] designed and tested
a new intelligent methane sensor using a low-power microelectromechanical system (MEMS) catalytic
methane cell, pulse supply mechanism and low-power waste circuit. It was observed from the test
that the new sensor achieved low-power consumption and good methane detection. This could
potentially solve the problem of high power consumption of traditional catalytic sensors with single
circuit power supply.

4. Pyroelectric Sensors

Pyroelectric sensors use electromagnetic radiation detection at a certain wavelength. They are
often used as fire alarms, laser detectors, thermal analyzers, or gas analyzers [53,54]. The pyroelectric
sensor converts electromagnetic or thermal energy into electrical energy [55]. It is a non-contact thermal
sensor that works at room temperature [56]. The sensor employs the use of a dielectric substrate that
is sandwiched between two electrodes. An electric heater generates a thermal wave which travels
through the substrate and the gas until it reaches the pyroelectric material located across from the heater.
When the pyroelectric material undergoes a temperature change, it produces a measurable electrical
current, which has a corresponding voltage [57]. The voltage can be used to find the composition of
the gas, as it is dependent on the thermal conductivity and diffusivity of the gas [58]. Another type
of pyroelectric sensor involves using an intense infrared light source on a pyroelectric thin film to
generate heat, as shown in Figure 3. Once the pyroelectric material changes temperature, the sensor
operates similarly to the electric heater method [58].
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Some advantages of the pyroelectric methane sensor include its ability to operate without oxygen,
good sensitivity and responsivity, and wide measuring range [53]. It can also perform well at room
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temperature without the need for constant cooling, which reduces operational costs [54]. In addition,
the pyroelectric effect is a thermal process which does not involve any chemical reactions, so the risk of
degradation is reduced. However, pyroelectric sensors are expensive and require high power supply
and large equipment to accommodate the need for a constant heat or infrared source, which makes
them immobile and unfit for many applications [54]. In addition, they are difficult to manufacture,
since a thin pyroelectric element has to be secured onto a supporting base [59–63]. Even though some
pyroelectric methane sensors are currently on the market, the sensor design can be researched further
to improve the overall sensitivity and reduce power consumption.

Recent Research Developments

Tan et al. [58] fabricated a pyroelectric infrared sensor with a lead zirconate titanate (PZT) thin
film as the infrared sensing film. The PZT film was prepared by a sol-gel process, which used lead
acetate trihydrate, zirconium acetylacetone, acetylacetone, and titanium isopropoxide as starting
materials. An infrared structure on silicon substrate with a micro bridge was designed for methane
detection. Experimental results showed successful methane detection based on the infrared sensor
element. Querner et al. [64] presented and analyzed a novel procedure for increasing the sensitivity
of a pyroelectric sensor. The tested sensor had single-crystalline lithium tantalate as its thin film
pyroelectric material. The responsivity was improved using lateral heat flux spreading, due to
a 3-dimensional pattern that was etched into the sensitive element. The thin regions between thicker
regions showed faster heating due to incident radiation, which led to an additional heat flow from the
intermediate regions to the sensitive element. Dong et al. [65] developed a multi-gas sensor system that
utilizes a single broadband light source and multiple carbon monoxide, carbon dioxide and methane
pyroelectric sensors using the time division multiplexing (TDM) technique. A stepper motor-based
rotating system and a single-reflection spherical optical mirror were designed and integrated to
enhance multi-gas detection. It was experimentally determined that the 1σ detection limit under
static operation was 2.84 ppm-v for methane, and under dynamic operation, it was 10.29 ppm-v.
Liu et al. [66] implemented a portable methane detection device based on direct absorption spectroscopy.
The device included a dual-channel non-dispersive infrared pyroelectric sensor, a driving circuit of
the sensor, an ARM11 embedded WinCE system, and a LabVIEW-based data-processing platform.
The experimental results showed that the 1σ detection limit of the device is 4.8 ppm-v with an average
time of 1 s on the gas sample with concentration of 0. Experiments were also conducted on three
methane samples with different concentrations to test the response time, which was found to be less than
20 s. Hu et al. [67] designed and tested a methane sensor system based on a novel quartz-tuning-fork
(QTF)-embedded, double-pass, off-beam quartz-enhanced photoacoustic spectroscopy (DP-OB-QEPAS).
A simplified numerical model was used to optimize the DP-OB-QEPAS spectrophone and enhance
the detection sensitivity. A continuous-wave distributed feedback diode laser for methane detection
was also employed. The sensor was calibrated for methane trace detection and a 1σ detection limit
of 8.62 ppm-v for an average time of 0.3 s was achieved. Dorojkine [57] developed a thermal wave
pyroelectric film methane and natural gas sensor by using Al2O3/SiO2 as a substrate which has a high
thermal conductivity. He found that the sensor detection limit was 0.1% for methane gas and the
response time was 40–60 s.

5. Semiconducting Metal Oxide Sensors

Semiconducting metal oxide (SMO) sensors are electrical conductivity sensors that detect species
based on the oxidation and reduction reactions that happen between the SMO and target gases. The gas
of interest absorbs onto the active sensing layer, causing a change in the electrical resistance, from
which the concentration of the gas can be determined [68]. SMO sensors are used for many applications
including safety equipment (explosion, leakage, fire, contamination, poisoning protection) and air
quality monitoring. There are two main types of SMO, n-type and p-type. The electron is the major
carrier in the n-type SMO (tin dioxide, iron (III) oxide), while the hole is the major carrier in the
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p-type SMO (nickel oxide m, cobalt oxide) [69]. SMO methane sensors are mostly n-type because
the electrons are produced by oxygen vacancies naturally [70,71]. An n-type SMO sensor possesses
some electrical resistance from tiny crystals of n-type metal oxide semiconductors, such as SnO2 or
WO3 [72]. When exposed to an atmosphere containing a reducing gas like methane, the SMO surface
absorbs the gas molecules which lowers the potential barrier, thus increasing the concentration of
electrons at the surface while reducing the electrical resistance [73]. It has been reported that the
conductivity response is highly affected by the presence of a catalyst, which would increase the surface
reactivity [74]. Figure 4 shows the gas sensing mechanism of a SMO sensor design.
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SMO sensors are used for a wide range of applications because they are inexpensive compared to
other sensing technologies, lightweight and robust [76]. In addition, SMO sensors have long lifespans
and are resistant to poisoning [73]. However, there are some drawbacks for SMO sensors, including
poor selectivity, small and high operational temperature range, slow recovery rate, and significant
additive dependency. In addition, the sensor sensitivity can be affected by the temperature, susceptible
to degradation, and sensitive to changes in humidity [19,71].

Recent Research Developments

The sensitivity and rate of response of SMO sensors can be improved by modifying the materials of
the components, such as doping the metal oxide layer. Xue et al. [77] developed an enhanced
resistance-based methane sensor based on platinum-doped tin (IV) oxide (SnO2) nanoflowers.
Pt-doped SnO2 was synthesized by a hydrothermal process, followed by a simple thermal reduction
method. It was found that the nanoflowers improved the sensitivity and lowered the optimal operating
temperature by reducing the surface adsorption energy of the material which led to more methane
gas molecules being adsorbed. The improvement in the sensor performance was mainly attributed to
the chemical sensitization of Pt dopant to methane gas. Ghanbari et al. [78] investigated the methane
sensing properties of graphene (G), decorated with silver nanoparticles (AgNPs). Experiments were
conducted at relatively low temperatures and different levels of humidity, for various silver-to-graphene
mass ratios and methane concentrations. The results showed that for methane concentrations lower
than 2000 ppm-m, the response increases linearly and rapidly, even at room temperature. It was also
demonstrated that the sensor based on AgNPs/G had a low limit of detection, and was highly stable,
selective, reversible and repeatable, thus showing promise as a cost-effective and simple-to-fabricate
methane sensing device. Oleksenko et al. [79–81] presented a series of studies on semiconductor
methane sensors based on SnO2 nanomaterials. In [79], nanosized palladium-containing SnO2 was
obtained by a sol–gel technique, and its influence on the sensor sensitivity to methane was studied.
The results indicated that Pd/SnO2 significantly increased (by approximately –7 times) the sensor
response in comparison to non-doped materials, with a fast response and recovery time as well. In [80],
the authors studied the catalytic activities and the sensitivities of adsorption of Pd/SnO2 nanomaterials
with various Pd contents in the oxidation of methane. It was found that response of the sensors
to methane was determined by the catalytic activities of the gas-sensitive layers in the oxidation
of methane by oxygen chemisorbed onto active sites localized at the Pd/SnO2 interface. In [81],
a platinum-containing adsorption-semiconductor sensor based on nanosized SnO2 was developed
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and found to have higher sensitivity to methane than other common SnO2-based sensors. It was
experimentally determined that the sensitivity of the sensor to methane depended on the Pt content of
the gas-sensitive layer, which can be explained by the influence of the catalytic oxidation of methane
that occurs on the surface of the sensor. Moalaghi et al. [82] developed a dopant-free SnO2 methane
sensor, heated using a 10 micron-thick microheater which can operate at temperatures as high as 850 ◦C,
sufficient for the spontaneous pyrolysis of methane. The sensor was able to selectively sense methane
in atmospheres contaminated with CO and H2, with both the response and recovery time being
approximately 10 s and the methane detection limit being 50 ppm-m. Shaalan et al. [83] investigated
the morphology and gas sensing characteristics of Co3O4 nanoparticles prepared using microwave
irradiation. The methane sensor based on synthesis Co3O4 nanoparticles was found to have faster
response and recovery time at low temperatures. For a methane concentration of 1%, the response and
the recovery time at 200 ◦C were 100 s and 50 s, respectively. The results also showed that the sensing
characteristics of Co3O4 nanoparticles were improved by increasing the temperatures and methane
concentrations, demonstrating its potential use as a sensing material for SMO methane sensors.

6. Electrochemical Sensors

Electrochemical sensors are chemical sensors where the receptor and the transducer are
coupled, as defined by the International Union of Pure and Applied Chemistry (IUPAC) [84].
Electrochemical sensors are mostly sensitive, selective, inexpensive, and can be used widely for
environmental monitoring such as leak detection, emission monitoring, and fire safety [85,86].
The sensor design consists of a working electrode where methane undergoes an oxidation reaction,
a counter electrode which balances the current at the working electrode, and a reference electrode with
which to measure the working electrode potential. The working and counter electrodes are connected
by an electrolytic fluid to maintain charge neutrality in the system. The schematic of an electrochemical
sensor is shown in Figure 5. The measured current between the working and counter electrodes is
proportional to the concentration of methane detected. The selection of materials for the electrolyte,
electrodes and catalyst defines the properties of electrochemical sensors and their applications [87].
The classification of electrochemical sensors according to the applied electrochemical transduction
mode include potentiometric sensors, voltammetric/amperometric sensors, and conductometric
sensors [84,88–90]. Potentiometric sensors measure the electrical potential of an electrode when no
current is present. Amperometric sensors detect the gas concentration as a function of the current at
a fixed potential, while in voltammetric sensors, the current is determined as a function of the potential
that varies continuously or stepwise [84,91]. Conductometric sensors operate based on the changes
in the electrical conductivity of a material or a film due to the presence of a target gas [92].
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There are two main types of electrolytes for electrochemical methane sensors, which are
liquid electrolytes (aqueous electrolytes and ionic liquid electrolytes) and solid electrolytes.
Aqueous electrolytes (AEs) are inexpensive, widely available, and simple to use. Some examples of
common AEs are sulfuric acid (H2SO4) and sodium hypochlorite (NaClO). In 1963, an electrochemical
cell consisting of platinum electrodes and aqueous phosphoric acid and sulfuric acid electrolyte was
capable of oxidizing methane in the 60–150 ◦C range, paving the way for future methane detecting
applications using AEs [93,94]. However, the volatility properties and wide potential window of the
AEs are the major problems that limit the use of AE-based sensors [95]. Evaporation of the AE requires
frequent refilling which increases the cost of the sensor [96]. The partial oxidation reaction of methane
could occur, causing catalyst poisoning and shortening the lifespan of the sensor [97]. In addition, the
liquid electrolytes cause problems when they are used in gas sensors because they fill the pores and
slow down gas diffusion to the electrode, which results in low sensitivity and slow response time. For
these reasons, research and development works have focused on solid-state electrolytes or ionic liquids.

Ionic liquids (ILs) have recently gained traction for use in gas sensor design because their unique
properties bridge the gaps left by AEs, allowing new design pathways and functionalities. In particular,
room-temperature ILs (RTILs), which are liquid salts at room temperature, have found increasingly
common use in modern gas sensor designs since they circumvent the extreme conditions required for
certain oxidation pathways of methane analyte [97,98]. Some important properties of RTILs include
negligible vapor pressure, high thermal stability, higher density than water, good electrochemical
window, high ionic conductivity, high polarity, and unique structure and interaction of ions [99].
RTILs are ideal for electrochemical methane sensors because they have higher boiling points and more
negligible volatility than their AE counterparts, and thus do not dry out during use [100]. RTILs are also
less hazardous than the common acid electrolytes used in AE systems, making them great candidates
for wide industrial production and use. The manufacturing of RTIL electrochemical sensors, however,
still faces some problems, such as potential liquid leakage from the sensor and slow gas diffusion
caused by liquid filling the pores [101].

Solid electrolytes (SEs), as a replacement of liquid electrolytes, improve the safety and flexibility
of gas sensing applications. The main principle applied in SE sensors is the establishment of
electrochemical equilibrium at the electrodes, which results in a quantifiable equilibrium voltage,
according to the Nernst equation [102]. Moreover, through oxygen anions being transported through
the solid electrolyte, methane oxidation can occur. Metal oxides [102], inorganic salts [47], and doped
polymers [47,103] can be used as solid electrolytes, as they show significant ionic conductivities over
a sufficiently wide temperature range. In some older works, a sodium phosphate solid electrolyte
with a hydrogenation catalyst was developed to detect methane gas at 600 ◦C [104]. In addition,
yttria-stabilized zirconia solid electrolyte tubes with silver electrodes were used to detect methane
at 735 ◦C and 0.1 MPa [105]. Most SE sensors can only work at high temperatures for the oxidation
reaction to occur, which limits the wide use of this type of sensor. They are also unable to detect low
concentrations of gas and are susceptible to the degradation or loss of electrolyte.

Recent Research Developments

More recent research on electrochemical methane sensors has focused on ILs, rather than
AEs. Wang et al. [106] investigated the oxidation of methane, with three different electrodes
(platinum, gold, and carbon) and six different ILs, by cyclic voltammetry. For a Pt electrode and
bis(trifluoromethylsulfonyl)imide (NTf2)-based ILs, a unique catalytic Pt-NTf2 interface for electron
transfer reaction of methane was reported, while little methane electro-oxidation signal was observed
in ILs with other anions. The final methane oxidation products were determined to be CO2 and water
by in-situ infrared spectroelectrochemistry, which was further confirmed by the characteristic of peak
potential shifts of the oxygen redox processes. The results led to the proposal of a mechanism suggesting
a potential catalytic system of methane oxidation in NTf2-based ILs that strongly depends on the
properties of the ILs and the electrode materials. The same authors then developed an electrochemical
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methane sensor using a non-volatile and conductive pyrrolidinium-based IL electrolyte and a novel
internal method for methane and oxygen dual-gas detection with high sensitivity, selectivity, and
stability [97]. Using the previous findings that methane is electro-oxidized to produce CO2 and
water at a Pt electrode and NTf2-based ILs, the authors quantify the electrochemical sensor signal
using the CO2 generated from methane oxidation. The IL-based methane sensor was validated using
both conventional solid macroelectrodes and flexible microfabricated electrodes with single- and
double-potential step chronoamperometry. Yin et al. [107] presented a robust microfabricated planar
electrochemical gas sensor with RTIL ([C4mpy][NTf2]) as the electrolyte. Experimental methane
sensing was conducted with good results, 0.3 µA/cm2 sensitivity and 0.9991 R2 linearity value in the
range of 0–6% methane. In [108], the same group of authors further developed the previous sensor by
using a porous polytetrafluoroethylene substrate that enables fast gas diffusion. Metal sputtering was
utilized for Pt electrodes fabrication to increase adhesion between the electrodes and the substrate.
The microsensor was found to provide better sensitivity, linearity, and repeatability for oxygen and
methane monitoring.

Aside from ILs, SEs have also been researched for use in electrochemical methane sensors.
Sekhar et al. [109] developed a mixed potential-based sensor using tin-doped indium oxide (ITO),
platinum electrodes and yttria-stabilized zirconia (YSZ) electrolyte. The sensor was fabricated
using a cost-effective tape-cast method. Experimental results showed that the sensor response time
was 15 s, and that after 500 h of operation, a 5% reduction in methane sensitivity was observed.
A cross-sensitivity study performed on the sensor indicated minimal interference to NO, NO2, and
CO2. A signal conditioning method referred to as the pulsed discharge technique was implemented,
which resulted in a four-fold increase in methane sensitivity. Gross et al. [110] presented the fabrication
and testing of a voltammetric sensor, using Nafion solid-state electrolyte, that can operate in gaseous
condition at room temperature. Nafion is a polymer that conducts protons (H+) generated from redox
reactions from the working electrode to the counter electrode. It was shown that the sensor was capable
of detecting methane, quantifying its concentration in the gas flow, and differentiating its signal from
carbon monoxide. These results were validated by exposing the sensor to two different concentrations
of methane (50% and 10% of methane diluted in N2), as well as pure CO. Dosi et al. [100] developed
a room-temperature amperometric methane sensor, where porous laser-induced graphene (LIG)
electrodes were integrated into polymer films with a palladium nanoparticle dispersion to distribute the
electrocatalyst within the high surface area support. A pseudo-solid-state ionic liquid/polyvinylidene
fluoride electrolyte was painted onto the cell creating a porous electrolyte to facilitate faster gas transport
and enable the room-temperature electro-oxidation of methane. The performance of the sensor was
evaluated for various methane concentrations and relative humidity levels, and tested against interfering
gases. The sensor demonstrated the highest reported sensitivity (0.55 µA/ppm/cm2) with a rapid
response time (40 s) enabling sub-ppm detection. Yang et al. [111] fabricated a potentiometric methane
sensor using SmMn2O5 as the sensing electrode and YSZ as the solid electrolyte. SmMn2O5 was
prepared by the sol-gel method and characterized by X-ray diffraction, Brunauer-Emmett-Teller (BET)
method, and scanning electron microscopy. As the operating temperature increased from 350 to 500 ◦C,
the methane sensitivity decreased while the response and recovery rates increased. The optimal
temperature was determined to be 400 ◦C, where the response and recovery time were significantly
reduced to 27 s and 33 s for 400 ppm-m methane, respectively, and the sensitivity only decreased
slightly. Overall, the sensor had a good methane selectivity with small cross sensitivity to C3H8 and
CO2, and it also showed good reproducibility and long-term stability, indicating its potential for use
in methane leakage warning.

7. Comparison of Methane Sensors and Discussion of Future Challenges

In summary, there has been some progress made to improve each of the discussed methane
sensors, but they still have certain practical limitations. The working mechanisms, advantages and
disadvantages of the sensors are summarized in Table 1. Researchers should take these points into
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consideration when working to enhance the respective type of sensor. For optical methane sensors,
the advantages include immunity to electromagnetic interference, ability to operate without oxygen,
and being a non-destructive method. Their disadvantages are high costs in large settings, and low
selectivity due to the lack of distinctiveness of the methane optical absorption region. The advantages
of calorimetric methane sensors include low cost, simple design, easy fabrication, and ability to operate
in harsh conditions. However, they are susceptible to cracking, catalyst poisoning and accelerated
degradation, and require high power consumption and elevated temperatures. Pyroelectric methane
sensors can operate without oxygen, have good sensitivity, good responsivity and a wide measuring
range, and perform well at room temperature. However, they are expensive and difficult to manufacture,
and require high power consumption and large equipment which make them immobile. SMO methane
sensors are generally inexpensive, lightweight, robust, long-lasting and resistant to poisoning. However,
some drawbacks for SMO sensors include poor selectivity, a small and high operational temperature
range, slow recovery rate, and significant dependence on additives, temperature and humidity.
For electrochemical methane sensors, AE-based sensors suffer from leakage and evaporation, which
can drive the cost up, as well as being hazardous compounds. IL-based sensors do not have the same
problems, but they have low sensitivity and slow response time due to liquid filling the pores and
slowing down gas diffusion to the electrode. SE-based sensors improve the safety and flexibility of gas
sensing applications, but they work at high temperatures, are unable to detect low concentrations of
gas, and can be affected by degradation or loss of electrolyte. Overall, the ideal methane sensor should
have a low cost, high selectivity and sensitivity for methane, good fouling resistance, long lifespan,
simple manufacturing process, and good detection range. Each of the discussed sensors has satisfied
some of the requirements, with the potential to satisfy all, but more research needs to be conducted
in order to create the ideal sensor for methane leak detection.

Table 1. Comparison of different methane sensors.

Methane Sensor Types Working Mechanisms Advantages Disadvantages Related Research

Optical sensors

Detect changes in light
waves that result from an
interaction of the analyte
with the receptor part.

Non-destructive method; Immune
to electromagnetic interference;
Operate without oxygen.

High cost; High power consumption; Lack of
significance and distinctiveness of methane
optical absorption region.

[28,30–35]

Calorimetric sensors

Measure the heat
produced from a reaction
and correlate the value to
the reactant concentration.

Low cost; Simplistic design;
Portable; Easy to manufacture;
Good selectivity for methane; Can
operate in harsh environmental
conditions.

Low detection accuracy; Susceptible to
cracking, catalyst poisoning and
oversaturation; High power consumption;
Short lifespan; Require high temperature.

[40,48–52]

Pyroelectric sensors

Convert thermal energy
into electrical energy
based on the phenomenon
of pyroelectricity.

Non-destructive; Operate without
oxygen; Good sensitivity and
responsivity; Wide measuring
range; Operate at room
temperature.

High cost; High power consumption;
Immobile; Difficult to manufacture. [57,58,64–67]

Semiconducting metal
oxide sensors

Absorption of gas on the
surface of a metal oxide
changes its conductivity,
which is then quantified to
obtain the gas
concentration.

Low cost; Lightweight and robust;
Long lifespan; Resistant to
poisoning.

Poor selectivity; Small and high operational
temperature range; Slow recovery rate;
Significant additive dependency; Affected by
temperature; Susceptible to degradation;
Sensitive to changes in humidity

[77–83]

Electrochemical sensors

Measure the target gas
concentration by oxidizing
or reducing the gas at an
electrode and measuring
the resulting current.

AE-based: Low cost.
IL-based: Non-hazardous
materials; High boiling points and
low volatility; Good selectivity for
methane; Can detect small leaks.
SE-based: No leakage; Safe;
Robust; Good selectivity for
methane; Can detect small leaks.

AE-based: Susceptible to leakage and
evaporation; Hazardous materials; Slow
response time.
IL-based: Susceptible to leakage; Slow
response time.
SE-based: Require high temperature; Unable
to detect low gas concentrations; Susceptible
to degradation or loss of electrolyte.

[97,100,106–111]

There are several challenges affecting the performance of the sensor that need to be addressed
including environmental factors like humidity, temperature, and wind, as well as gas impurities.
The sensors can experience a wide range of weather conditions depending on the applications.
Relative humidity can significantly affect the reliability and accuracy of methane detection.
Using humidity filters or equipping the sensor with heating units or microheaters that increase
the sensor surface can reduce the amount of moisture near and on the sensors [112]. Another solution to
reduce the effect of humidity on the sensitivity of the sensors is to decrease or eliminate the dependence
of the detection response on humidity by using new materials such as synthesis metal oxide with
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reduced sensitivity to moisture [113]. Temperature is another factor that affects the performance of
the methane sensors [114]. Even though SMO methane sensors have a high selectivity, they are not
widely used because of the high operational temperature that can cause explosion of the methane
gas and damage the instruments. In addition, low temperatures can freeze the liquid electrolyte
in the electrochemical sensor, and high temperatures can evaporate the liquid electrolyte or crack the
solid electrolyte. Recently, gel electrolyte has been investigated because it is not highly dependent
on temperature. Wind speed and direction can also affect the performance of the sensor, but it has
not yet been examined thoroughly in literature. Finally, the performance of the methane sensors
can be affected by impurities in the gas. There are several other gases such as CO2, CO, H2S, NOx

and SOx that may be present in the oil and gas pipelines and applications. These can affect the
performance of electrochemical and SMO sensors where the impurities can poison the catalysts and
optical sensors where a higher concentration of methane is needed for more selective and accurate
detection. Overall, aside from the individual disadvantages of each methane sensor type, there are
a few challenges they all face, and these challenges should be addressed in future research to improve
the reliability of methane sensors and ultimately reduce methane emissions.

8. Conclusions

Methane is the primary component of natural gas. Due to potential defects in the natural gas
pipeline network, methane leakage and fugitive emissions can occur, which leads to the largest
man-made source of the hazardous greenhouse gas, and causes a significant loss in revenue for the
industries. Therefore, methods and products to identify leaks quickly and reliably are very important
for the methane distribution network. Methane sensors are seen as a cost-effective and efficient
approach to the leakage of pipelines, distribution to services, other fugitive emissions problems.
This paper introduced and discussed five prominent sensors used for methane detection, including
optical sensors, calorimetric sensors, pyroelectric sensors, semiconducting metal oxide sensors, and
electrochemical sensors. The comprehensive review included basic definitions, working mechanisms,
advantages, and disadvantages of each sensor, as well as a summarized comparison between the
sensors. Recent research developments and findings for each sensor was also discussed. This review
paper on methane sensors serves as a basis for researchers to study and develop more accurate,
reliable and practical sensors in the future to improve natural gas pipeline safety and reduce their
environmental impact.
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