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Abstract: The use of electric power by wind generation in actual grids is hampered by its inherent
stochastic nature and the penalty deviations adopted in several electricity regulation markets with
respect to power quality requirements. Coupling wind farms with advanced Energy Storage Systems
(ESS) can help their integration within grids. In this direction, several studies have been conducted,
but the problem is still open due to the constraints and limitations regarding the ESSs time autonomy,
time response, degradation issues and overall costs. In order to take into account these relevant
aspects, advanced control algorithms are needed. In this paper, a Model-Based Predictive Controller
(MPC) is presented. Such a controller minimizes the degradation of the ESS and the load tracking error
while fulfilling the operational constraints and dynamics. The ESS considered is hydrogen-based and
the study has been developed within the EU-FCH 2 JU (European Union Fuel Cells and Hydrogen 2
Joint Undertaking) funded project HAEOLUS aiming at building and integrating advanced control
strategies for a hydrogen-based ESS within a wind farm fence. Numerical simulations show the
feasibility and the effectiveness of the proposed approach.

Keywords: energy storage systems; hydrogen conversion; power to gas; energy management; mixed
logic dynamics

1. Introduction

Renewable energy sources are subjected to considerable attention for the replacement of fossil
fuels. In particular, wind and solar energy are considered as the most promising options [1].
Many studies have been carried out to improve these technologies and to overcome the drawbacks
associated with them. In particular, the stochastic nature of the wind, energy production and
consumption mismatches and possibly high capital and operational cost are the main hurdles for their
utilization at large scale [2].

One solution to mitigate these problems is to setup an energy storage system that can help the
wind generation patterns in matching the load patterns along the time even in case of low or nearly
zero energy production [2].

The adoption of an Energy Storage System (ESS) combined with a Renewable Energy System
(RES) plant appears to be a paradigm shift in the energy market and introduces new operational
possibilities [3,4]. However, the increased complexity of the plant itself requires proper management
strategies. For this reason, control algorithms for Energy Management Systems (EMSs) have already
been addressed in relevant works. Carapellucci et al. [5] presented a power management control
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strategy for assessing cost effective performances of renewable energy islands. Such controller
also allows to include various electricity generation technologies into the hydrogen storage system.
The hybridization of alternate energy sources with Fuel Cell (FC) systems using long and short-term
storage strategies with appropriate power controllers and control strategies to meet the load demand
has been presented by Uzunog et al. [6]. Castaneda et al. [7] implemented three control strategies to
satisfy the load power demand, to regulate the state of charge of the batteries and to reduce the cost
of battery cycling, FC and electrolyzer, respectively. Valverde et al. [8] implemented a supervisory
Model Predictive Control (MPC) for hydrogen-based ESS for optimal power market management.
Trifkovic et al. [9] implemented a hierarchical control system to track the dynamic load demand
through the intermittent renewable energy generation and an energy storage. An MPC based on
a mixed-integer quadratic programming algorithm was designed by Serna et al. [10] to improve the
power balance between the available power and the electrolysis power consumption in an offshore
plant using renewable energies.

The mixed-integer linear programming framework for wind–hydrogen plant modeling, including
operational costs in the ESS, is used in [11–14] without integrating the degradation issues in the ESS.
Vahidi et al. [15,16] applied the MPC to control the load sharing of a hybrid ESS composed of a fuel cell
and an ultracapacitor, also including some degradation issues. However, these studies do not take into
account the connection to the grid or the start-up/shutdown life cycles associated with the electrolyzer
and the fuel cell.

Heuristic algorithms for degradation characterization with respect to the working hours/life
cycles of the electrolyzer have been discussed by Bergen et al. [17]. Beside hydrogen-based storage,
interesting control approaches for energy flow control in combined heat and power microgrids have
been presented by Ferrari-Trecate et al. [18]. Also, the authors developed MPC for hybrid co-generation
power plants by introducing a mixed linear dynamic framework [19].

The adoption of storage systems increases the complexity of the overall energy plants in terms
of various aspects such as operational strategies, capital cost degradation, maintenance cost and
efficiency reduction over time. Furthermore, each ESS technology introduces, together with more
operational flexibility, peculiar limitations and constraints on the overall plant. Among the available
technologies, the use of the hydrogen as an energy carrier can play an important role in the energy
sector. For this reason, hydrogen storage system characteristics have been investigated in several
studies, such as [20–24]. Several of them conclude that, among ESSs, the high energy density of
the hydrogen may be beneficial in the new energetic paradigm. Hydrogen storage systems are
composed of electrolyzers, fuel cells, and storage tanks. The optimal use of hydrogen storage
requires the development of a control system, which takes into account all the constraints, limitations,
degradation issues, and the economical cost in operating all the equipment. However, the robust
performances and the transient responses associated to hydrogen-based ESS are considered as the
main barriers in its utilization [25,26].

For all these reasons, in order to use the hydrogen-based ESSs efficiently, and operate them in the
most effective way, the need of an advanced EMS is of paramount importance. The latter has to take
into account all the operational constraints and limitations, as well as degradation, operational and
maintenance cost in order to properly commit all the equipment and satisfy the energy demand profile.
Aspects related to cost degradation and economical feasibility of hydrogen-based ESS have been
addressed in [27].

Korpas et al. [28] implemented a MPC controller to integrate hydrogen ESS in the electrical
market system but without accounting for the plant efficiency. Despite the valuable results of these
papers, not all the aspects and constraints of both electrolyzer and fuel cells hydrogen-based ESS are
considered at the same time.

According to the authors’ knowledge, important operational aspects of hydrogen-based storage
systems such as degradation, mode operational switchings and stand by consumption of both
electrolyzer and fuel cell have not been modeled in the literature. Our paper addresses such issues and
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develops preliminary operational models and constraints for a hydrogen-based ESS to be integrated in
a wind farm fence under the EU-FCH JU project HAEOLUS—Hydrogen-Aeolic Energy with Optimized
eLectrolysers Upstream of Substation [29].

Specifically, the plant is modeled considering Mixed Integer Linear (MIL) constraints for operating
states and switchings and non linear dynamics for the hydrogen tank and the efficiency degradation
rates. Also, depreciation cost are considered when switching among on (ON), off (OFF) and standby
(STB) operational states. A controller is then derived whose goal is to track and meet the reference
demand Pref with the available system power Pavl at the best and in the most economical way.
The designed MPC controller takes into account all the devices features here modeled and operates
in reducing the operational and degradation cost of the devices while satisfying the constraints.
Preliminary numerical results are conducted to show the effectiveness of our approach.

Nomenclature

The parameters, the forecasts and the decision variables used in the proposed formulation are
described, respectively, in Tables 1–3.

Table 1. Parameters.

Parameters Description

Htank Hydrogen level in the storage unit [Nm3]
Hmax Maximum level of the hydrogen storage unit [Nm3]
Hmin Minimum level of the hydrogen storage unit [Nm3]
Pmax

e Maximum power level of the electrolyzer [kW]
PSTB

e Standby power of the electrolyzer [kW]
Pmin

e Minimum power level of the electrolyzer [kW]
Pmax

f Maximum power level of the fuel cell [kW]
Pmin

f Minimum power level of the fuel cell [kW]
PSTB

f Standby power of the fuel cell [kW]
NHe Number of life hours of the electrolyzer
NH f Number of life hours of the fuel cell
HYe Number of per year life hours of the electrolyzer
HY f Number of per year life hours of the fuel cell
de Degradation rate of the electrolyzer at maximum input power and over the number of yearly life hours
d f Degradation rate of the fuel cell at maximum output power and over the number of yearly life hours
Srep,e Electrolyzer stack replacement cost [AC/kW]
Srep,f Fuel cell stack replacement cost [AC/kW]
Ts Sampling period [h]
T Simulation horizon [h]

Table 2. Forecast powers.

Forecasts Description

Pw Wind power production [kW]
Pref Electrical load demand [kW]

Table 3. Real and logical time varying variables.

Variables Description

δON
e On state of the electrolyzer

δOFF
e Off state of the electrolyzer

δSTB
e Standby state of the electrolyzer

δON
f On state of the fuel cell

δOFF
f Off state of the fuel cell

δSTB
f Standby state of the fuel cell

Pe Electrical power of the electrolyzer [kW]
Pf Electrical power of the fuel cell [kW]
Pavl Available system electrical power [kW]
Pdump Dumped electrical power [kW]
z Electric power formulated as mixed logic dynamic (MLD) variables for the electrolyzer and the fuel cell [W]
σ Logical variables ON/OFF/STB states for the electrolyzer and the fuel cell
ζe Electrolyzer degradation rate [Nm3/hW]
ζ f Fuel cell degradation rate [hW/Nm3]
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2. System Description and Modeling

Figure 1 shows the block diagram of the system under investigation. Red solid lines denote
energy flow, green solid lines denote hydrogen flows, and blue dashed lines denote data flows while
Pw denotes the power generated by the wind farm, Pin

e is the electrolyzer input power, Pout
f is the fuel

cell output power, Pdump is the power that can be dissipated on a dumping load and Pavl is the power
available to the load. Dumping of the wind power excess is usually necessary if the power surplus
exceeds the transmission capacity of the external grid. However, in the case under investigation
the dumping load may be conveniently exploited to mitigate the degradation of the electrolyzer,
therefore helping to mitigate the impact of the corresponding operational costs.

In nominal conditions, Pw is delivered directly to the load demand. However, when an excess of
wind power production happens, this is shunted to the electrolyzer and stored as hydrogen in a tank.
Conversely, whenever the generated wind power can not satisfy the load demand, the hydrogen is
then re-electrified through the fuel cell, thus achieving power supply continuity.

Figure 1. Block diagram of the microgrid under investigation. Pw, Pin
e , Pout

f , Pref and Pdump are
the power by wind generation, the power inward the electrolyzer, the power outward the fuel cell,
the power demand reference and the dumped power, respectively.

2.1. Power Demand Reference Model

In our scenario, the power demand reference Pref is forecasted by an external system, fed into the
MPC controller and then used within a tracking error cost function.

2.2. Electrolyzer and Fuel Cell Models

The electrolyzer and the fuel cell have been both modeled as a three states automaton, as
shown in Figure 2. For each one, the three possible states are on (ON), off (OFF) and standby
(STB). Correspondingly, the mutually exclusive logical variables δα

i (k), with α ∈ {OFF, STB, ON} and
i ∈ {e, f }, are used to indicate the operating conditions of the electrolyzer (i = e) and the fuel cell
(i = f ) at any time k.
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Figure 2. Automata of the electrolyzer (i = e) and of the fuel cell (i = f ). Each node represents
a particular state (i.e., operational mode), while the edges represent the state transition, for each
i ∈ {e, f }.

More in detail, each operational state of the electrolyzer and the fuel cell results in a particular
product of one logical variable and one corresponding power, which is relevant for that state,
to be different from zero. For example, whenever the electrolyzer or the fuel cell is in ON state,
the corresponding input or output power is limited within the range [Pmin

i , Pmax
i ]. Thus, by defining

Pe(k)δON
e (k) = Pin

e and Pf (k)δON
f (k) = Pout

f , and since in this case we set δON
e (k) = δON

f (k) = 1,

then it results Pe(k) = Pin
e ∈ [Pmin

e , Pmax
e ] and Pf (k) = Pout

f ∈ [Pmin
f , Pmax

f ]. Moreover, being by
defition mutually exclusive for each i ∈ {e, f }, all other logical variables are null, instead. On the
other hand, whenever the electrolyzer or the fuel cell is in STB state, the relevant powers to be
considered are their corresponding stand-by powers PSTB

i , with i ∈ {e, f }. Therefore, by defining
Pe(k)δSTB

e (k) = PSTB
e and Pf (k)δSTB

f (k) = PSTB
f it follows that Pe(k) = PSTB

e and Pf (k) = PSTB
f since

accordingly δSTB
e (k) = δSTB

f (k) = 1, while, again, all other logical variables are null. Finally, when the
electrolyzer or the fuel cell is in OFF state, their corresponding input or output powers along with the
power consumptions are null, resulting in Pe(k) = Pf (k) = 0. Therefore, according to the operating
condition of the electrolyzer and of the fuel cell, each δα

i (k) with i ∈ {e, f } is determined at any time k
as follows 

Pmin
i ≤ Pi(k) ≤ Pmax

i ⇐⇒ δON
i (k) = 1,

Pi(k) = PSTB
i ⇐⇒ δSTB

i (k) = 1,

Pi(k) = 0 ⇐⇒ δOFF
i (k) = 1.

(1)

Along with the logical states, also the feasible state transitions among them have to be modeled.
To this aim we need the additional logical variables σ

β
αi (k), with α 6= β, β ∈ {OFF, STB, ON} and

i ∈ {e, f } which can be derived by suitably combining the logical states through logical connectives.
The transition variables σ

β
αi (k) assume value σ

β
αi (k) = 1 if the corresponding transition happens at

time k (available transitions are depicted in Figure 2), while null value otherwise. It is important to
notice that δα

i (k)s and σ
β
αi (k)s are 18 decision variables of the MPC controller that will be presented

later. Both state variables and transition variables are codified with mixed integer linear inequalities
which will be then included as constraints for the MPC controller. The mathematical formulation of
these constraints is reported, for the reader convenience, in the Appendix A.
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2.3. Hydrogen Storage Model

The hydrogen storage dynamics are defined as a function of the hydrogen level at the previous
time step H(k) [25]. The ζe(k) and ζ f (k), are respectively, the efficiency degradations of the electrolizer
and of the fuel cell, respectively, and have been modeled as dynamic equations since they change
along the time

ζi(k + 1) =
(

1− di
Pmax

i HYi
Pi(k)δON

i (k)
)

ζi(k),

H(k + 1) = H(k) + ζe(k)Pe(k)δON
e (k)Ts −

Pf (k)δON
f (k)Ts

ζ f (k)
,

(2)

where di is the degradation rate at the maximum power [30] and over the number of yearly life hours
of the electrolyzer (i = e) and of the fuel cell (i = f ), HYi with i ∈ {e, f } is the number of the per year
life hours of the electrolyzer (i = e) and of the fuel cell (i = f ) and Ts denotes the sampling period.
Notice that, according to (2), the electrolyzer and the fuel cell produces and consumes hydrogen
only in their ON modes. All the other modes are not associated with the hydrogen production and
consumption respectively and, therefore, are not associated to efficiency degradation.

2.4. Feasibility and Operating Constraints

In addition to the constraints due to the considered dynamics, it is necessary to take into account
also for the subsystems physical limitations. In fact, the actual ESS can absorb or supply just a limited
amount of power. Further, also the power that can be dissipated by the dumping load cannot exceed
a limit, which in our case is set to be the power achieved by wind generation

Pmin
i ≤ Pi(k) ≤ Pmax

i ,

Hmin ≤ H(k) ≤ Hmax,

0 ≤ Pdump(k) ≤ Pw(k).

(3)

2.5. Power Balance Constraint

The available power Pavl, which is delivered to the load, is obtained by forcing the power balance
at the ESS insertion point

Pw(k)− Pe(k)δON
e (k) + Pf (k)δON

f (k)− Pavl(k)− Pdump(k) = 0 (4)

where Pe(k)δON
e (k) = Pin

e and Pf (k)δON
f (k)=Pout

f . The power balance (4) highlights that the available
power Pavl depends on the power Pw achieved through wind generation and the balancing action of
the hydrogen storage system and the dumping load.

3. Implementation of the Proposed MPC Controller

In this section we illustrate the MPC control strategy that has been designed to optimize the
problem of satisfying a forecasted power demand in the most economical way [31,32]. The main idea
of the MPC is to exploit the model of the plant to predict the future evolution of the system within
a prediction horizon. Based on this prediction, at each step k the controller selects a sequence of
future command inputs through an optimization procedure, which aims at minimizing a suitable cost
function and enforcing the fulfillment of the constraints. Only the control signal calculated for the time
instant k is applied to the process. At the next sampling time, the new state of the system is measured
or estimated, and a new optimization problem is solved using this new information. The introduction
of logical variables makes the system as a mixed logical dynamical system. One of the advantages of
MPC over other control methods is its immediate applicability to multivariable control systems.
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3.1. Electrolyzer and Fuel cell Cost Functions

The cost incurred in operating the electrolyzer and the fuel cell are summarized in the two
respective cost functions derived in this section. Both of them are expressed as a summation of
different cost related to the component depreciation, the reduction in the number of life cycles and the
energy spent in keeping the units warm during the stand by mode. More in details, the manufacturers
of the electrolyzer and the fuel cell defined the life cycles of the devices as a function of number of
working hours. It has been noticed in many studies [33–37] that the fluctuating loads and the operating
cycles can seriously affect these devices in a number of ways. Therefore, in order to tackle such outlined
problems, we propose the following cost

Je =
T−1

∑
k=0

(
Srep,e

NHe
+ CostOM

e

)
δON

e (k) + CostON
OFFe

σON
OFFe

(k) + CostOFF
ONe

σOFF
ONe

(k) + CostSTB
ONe

σSTB
ONe

(k)

+CostON
STBe

σON
STBe

(k) + CostOFF
STBe

σOFF
STBe

(k) + CostSTB
OFFe

σSTB
OFFe

(k) + c(k)PSTB
e δSTB

e (k),

J f =
T−1

∑
k=0

(
Srep, f

NHf
+ CostOM

f

)
δON

f (k) + CostON
OFFf

σON
OFFf

(k) + CostOFF
ONf

σOFF
ONf

(k) + CostSTB
ONf

σSTB
ONf

(k)

+CostON
STBf

σON
STBf

(k) + CostOFF
STBf

σOFF
STBf

(k) + CostSTB
OFFf

σSTB
OFFf

(k) + c(k)PSTB
f δSTB

f (k),

(5)

where CostOM
e and CostOM

f denote the operating and maintenance cost of the electrolyzer and the
fuel cell, c(k) is the power spot price, NHe is the number of life hours of the electrolyzer and NHf is
the number of life hours of the fuel cell. CostON

OFFi
, CostOFF

ONi
, CostON

STBi
, CostSTB

ONi
, CostOFF

STBi
, and CostSTB

OFFi
describe the startup, shutdown and standby cost of the electrolyzer and the fuel cell, respectively
choosing i ∈ {e, f }. These cost are payed any time a mode switch occurs, since any complete sequence
of switching accounts for a working cycle and, therefore, reduces the components’ life. We wish to
emphasize, for the sake of clarity, that shifting from OFF to ON (cold start) presents usually a higher
cost than from STB to ON (warm start). On the other hand, devices in OFF mode do not absorb any
power, while this is not true in STB mode. The Srep,e and Srep,f represent the stack replacement cost of
the electrolyzer and the fuel cell, respectively.

3.2. Load Tracking Cost Function

In addition to the minimization of the operating costs of the electroyzer and the fuel cell, the other
goal is to track a reference load demand Pref, that in the scenario under investigation is forecasted.
To this aim, the corresponding cost function which will be included in the optimization is given
by the square error between the available power downstream the ESS Pavl and the forecasted load
demand Pref

Jl =
T−1

∑
k=0

(
Pavl(k)− Pref(k)

)2
(6)

3.3. MPC Formulation

In order to present the MPC policy, let us just consider the hydrogen dynamics in (2) and let us
denote by ζe(k + j | k), ζ f (k + j | k) and H(k + j | k), with j > 0, the corresponding state variables at
time k + j predicted at time k by means of (2) as well.
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At each k, given the initial state H(k), ζe(k) and ζ f (k), the MPC provides the optimal control

sequences PT−1
i,k , PT−1

dump,k, δα,T−1
i,k , σ

β,T−1
αi ,k

and zγ,T−1
i,k for each i ∈ {e, f}, α, β ∈ {ON, STB, OFF}, α 6= β

and γ ∈ {≥ 0,≤ 0,≥ PSTP
i ,≤ PSTB

i ,≥ Pmin
i ,≤ Pmax

i }, and where

PT−1
i,k =

(
Pi(k) . . . Pi(k + T − 1)

)>
,

PT−1
dump,k =

(
Pdump(k) . . . Pdump(k + T − 1)

)>
,

δα,T−1
i,k =

(
δα

i (k) . . . δα
i (k + T − 1)

)>
,

σ
β,T−1
αi,k =

(
σ

β
αi (k) . . . σ

β
αi (k + T − 1)

)>
,

zγ,T−1
i,k =

(
zγ

i (k) . . . zγ
i (k + T − 1)

)>
,

(7)

by solving

min
PT−1

i,k ,

PT−1
dump,k,

δα,T−1
i,k ,

σ
β,T−1
αi,k

,

zγ,T−1
i,k

T−1

∑
j=0

ρlJl(k + j) + ρeJe(k + j) + ρ f J f (k + j)

s.t.

Discrete logical states (A2) , (A3),

mode transitions (A5),

storage dynamics (2),

physical constraints (3),

power balancing equation (4),

δα
i ∈ [0, 1],

σ
β
αi ∈ [0, 1],

zγ
i ∈ {0, 1},

(8)

with being ρl , ρe and ρ f some weights. Since the problem (8) is re-formulated at time k + 1, an optimal
feedback policy is designed.

Summarizing, the following objectives have been explicitly taken into account:

1. protection of the hydrogen storage tank from excessive discharging and overcharging;
2. limitation of the power rate of the fuel cell and of the electrolyzer to protect them;
3. tracking of the power reference request according to the forecasted conditions;
4. in case an expected event occurs, the fuel cell is employed as a contingent energy storage system

to satisfy the power demand.

The block diagram of the proposed controller is detailed in Figure 3. δα
e and δα

f represent
the discrete states of the electrolyzer and the fuel cell, where α ∈ {OFF, STB, ON} indexes their
logical states.
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Figure 3. Proposed MPC Control Scheme.

4. Case Study

The model of the proposed EMS consisting of discrete operational states of the electrolyzer and of
the fuel cell, the corresponding MLD constraints and the continuous dynamics have been implemented
using MATLAB/YALMIP. The controller was implemented using the solver ILOG’s CPLEX 12.8;
all computations are performed on a laptop with an Intel Core (TM) i7− 7700HQ 2.8 GHz processor
and 16 GB of memory. Optimization results are obtained in less than 1 minute. The MPC is tuned
mainly penalizing the electrolyzer and the fuel cell cost functions with respect to the load tracking one.
In order to finalize the controller setup, the prediction horizon is T = 24 h with sampling time Ts = 1 h.
The cost values considered in our study are reported in Table 4. The switching cost for the standby
state of both devices is lower in comparison with OFF to ON or ON to OFF states. The advantage of
keeping the devices to their standby states is to avoid their cold start, and so a lower cost has to be paid
for state switching. However, on the other hand the constant PSTB

e =PSTB
f = 1 kW power is supplied to

both devices to keep them in their standby state. The electrolyzer and of the fuel cell degradation rates
are both set to di = 0.02, with i ∈ {e, f }, and the stack replacement cost Srep,i of the electrolyzer (i = e)
and of the fuel cell (i = f ) have been determined according to

Srep,i =
2×Capexi × 0.4

3

∣∣∣∣
i∈{e, f }

(9)

where Capexi, for each i ∈ {e, f }, is reported in Table 4 as well as other used values.
Also, the considered initial conditions for efficiency degradations ζe and ζ f are 0.23 Nm3/kW and
1.32 kW/Nm3, respectively.

The degradation factor considered in this study is provided by the developer and the manufacturer
of the PEM technology electrolyzer and the fuel cell [30]. Since the HAEOLUS project (the one
founding our research and studied in the manuscript) is in its first year and will end in 2022,
better degradation factors will be considered leveraging on the working plan data (up to now, the site
is under construction).
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Table 4. Cost Factor values utilized by the MPC, data based on the literature [25,38,39].

PEM Electrolyzer Parameters

CostSTB
e = 0.0042 AC NHe = 40, 000 h

CostON
e = 0.123 AC CostOFF

e = 0.0062 AC
Cost[deg,e] = 0.05AC Capexe =1.55AC/kW
CostOM

e = 0.002 10AC/h Pmax
e = 3000 kW

Pmin
e = 300 kW PSTB

e = 1 kW
NYe= 8000 h

PEM Fuel cell Parameters

CostSTB
f = 0.003 AC NH f = 40, 000 h

CostON
f = 0.01 AC CostOFF

f = 0.005AC
Cost[deg,f ] = 0.01 AC Capexf = 1.55AC/kW

Costf
OM = 0.01AC/h Pmax

f = 132 kW
Pmin

f = 12 kW PSTB
f = 1 kW

NYf = 8000 h

Hydrogen Tank Parameters

Volume = 20 Nm3 Pressure = 30 bar

5. Simulations and Numerical Results

5.1. Example 1

The main contribution of this paper relies in the derivation of preliminary operating models
needed for running the hydrogen-based ESS for long control periods as being implemented within the
EU-FCH 2 JU funded project HAEOLUS [29]. However, in order to test the system, a power demand
tracking is considered. The tuning of the load tracking cost function weights seeks for a soft tracking of
the output variables towards the given references and an efficient use of the energy. More specifically,
if there exists a big difference between the demanded energy and the energy by wind generation,
the controller operates the ESS in order to track the demand however with a major preference for
minimizing operating costs. Accordingly, the prioritization weights ρl , ρe and ρ f have been adjusted
by trial and error. In the simulations, H(0) = 4Nm3 is considered as the initial level of the hydrogen in
the tank.

In our numerical examples, the wind power production and the reference power demand are
such that both exceeding and missing power are considered, with a power flow towards or from the
storage. In order to show the effectiveness of the implemented algorithm, the devices switching states
have been shown for a case with frequent imbalances between the reference demand and the wind
power over the 24 h simulation. Figure 4a,b show the electrical reference demand Pref and the wind
power Pw, respectively. It can be seen that the difference between the wind power and the reference
demand is positive for the first 6 h, so the reference demand is met through the wind power only and
the exceeding power is shunted to the electrolyzer (which was set by the controller to its ON state) for
hydrogen production according to the current level of hydrogen and the physical constraints of the
storage (Figure 4c). Figure 4e shows that the level of hydrogen in the storage has increased according
to the storage constraints from Hmin to Hmax during the excess wind hours. Figure 4d shows the fuel
cell power. It can be clearly observed from Figure 4d that the fuel cell does not supply power (in its
OFF state) to the load when the wind power availability is higher than the reference demand. It is
important to note that the controller is designed to switch the electrolyzer and the fuel cell to their
STB state if it predicts the need to switch them on again in the near future, i.e., hours 7 and 15 for the
electrolyzer and hour 8 for the fuel cell. Figure 4g,h show the switching states of the electrolyzer and
the fuel cell, respectively. On the other hand, during the hours when the demand is higher than the
wind power production (that even falls at zero for hours 9–10 and 21). The fuel cell provides back up
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power for re-electrification, switching from OFF to ON states. The needed power is so provided by the
previously stored hydrogen in the tank. The opposite, instead, happens to the electrolyzer since there
is not enough power to be stored Figure 4c. Dumping of excess wind power Pdump is necessary when
the power surplus exceeds the storage capacity of the hydrogen tank and the transmission capacity of
the external grid. Figure 4f shows that the load is being dumped during hours 7 and 9. The power
surplus during these hours cannot be stored into the storage tank since the hydrogen level has already
reached the tank upper bound constraint (3).
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Figure 4. Numerical results for Example 1. (a) Electrical Reference Demand. (b) Forecasted Wind
Power. (c) Power of the Electrolyzer. (d) Power of the Fuel Cell. (e) Level of Hydrogen. (f) Dump Load.
(g) Electrolyzer Switching States. (h) Fuel cell Switching States.

5.2. Example 2

In order to show the effectiveness of the implemented algorithm, a stressing plant scenario has
been considered in this example. As discussed above, the goal of the study is to track the reference
power Pref as much as possible with Pavl. In the case considered, the power Pavl is lower than the
load demand Pref, and the controller will only be able to deliver what is available in the system,
which necessarily leads to a poor performance in meeting the desired requested power Pref.

The load demand and the wind power profiles considered in this example are shown in Figure 5a,b,
respectively. Figure 5c,d show the electrolyzer and the fuel cell powers for hydrogen production and
consumption over the 24 h simulation horizon. It can be clearly observed from Figure 5e that during
the hours 10, 11 and 18, the hydrogen in the tank is at its minimum threshold Hmin because of low
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or nearly zero wind power availability. So, the power available in the system Pavl is less than the
power needed to meet the desired load demand Pref for the said hours. This higher requested load
demand can not be fully met, which results in system poor performance. Still, even in this case,
the MPC controller guarantees optimal performances without violating hard physical constraints.
The electrolyzer and the fuel cell switching states are shown in Figure 5f,g, respectively. Notice also
that no dumping load has been observed in this scenario, because the hydrogen level has not exceeded
the maximum threshold Hmax.
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Figure 5. Numerical results for Example 2. (a) Electrical Reference Demand. (b) Forecasted Wind
Power. (c) Power of the Electrolyzer. (d) Power of the Fuel Cell. (e) Level of Hydrogen. (f) Electrolyzer
Switching States. (g) Fuel cell Switching States.

6. Conclusions

In this work, we developed models for operating, with optimal control strategies,
a hydrogen-based energy storage system to be coupled to a wind farm. The models both encode
discrete logical states representing operating device modes and continuous dynamics. The cost
functions take into account the cost that each device introduces any time it switches between logical
states, thus decreasing the number of life cycles and degrading the efficiency along its working
conditions. Furthermore, all other physical constraints and costs, such as the power consumption in
standby mode, are considered. The cost related to each device and the models developed will then be
included in a suitable control architecture and implemented on a real wind farm under the EU-FCH
2 JU project HAEOLUS [29]. To preliminary test the proposed models, in this paper we considered
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a power demand reference tracking goal over an optimization horizon of 24 h. Numerical results
show the correct behavior of the devices and their switching among the different operating modes.
The power is correctly stored or retrieved via hydrogen conversion to help the wind production in
determine the total available power and match the power requests.
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Appendix A.

Appendix A.1. Constraints Formulation of the Logical States

In order to cope with an optimal control framework we need to introduce 12 auxiliary Boolean
variables zγ

i (k) ∈ {0, 1}, with γ ∈ {≥ 0,≤ 0,≥ PSTB
i ,≤ PSTB

i ,≥ Pmin
i ,≤ Pmax

i } and i ∈ {e, f } [40]

z≥0
i (k) =

{
1 Pi(k) ≥ 0,

0 Pi(k) < 0,
(A1a)

z≤0
i (k) =

{
0 Pi(k) > 0,

1 Pi(k) ≤ 0,
(A1b)

z
≥PSTB

i
i (k) =

{
1 Pi(k) ≥ PSTB

i ,

0 Pi(k) < PSTB
i ,

(A1c)

z
≤PSTB

i
i (k) =

{
0 Pi(k) > PSTB

i ,

1 Pi(k) ≤ PSTB
i ,

(A1d)

z
≥Pmin

i
i (k) =

{
1 Pi(k) ≥ Pmin

i ,

0 Pi(k) < Pmin
i ,

(A1e)

z
≤Pmax

i
i (k) =

{
0 Pi(k) > Pmax

i ,

1 Pi(k) ≤ Pmax
i .

(A1f)

Then, (A1) can be expressed as

Pi(k) < Mz≥0
i (k),

−Pi(k) ≤ M(1− z≥0
i (k));

(A2a)

−Pi(k) < Mz≤0
i (k),

Pi(k) ≤ M(1− z≤0
i (k));

(A2b)

Pi(k)− PSTB
i < Mz

≥PSTB
i

i (k),

−Pi(k) + PSTB
i ≤ M(1− z

≥PSTB
i

i (k));
(A2c)

−Pi(k) + PSTB
i < Mz

≤PSTB
i

i (k),

Pi(k)− PSTB
i ≤ M(1− z

≤PSTB
i

i (k));
(A2d)

https://www.haeolus.eu.
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Pi(k)− Pmin
i < Mz

≥Pmin
i

i (k),

−Pi(k) + Pmin
i ≤ M(1− z

≥Pmin
i

i (k));
(A2e)

−Pi(k) + Pmax
i < Mz

≤Pmax
i

i (k),

Pi(k)− Pmax
i ≤ M(1− z

≤Pmax
i

i (k)),
(A2f)

where M is a sufficiently large positive number.
The auxiliary variables codified by the inequalities (A2) are then exploited to model the

Mixed-Linear Dynamic (MLD) by linking the discrete logical variables of each device with the
corresponding operating power, according to (1). Namely, for i ∈ {e, f }, α ∈ {OFF, STB, ON},
the variables δα

i (k) ∈ [0, 1] are determined by

(1− δON
i (k)) + z

≥Pmin
i

i (k) ≥ 1, (A3a)

(1− δON
i (k)) + z

≤Pmax
i

i (k) ≥ 1; (A3b)

(1− δSTB
i (k)) + z

≥PSTB
i

i (k) ≥ 1, (A3c)

(1− δSTB
i (k)) + z

≤PSTB
i

i (k) ≥ 1; (A3d)

(1− δOFF
i (k)) + z≥0

i (k) ≥ 1, (A3e)

(1− δOFF
i (k)) + z≤0

i (k) ≥ 1; (A3f)

δON
i (k) + δOFF

i (k) + δSTB
i (k) = 1. (A3g)

Notice that, despite δα
i (k) being continuous, they can only assume the binary values {0, 1} due

to (A3), that is in practice δα
i (k)s are logical.

Appendix A.2. Mathematical Model and Constraints Formulation of the State Transitions

As discussed above, the devices models are characterized by three discrete operational states.
These operational states imply possible mode transitions for each device. In what follows, we define
all of the transitions. The transitions among the states for the each transition is the result of the state
change, and can be defined by suitably combining logical variables, thus achieving

σOFF
ONi

(k) = δON
i (k− 1) ∧ δOFF

i (k), (A4a)

σON
OFFi

(k) = δOFF
i (k− 1) ∧ δON

i (k), (A4b)

σSTB
ONi

(k) = δON
i (k− 1) ∧ δSTB

i (k), (A4c)

σON
STBi

(k) = δSTB
i (k− 1) ∧ δON

i (k), (A4d)

σOFF
STBi

(k) = δSTB
i (k− 1) ∧ δOFF

i (k), (A4e)

σSTB
OFFi

(k) = δOFF
i (k− 1) ∧ δSTB

i (k), (A4f)

with α, β ∈ {OFF, STB, ON}, α 6= β. Using the relationships defined by Bemporad and Morari [40],
each expression of the (A4) is equivalently converted into three inequalities and introduced in the
constraints of MPC controller, thus resulting in the 18 following formulas

−δON
i (k− 1) + σOFF

ONi
(k) ≤ 0,

−δOFF
i (k) + σOFF

ONi
(k) ≤ 0,

δON
i (k− 1) + δOFF

i (k)− σOFF
ONi

(k) ≤ 1;

(A5a)
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−δOFF
i (k− 1) + σON

OFFi
(k) ≤ 0,

−δON
i (k) + σON

OFFi
(k) ≤ 0,

δOFF
i (k− 1) + δON

i (k)− σON
OFFi

(k) ≤ 1;

(A5b)

−δON
i (k− 1) + σSTB

ONi
(k) ≤ 0,

−δSTB
i (k) + σSTB

ONi
(k) ≤ 0,

δON
i (k− 1) + δSTB

i (k)− σSTB
ONi

(k) ≤ 1;

(A5c)

−δSTB
i (k− 1) + σON

STBi
(k) ≤ 0,

−δON
i (k) + σON

STBi
(k) ≤ 0,

δSTB
i (k− 1) + δON

i (k)− σON
STBi

(k) ≤ 1;

(A5d)

−δSTB
i (k− 1) + σOFF

STBi
(k) ≤ 0,

−δOFF
i (k) + σOFF

STBi
(k) ≤ 0,

δSTB
i (k− 1) + δOFF

i (k)− σOFF
STBi

(k) ≤ 1;

(A5e)

−δOFF
i (k− 1) + σSTB

OFFi
(k) ≤ 0,

−δSTB
i (k) + σSTB

OFFi
(k) ≤ 0,

δOFF
i (k− 1) + δSTB

i (k)− σS‘TB
OFFi

(k) ≤ 1,

(A5f)

where σ
β
αi ∈ [0, 1], and analogously to δα

i (k)s, they can only assume values {0, 1} due to (A5).
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