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Abstract: Movement of sand particles is a complicated phenomenon that occurs in nature. In this
paper, the main goal is to provide an analytic model for the deposition profile of sand particles
downstream of a fence. The analytic model was derived with respect to governing equations and shear
flows for upstream and downstream regions. In this approach, we obtain a new expression for the
downstream velocity of the fence, which allows for the determination of potential areas of deposition
particles by assuming a log-normal distribution profile. A discrete-phase flow (DPM) was used to
inject particles in the simulation domain. The DPM gives capabilities to capture spatiotemporal
velocities components, as we can define the probability of deposition particles in the downstream of
the fence. The proposed model was validated with a numerical model and experimental results. The
comparison with field data and numerical results shows that the deposition profile is in acceptable
agreement. With some assumptions and modifications about the properties of particles, the results of
this research can be extended to snow accumulation downstream of a fence.

Keywords: sand deposition; fence; porous media; sand transport; analytic model; aeolian sand flux;
wind erosion

1. Introduction

Significant research has been conducted to investigate aeolian transportation of particles. In general,
we can classify this research into three categories: experimental, numerical, and analytical. Experimental
investigations have been performed in the form of wind tunnel and fieldwork, which are expensive
and in some cases are not possible because of difficulties in measuring turbulent flow near the surface.
One of the main challenges in calculating soil erosion rates, boundary layer turbulent parameters, and
probability of sand transport is the choosing of averaging time [1]. A small miscalculation in the wind
velocity leads to inaccurate predictions of wind erosion [2]. Usually, windy conditions are common in
natural desert regions because of the stratification layer of the atmosphere [3,4]. Wind and erosion
influence the shape of sand particles; therefore, desert sands are more rounded and denser than coastal
sand particles [5]. Wind makes the movement of sand particles that occurs through creep, saltation,
and suspension processes (Figure 1) [6,7]. Larger sand particles move through creeping on the surface,
the majority move through saltation, which uplifts them into the air when striking the surface, and
smaller particles are suspended in the air and are transported long distances in the air.
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Figure 1. Transportation of sand particles by wind in a desert. 

There are several techniques for reducing effects of erosion. Vegetation reduces the movement 
of sand particles, which mitigates the erosion of an area [8]. The large eddy simulation (LES) has been 
used to compare the normalized wind velocity and momentum flux simulated over vegetated 
surfaces of shrubs and trees by Dupont et al. [9]. As a consequence, trees have a better performance 
than shrubs to reduce sand erosion. Wang and Young [10] investigated the behavior of vegetation-
coated sand particles, which was consistent with experimental work based on an image processing 
model used in computer graphics.  

The amount of sand deposition depends on different factors (e.g., porosity, number, and height 
of a fence). Using a solid fence generates strong vorticities in the downstream. Saif et al. [11] 
investigated a numerical solution of fences with two segment variable porosities. They used a 
simplistic algorithm, k–ε model to find that the most effective velocity reduction was in the case with 
a lower section of 20% and a higher 40% porosity composition. Owing to the fence design with a two-
segment variable porosity, compared to a uniformity of 30%, it provided a small shift of high 
turbulent kinetic energy (TKE) away from the fence. Bitog et al. [12] investigated the movement of 
three adjacent fences. In this study, the distances between fences were 2, 4, and 6 m, the fence heights 
were 0.6, 0.8, and 1 m, and the porosities were 0, 0.2, 0.4, and 0.6. They recommended the distance 
between fences should be at least 6 m, with a height of 0.6 and an optimum porosity of 20%. Dong et 
al. [13] investigated velocity particles near the surface in a wind tunnel and showed that the 
probability density function of sand particles’ lift-off, incident velocities, and their vertical 
components were a function of sand particles and wind velocity. Liu et al. [14] performed a numerical 
research comparison by computational fluid dynamic (CFD) with an actual-sized experimental 
model fence, and they realized some flow characteristics near the fence cannot be captured in the 
reduced-scale experimental or numerical model. 

Lima et al. [15] found that the optimal fence height was around 50 cm, and using a fence with a 
height more than 1.25 m did not have reasonable economic benefits. Furthermore, Lavasani et al. [16] 
have proven that increases in the height of a fence from 1 to 1.5 m was not helpful in reducing sand 
deposition. Nishi and Kimura’s results from a field study confirmed that most deposited sand 
particles progressed from the lee of a fence to the upwind of the fence by decreasing the porosity of 
the fence [17,18]. Jensen [19] defined the shelter effect parameter as a velocity deficit to an inlet 
velocity. His results indicated that the optimal porosity for the maximum sheltering was around 35%–
40%. Bruno et al. [20] discussed the mean wind flow, streamlines, and related deposition levels for 
different porous fences. The wind pattern, formation of the eddy zones, vortex structure, and 
accumulation potential were directly related to the fence porosity. The reattachment distance in the 
downstream of the fence can be decreased from 15 to 9 h by increasing the porosity from 10% to 20% 
[21].  

Naegëli [22] found the relative wind velocities ( ) around fences (leeward and windward) with 

different porosities, where 𝑢  was the time-averaged upstream wind velocity and 𝑢  was the time-
averaged undisturbed wind velocity. In the lee of lower-porosity fences, the reduction of the wind 
speed was higher, and the range of the relative velocity at the fence was between 0.3 and 0.7. Phillips 
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There are several techniques for reducing effects of erosion. Vegetation reduces the movement of
sand particles, which mitigates the erosion of an area [8]. The large eddy simulation (LES) has been
used to compare the normalized wind velocity and momentum flux simulated over vegetated surfaces
of shrubs and trees by Dupont et al. [9]. As a consequence, trees have a better performance than shrubs
to reduce sand erosion. Wang and Young [10] investigated the behavior of vegetation-coated sand
particles, which was consistent with experimental work based on an image processing model used in
computer graphics.

The amount of sand deposition depends on different factors (e.g., porosity, number, and height of
a fence). Using a solid fence generates strong vorticities in the downstream. Saif et al. [11] investigated
a numerical solution of fences with two segment variable porosities. They used a simplistic algorithm,
k–ε model to find that the most effective velocity reduction was in the case with a lower section of
20% and a higher 40% porosity composition. Owing to the fence design with a two-segment variable
porosity, compared to a uniformity of 30%, it provided a small shift of high turbulent kinetic energy
(TKE) away from the fence. Bitog et al. [12] investigated the movement of three adjacent fences. In this
study, the distances between fences were 2, 4, and 6 m, the fence heights were 0.6, 0.8, and 1 m, and the
porosities were 0, 0.2, 0.4, and 0.6. They recommended the distance between fences should be at least
6 m, with a height of 0.6 and an optimum porosity of 20%. Dong et al. [13] investigated velocity particles
near the surface in a wind tunnel and showed that the probability density function of sand particles’
lift-off, incident velocities, and their vertical components were a function of sand particles and wind
velocity. Liu et al. [14] performed a numerical research comparison by computational fluid dynamic
(CFD) with an actual-sized experimental model fence, and they realized some flow characteristics near
the fence cannot be captured in the reduced-scale experimental or numerical model.

Lima et al. [15] found that the optimal fence height was around 50 cm, and using a fence with a
height more than 1.25 m did not have reasonable economic benefits. Furthermore, Lavasani et al. [16]
have proven that increases in the height of a fence from 1 to 1.5 m was not helpful in reducing
sand deposition. Nishi and Kimura’s results from a field study confirmed that most deposited sand
particles progressed from the lee of a fence to the upwind of the fence by decreasing the porosity of the
fence [17,18]. Jensen [19] defined the shelter effect parameter as a velocity deficit to an inlet velocity.
His results indicated that the optimal porosity for the maximum sheltering was around 35%–40%.
Bruno et al. [20] discussed the mean wind flow, streamlines, and related deposition levels for different
porous fences. The wind pattern, formation of the eddy zones, vortex structure, and accumulation
potential were directly related to the fence porosity. The reattachment distance in the downstream of
the fence can be decreased from 15 to 9 h by increasing the porosity from 10% to 20% [21].

Naegëli [22] found the relative wind velocities ( ud
u0
) around fences (leeward and windward)

with different porosities, where u0 was the time-averaged upstream wind velocity and ud was the
time-averaged undisturbed wind velocity. In the lee of lower-porosity fences, the reduction of the
wind speed was higher, and the range of the relative velocity at the fence was between 0.3 and 0.7.
Phillips and Willetts [23] found the distributions of shear velocity ( u∗

u∗0
) around fences (leeward and

windward) with different porosities, where u∗0 was the time-averaged upstream shear velocity and
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u∗ was the time-averaged undisturbed shear velocity. In this paper, we proposed a new analytical
approach with fundamental equations to find the profile of deposition in the downstream.

2. Method

In this chapter, we used governing equations to find where a region had more potential to deposit
sand particles in the downstream of a fence [24,25]. This model consisted of three steps: (1) the
minimum velocity behind the fence was computed, corresponding to the properties of the fence and
the shear profile; (2) the maximum deposition profile was defined with respect to wake parameters;
(3) the deposition profile was determined with local conditions. Figure 2 presents the control volume
of a domain that was divided into the upstream and downstream regions of the fence. First, we did
not consider sand particles in the domain and assumed that the inlet wind velocity was steady and
incompressible. We reached the following expressions from governing and energy equations between
boundary conditions 1 and 2, where α is a kinetic energy factor. Particularly, in this methodology, we
regarded the shear profile as a kinetic energy factor parameter.
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We can follow the same approach and derive Equation (2) between boundary conditions 3 and 4.
By some mathematic work, we reached the following expression for the change of the average pressure
in the upstream and downstream fence:

P2 − P3 =
1
2
ρ
(
α1U

2
1 − α4U

2
4

)
(3)

According to Darcy’s equations [26] and Idelchik [27], the pressure drop in a porous medium was
written as:

P2 − P3 = k1U1 + K2U1
2

(4)

where k1 and k2 are the coefficients of resistance. The wake in the downstream of the fence is expanded.
Therefore, the downstream shear rate is lower than the upstream one. We defined the Cα parameter to
be proportional to the α1

α4
ratio, which was approximately between 1 and 1.05, and C1 was equal to

2/ρα1. According to Equations (3) and (4), U4 was described as:

(Cα(U
2
1

(
1−K2C1) −K1C1U1

)
)

1/2
(5)

The upstream logarithmic form of velocity is a function of surface roughness that is characteristic
of a local terrain. We assumed the wake behind the fence is expanded linearly with a slope line of ϕ,
which is a function of turbulent and surface roughness of a terrain, since the porous medium thickness
is small (u2 = u3). According to the continuity between boundary conditions 3 and 4, Equations (6)–(8)
were obtained:
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∫
ρu3dA =

∫
ρu4dA (6)∫

U1(1−∅)bD =

∫
U4b(D + ϕx0) (7)

x0

D
=

1
ϕ

U1(1−∅)

U4
− 1

 (8)

where x0, ∅, b, and D are the maximum probability deposition profile, porosity, thickness, and height
of the fence, respectively. If we do not consider the effect of the local geographic, uplift, saltation,
and creep for the particles, the deposition profile of sand particles should be symmetric along the
streamwise. We suppose the deposition sand profile is a log-normal distribution with positive skews,
and the mode profile was calculated from Equation (8). The mean and standard deviation of the
probability density function depended on the geographic features of locations.

3. Simulation and Discussion

Figure 3 summarizes the main steps in the simulation. In general, sand particles are injected into
the simulation domain corresponding to each time step. Then, considering the minimum velocity at
the boundary layer, the probability density function for the particles to be deposed is identified. The
density of particles is 2650 kg/m3 with a Rosin-Rammler distribution [28], which is an exponential
relation between the particle diameter and the mass fraction [29,30]. Further details are available in
Reference [16]. Figure 4 shows the velocity magnitude of sand particles in the downstream of the
simulation. The particles near the surface with a lower velocity have more potential to deposit.
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Figure 4. Contours of the sand particles.

We used the ANSYS Fluent [30] software in our simulation, and sand particles were injected
into the domain by the Lagrange method. The simple algorithm was used to solve pressure–velocity
coupling. The boundary condition of the fence was the porous jump, the inlet profile followed the
logarithmic law as a function of friction velocity and surface roughness, and the pressure outlet
airflow was considered fully developed for the outlet. The mesh independency was checked for
critical parameters.

The results for the fence with a porosity of 50% and a height of 1 m were validated with Tabler [31]
field data, the Iversen wind tunnel [32], and simulation results [16] (Figure 5).



Inventions 2020, 5, 4 5 of 6
Inventions 2019, 4, x FOR PEER REVIEW 5 of 7 

 
Figure 5. Deposition profiles of sand particles in the downstream of the fence. 

4. Conclusions 

A new analytic model was proposed to predict the profile of sand deposition in a downstream 
fence. The proposed model considered the properties of the fence and the aerodynamic conditions of 
the atmosphere. In the first step, governing equations in the presence of a shear flow were applied to 
find out a new expression for a lower-region velocity downstream. A log-normal distribution profile 
was considered for the deposition profile in the downstream fence. The mode of the deposition 
profile in the wake can be computed as: 𝑥𝐷 = 1𝜑 (𝑈 (1 − ∅)𝑈 − 1) (9) 

In the simulation, a discrete-phase flow (DPM) was used to calculate the probability of 
deposition of sand particles for different porosities and heights of fences. The results were validated 
for the fence with a porosity of 50% and a height of 1 m. The peak profile of deposition was around 
X = 10D for the fence. There is good agreement between the proposed analytic model and field data 
and numerical data. The correlation of the log-normal profile parameters with experimental studies 
and field data will be addressed in future work. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Shen, Y.; Zhang, C.; Huang, X.; Wang, X.; Cen, S. The effect of wind speed averaging time on sand transport 
estimates. CATENA 2019, 175, 286–293, doi:10.1016/j.catena.2018.12.020. 

2. Van Donk, S.; Wagner, L.E.; Skidmore, E.L.; Tatarko, J. Comparison of the Weibull model with measured 
wind speed distributions for stochastic wind generation. Trans. ASAE 2005, 48, 503–510. 

3. Nickling, W.G. The initiation of particle movement by wind. Sedimentology 1988, 35, 499–511, 
doi:10.1111/j.1365-3091.1988.tb01000.x. 

4. Shi, F.; Huang, N. Measurement and simulation of sand saltation movement under fluctuating wind in a 
natural field environment. Phys. A Stat. Mech. Its Appl. 2012, 391, 474–484, doi:10.1016/j.physa.2011.08.053. 

5. Goudie, A.; Watson, A. The shape of desert sand dune grains. J. Arid Environ. 1981, 4, 185–190. 
6. Kalinske, A.A. Criteria for determining sand-transport by surface-creep and saltation. Eos Trans. Am. 

Geophys. Union 1942, 23, 639–643. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

Tabler Field Data
Iversen Wind Tunnel
Simulation
Analytic Model

Y/D

X/D

Figure 5. Deposition profiles of sand particles in the downstream of the fence.

4. Conclusions

A new analytic model was proposed to predict the profile of sand deposition in a downstream
fence. The proposed model considered the properties of the fence and the aerodynamic conditions of
the atmosphere. In the first step, governing equations in the presence of a shear flow were applied to
find out a new expression for a lower-region velocity downstream. A log-normal distribution profile
was considered for the deposition profile in the downstream fence. The mode of the deposition profile
in the wake can be computed as:

x0

D
=

1
ϕ

U1(1−∅)

U4
− 1

 (9)

In the simulation, a discrete-phase flow (DPM) was used to calculate the probability of deposition
of sand particles for different porosities and heights of fences. The results were validated for the fence
with a porosity of 50% and a height of 1 m. The peak profile of deposition was around X = 10D for the
fence. There is good agreement between the proposed analytic model and field data and numerical
data. The correlation of the log-normal profile parameters with experimental studies and field data
will be addressed in future work.
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