An Electroporation Device with Microbead-Enhanced Electric Field for Bacterial Inactivation

Sanam Pudasaini ${ }^{1}$, A T K Perera ${ }^{2}$, Syed. S. U. Ahmed ${ }^{2}$, Yong Bing Chong ${ }^{1}$, Sum Huan Ng 3 and Chun Yang ${ }^{1, *}$

${ }^{1}$ School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
${ }^{2}$ Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
${ }^{3}$ Singapore Institute of Manufacturing Technology (SIMTech), 2 Fusionopolis Way, Singapore 138634
*Chun Yang: mcyang@ntu.edu.sg

S1. DEP Response

The time-averaged dielectrophoresis force experienced by the particles is given by (Pethig 2010)

$$
\begin{equation*}
F_{D E P}=2 \pi R^{3} \varepsilon_{m} \operatorname{Re}\left(\frac{\varepsilon_{p}{ }^{*}-\varepsilon_{m}{ }^{*}}{\varepsilon_{p}{ }^{*}+2 \varepsilon_{m}{ }^{*}}\right) \nabla\left|E^{2}\right| \tag{1}
\end{equation*}
$$

where $\nabla\left|E^{2}\right|=\nabla\left(E \bullet E^{*}\right)$ is the gradient of the squared electric field, $F_{c m}=\frac{\varepsilon_{p}{ }^{*}-\varepsilon_{m}^{*}}{\varepsilon_{p}{ }^{*}+2 \varepsilon_{m}{ }^{*}}$ is the Clausius-Mossotti (CM) factor, and $\varepsilon^{*}=\varepsilon-j(\sigma / \omega)$ is the complex permittivity. Based on the sign of the CM factor, DEP can be of two types: negative DEP (nDEP) or positive DEP (pDEP). For the DC field $(\omega=0)$ cases, the CM factor can be calculated as

$$
F_{c m}=\frac{\sigma_{p}-\sigma_{m}}{\sigma_{p}+2 \sigma_{m}}
$$

Under a DC electric field, cells act as perfect insulators, $\sigma_{p}=0$, which results in F_{cm} being -0.5 . This suggests that bacterial cells experience nDEP inside our device under a DC electric field. Meanwhile, for an AC field, F_{cm} changes with frequency as shown in Figure S1. The plot suggests that for AC electric fields, bacteria experience pDEP under our operating conditions.

Figure S1: The Clausius-Mossotti (CM) factor calculated for live E. coli suspended in DI water for various frequencies.

S2. Our Electroporation Device and Setup

Figure S2: Actual setup with an enlarged view showing the electroporation device with electrical connections and fluidic access.

S3. Energy Consumption Estimation

HRT (s)	Flux (mL/s)	Voltage (V)	Current (mA)	Energy consumption $(\mathrm{kJ} / \mathrm{L})$
6.08	0.06	400	2.15	12.90

Energy consumption $=\frac{V^{*} I}{\text { Flux }}$

