An Electroporation Device with Microbead-Enhanced Electric Field for Bacterial Inactivation

Sanam Pudasaini¹, A T K Perera², Syed. S. U. Ahmed², Yong Bing Chong¹, Sum Huan Ng³ and Chun Yang^{1,*}

¹School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

²Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

³Singapore Institute of Manufacturing Technology (SIMTech), 2 Fusionopolis Way, Singapore 138634 *Chun Yang: mcyang@ntu.edu.sg

S1. DEP Response

The time-averaged dielectrophoresis force experienced by the particles is given by (Pethig 2010)

$$F_{DEP} = 2\pi R^{3} \varepsilon_{m} \operatorname{Re}\left(\frac{\varepsilon_{p}^{*} - \varepsilon_{m}^{*}}{\varepsilon_{p}^{*} + 2\varepsilon_{m}^{*}}\right) \nabla |E^{2}|$$

1

where $\nabla |E^2| = \nabla (E \bullet E^*)$ is the gradient of the squared electric field, $F_{cm} = \frac{\varepsilon_p^* - \varepsilon_m^*}{\varepsilon_p^* + 2\varepsilon_m^*}$ is the

Clausius–Mossotti (CM) factor, and $\varepsilon^* = \varepsilon - j(\sigma / \omega)$ is the complex permittivity. Based on the sign of the CM factor, DEP can be of two types: negative DEP (nDEP) or positive DEP (pDEP). For the DC field ($\omega = 0$) cases, the CM factor can be calculated as

$$F_{cm} = \frac{\sigma_p - \sigma_m}{\sigma_p + 2\sigma_m}$$

Under a DC electric field, cells act as perfect insulators, $\sigma_p = 0$, which results in F_{cm} being -0.5. This suggests that bacterial cells experience nDEP inside our device under a DC electric field. Meanwhile, for an AC field, F_{cm} changes with frequency as shown in Figure S1. The plot suggests that for AC electric fields, bacteria experience pDEP under our operating conditions.

Figure S1: The Clausius–Mossotti (CM) factor calculated for live *E. coli* suspended in DI water for various frequencies.

S2. Our Electroporation Device and Setup

Figure S2: Actual setup with an enlarged view showing the electroporation device with electrical connections and fluidic access.

S3. Energy Consumption Estimation

HRT (s)	Flux (mL/s)	Voltage (V)	Current (mA)	Energy consumption (kJ/L)
6.08	0.06	400	2.15	12.90

Energy consumption =
$$\frac{V*I}{Flux}$$