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Abstract: Given the broad range of applications from video surveillance to human–computer 

interaction, human action learning and recognition analysis based on 3D skeleton data are currently 

a popular area of research. In this paper, we propose a method for action recognition using depth 

sensors and representing the skeleton time series sequences as higher-order sparse structure tensors 

to exploit the dependencies among skeleton joints and to overcome the limitations of methods that 

use joint coordinates as input signals. To this end, we estimate their decompositions based on 

randomized subspace iteration that enables the computation of singular values and vectors of large 

sparse matrices with high accuracy. Specifically, we attempt to extract different feature 

representations containing spatio-temporal complementary information and extracting the mode-n 

singular values with regards to the correlations of skeleton joints. Then, the extracted features are 

combined using discriminant correlation analysis, and a neural network is used to recognize the 

action patterns. The experimental results presented use three widely used action datasets and 

confirm the great potential of the proposed action learning and recognition method. 

Keywords: human action recognition; higher-order decomposition; discriminant component 

analysis; pattern recognition 

 

1. Introduction 

Human action recognition has been an active research topic due to its wide range of applications, 

including surveillance, healthcare, safety, transportation, human–computer interactions and 

response prediction [1,2]. Furthermore, with the continuous development of cost-effective RGB (Red–

Green–Blue) [3] and depth cameras [4], inertial sensors [5], and algorithms for real-time pose 

estimation, human action recognition receives growing attention nowadays. Comparing these types 

of capturing sensors, RGB cameras provide rich texture information but are sensitive to illumination 

changes. Otherwise, depth sensors provide 3D structural information of the scene but are sensitive 

to materials with different reflection properties while inertial sensors can work in an unconfined 

environment but are sensitive to the sensor location on the body [6]. Although there are many 

different benefits from the use of all these sensors in numerous applications, access to 3D information 

and skeleton data brings unique advantages including robustness in action and gesture recognition. 

Specifically, through 3D skeletons, the set of connected body-joints that evolve in time can effectively 

be used for the representation and analysis of human behaviors. 

To date (we present approaches that are most related to ours however, a comprehensive review 

of skeleton-based action recognition methodologies can be found in [1]), most of the skeleton-based 

literature approaches [1] consider human action recognition as a time series problem in which the 
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input observations are the 3D locations of the major body joints at each frame. Thus, characteristics 

of body postures and their dynamics over time are extracted to represent a human action. One of the 

most used approaches for modeling of time-evolving data and specifically of human actions is the 

Hidden Markov Model (HMM) [7–9], a graphical oriented method to characterize real-world 

observations in terms of state models. Single or multiple, they are often employed either for hand 

gesture recognition [10] or human action recognition [11]. Furthermore, Kosmopoulos et al. [12] 

employed a Bayesian filter supported by hidden Markov models and used user’s feedback in the 

learning process to achieve online recognition. 

Moreover, to model the temporal dynamics for action recognition, Xia et al. [13] extracted 

histograms of 3D joint locations and used discrete HMMs. Another widely used technique is the 

Conditional Random Field (CRF) model [14], which is an undirected graphical method that allows 

the dependencies between observations and the use of incomplete information about the probability 

distribution of a certain observable. However, these methods are incapable of identifying the 

representative patterns or modeling the structure of the data, thus, are lacking in discriminative 

power [1]. Furthermore, CRF is a highly computationally complex model at the training stage of the 

algorithm, making it difficult for researchers to re-train the model. 

To overcome the above limitations and since not all poses in video sequences of an action are 

informative for the classification of that action, researchers focus on the identification of key poses 

and localization of the action in an unsegmented stream of frames. Thus, Zhou et al. [15] proposed 

the extraction of discriminative key poses represented by normalized joint locations, velocities and 

accelerations of skeleton joints, while Sharaf et al. [16] extracted features based on the probability 

distribution of skeleton data and employed a pyramid of covariance matrices and mean vectors to 

encode the relationship between these features. To facilitate the recognition task, Meshry et al. [17] 

encoded the position and kinematic information of skeleton joints proposing gesturelets, while 

Patrona et al. [18] extended gesturelets by adding automatic feature weighting at frame level and 

employing kinetic energy to identify the most representative action poses. However, these methods 

often lead to the selection of unneeded key poses or the omission of salient points containing 

important action information. 

Recently, deep learning networks have been employed in the automated classification of human 

actions, aiming to overcome the extraction of hand-crafted features and the discrimination limitations 

of previous methods through effective deep architectures. For action recognition, Du et al. [19] 

proposed a hierarchical recurrent neural network for skeleton-based action recognition. They divided 

the human skeleton into five parts according to the human physical structure, and then separately 

fed them to five subnets. Furthermore, Hou et al. [20], encoded the spatio-temporal information of a 

skeleton sequence into color texture images and employed convolutional neural networks to learn 

dynamic features for action recognition. Bilen et al. [21] introduced dynamic images in combination 

with convolution networks and Chen et al. [22] combined deep convolution neural networks with 

CRFs, to achieve action recognition and improved image segmentation. 

Additionally, Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) have 

been proposed to model temporal relationships among frames [23–25]. However, RNNs are 

incapable of capturing long-term dependencies between frames and skeletal joints in the spatial 

domain [26]. Liu et al. [26] used a spatio-temporal long short-term memory (ST-LSTM) network, to 

model the dynamics and dependency relations in both temporal and spatial domains. More recently, 

Konstantinidis et al. [27] proposed a four stream LSTM neural network based on two types of spatial 

skeletal features and their corresponding temporal representations extracted by the Grassmannian 

Pyramid Descriptor. However, the training of these complex deep learning networks requires the 

creation of large datasets for the accurate definition of their parameters. Thus, although high 

accuracies have been achieved, these methods need large labeled datasets and incur high time cost 

for training [28].  

Significantly fewer works focus on action and gesture recognition adopting third-order tensor 

representations and modeling. Kim et al. [29] formed third-order tensors and applied tensor 

canonical correlation analysis to perform action and gesture classification in videos while Vasilescu 
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and Terzopoulos [30] used higher-order tensors and their decompositions for face recognition. 

Koniusz, et al. [31] defined kernels on 3D joint sequences, which are linearized to form kernel 

descriptors. Then, tensor representations were formed from these kernels and were used for action 

recognition. More recently, Dimitropoulos et al. [32,33] took advantage of the correlation between the 

different channels of data and proposed a stabilized higher order linear dynamical system to extract 

appearance information and dynamics of multidimensional patches. However, the last method 

requires high computational cost making real-time action recognition nearly impossible. 

Furthermore, one of the challenges in these methods is how data could be effectively represented and 

fed to the developed classification systems.  

In this paper, we aim to address the problem of human action recognition through the encoding 

of the spatio-temporal information of a skeleton sequence and forming novel higher-order sparse 

tensors which describe 3D space relationship of joints. Through the decomposition of the tensor, we 

aim to overcome challenges, such as subject variations in performing actions and recognition in an 

unsegmented stream of frames, through the exploitation of the higher-order and hidden correlations 

between 3D coordinates of the body-joints and their temporal variations. Furthermore, we factor out 

the need for computationally costly operations, aiming to support daily living smart appliances and 

essential services offered to their end-users.  

More specifically, this paper makes the following contributions: (a) We introduce a novel 

modeling of the skeleton time series sequences as higher-order sparse tensors to capture the 

dependencies among skeleton joints. Towards this end, a given sequence of the skeleton is 

represented by a third-order sparse tensor in which 3D coordinates corresponding to the joints are 

equal to one. (b) We adopt the higher order singular value decomposition of the formed tensor to 

exploit the correlations between body-joints. (c) We propose the extraction of a spatial and a temporal 

descriptor that is able to encode the global shape of action performers and motion of an action 

respectively. (d) We propose the fusion of the two descriptors adopting the discriminant correlation 

analysis (DCA). The proposed fused feature descriptor exploits the possibility of using third-order 

representations and their decompositions for 3D action recognition, which poses a different set of 

challenges. The final classification towards action recognition of the given sequence is obtained 

through the use of an artificial neural network. The proposed method improves the performance of 

action recognition, in terms of both positive detection rates (improving the average classification 

accuracy by 0.69%) and computational-time cost (achieving average classification in 0.42 s) making 

the proposed approach suitable for real-time applications. Finally, it can be combined with other local 

or global models; however, the goal of this paper is not to propose an ad-hoc algorithm, but an 

automated, fast, and robust approach through the sparse tensor modeling and its analysis for the 

support of the daily living action recognition applications.  

The remainder of this paper is organized as follows: The next section presents the materials and 

methods used for the evaluation of the proposed methodology and for the automated human action 

recognition. Subsequently, experimental results are presented and discussed, while finally 

conclusions are drawn in the last section.    

2. Materials and Methods  

Skeleton sequences reflect the connectivity and topology of skeletal joints allowing the 

exploitation of both spatial time-evolving inter-correlated and intra-correlated patterns that are 

unique for each human action. Thus, for the modeling of different human actions, the creation of 

structures that will efficiently represent the spatial and temporal joints correlations play a key role. 

In the proposed methodology (Figure 1), to exploit the spatial time-evolving dependencies among 

skeleton joints, we represent the skeleton time series sequences as high-order sparse structure tensors. 

This allows the estimation of two descriptors with regards to spatio-temporal complementary 

information to exploit the intra-correlations of skeleton joints (Figure 2). For the estimation of the first 

descriptor, each skeleton frame is considered as a sparse binary tensor for which the elements that 

correspond to 3D skeletal joints’ coordinates are equal to one. In the second case for each frame, the 

tensor elements that correspond to 3D joints’ coordinates from the first frame to the examined frame 
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are set equal to one. The corresponding dimensions for each tensor are �, y, and ℎ for the created 

tensor length, width, and height respectively. Then, to exploit the correlations between body-joints, 

we estimate their decompositions based on randomized subspace iteration. This enables the 

computation of the mode-n singular values of the sparse matrices with high accuracy. For the 

construction of feature vectors and to keep only the meaningful information and to reduce the 

complexity of data we use only the first ten singular values of each unfolded mode-�. The extracted 

features are combined using DCA. Finally, to recognize human action patterns a neural network is 

used. 

 

Figure 1. The proposed methodology. 

   

  
(a) (b) (c) 

Figure 2. Tensor representation of skeleton and skeletal joints in 3D and 2D (xz-projection) graphs 

respectively for the extraction of spatial correlations (a), (b) and for the extraction of time-evolving 

correlations (c). Representation of skeletal joints (a) in the initial position, (b) in the position of right 

kick and (c) for the period from the initial position to right kick. 

More specifically, we represent each frame as a sparse third-order tensor � ∈ ℝ�×�×� (Table 1 

contains the basic notations and their definitions). To compress the data, minimizing data loss, and 

significantly reduce its size we apply higher order singular value decomposition (Higher-Order SVD-

HOSVD or Multi-Linear Singular Value Decomposition-MLSVD) using sequential truncation and a 

randomized SVD algorithm based on randomized subspace iteration [34]. Furthermore, this allows 



Inventions 2019, 4, 9 5 of 14 

the computation of singular values and vectors of large sparse matrices with high accuracy. 

Summarily, for each mode-n unfolding �(�)  of the sparse third-order tensor �,  we estimate a 

Gaussian random matrix � and we compute the �(�) = �(�)� and its QR factorization so that it is 

�(�) = ��. Then, we form the matrix �(�) = ���(�) and compute the corresponding singular value 

decomposition: �(�) = ����� . Thus, the orthonormal matrices of the higher-order singular value 

decomposition are described by the Equation �(�) = ���. Therefore, the tensor � is written as the 

multilinear tensor-matrix product of � and �(�). 

� = � ×� �(�) ×� �(�) ×� �(�) (1) 

where, � ∈ ℝ�×�×�  is the core tensor, while �(�) ∈ ℝ�×� , �(�) ∈ ℝ�×�,  and �(�) ∈ ℝ�×�  are 

orthogonal matrices containing the orthonormal vectors spanning the column space of the matrix and 

with the operator ×� denoting the �-mode product between a tensor and a matrix.  

Table 1. Basic notations and definitions. 

Symbol Definition 

� observed frame data 

� core tensor 

�(�) mode-n unfolding 

� orthogonal matrix  

�(�) mode-� singular values 

�� spatial representation of three mode MSVs  

�� temporal representation of three mode MSVs 

� number of spatial and temporal descriptors for each human action sequence 

�� feature vector (term frequency histogram) for spatial analysis 

�� feature vector (term frequency histogram) for temporal analysis 

���� spatial feature vector corresponding to the ��� class and in ��� sample 

�����
� means of ���� vectors in the ��� class 

����� means of the whole feature set 

���� between-class scatter matrix 

� matrix of orthogonal eigenvectors 

Λ� diagonal matrix of real and non-negative eigenvalues 

���� transformation that unitizes ���� 

��
� feature vector (reduced dimensionality) for spatial analysis 

��
�  feature vector (reduced dimensionality) for temporal analysis 

��� transformation matrices for the spatial feature vectors 

��� transformation matrices for the temporal feature vectors 

�� � transformed spatial feature 

�� � transformed temporal feature 

2.1. Modeling of Human Actions through Mode-n Singular Values 

After obtaining the core tensor and the set of �  matrices, we evaluated two modeling 

approaches for the extraction of a spatio-temporal features set. The key of a successful modeling is 

the automatic extraction of discriminative features. Thus, we calculate the mode-� singular values 

(MSVs) of core tensor unfoldings extracting the topological and the time-evolving properties of 

tensors as shown in Figure 3. These features can also be considered as artificial characteristics 

providing crucial measures [35,36]. Generally, the singular values are different for mode- � 

unfoldings but not completely independent.  

Specifically, to model the spatial and the temporal inter-correlations and intra-correlations of 

skeletal joints in each frame, and by the assumption that spatio-temporal changes and action patterns 

are reflected by the sums of squared SVs, MSVs are computed using the core tensor �  of each 

segment. Thus, the MSVs spatial descriptors, denoted as �(�), are given by: 
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where �, �, and ℎ are the sizes of n-mode dimensions and ���� are the elements of the core tensor. 

As a mode-n SV descriptor corresponds to each sequence frame, a total number of � spatial and �  

temporal descriptors are produced for each human action sequence. In our experiments, to keep only 

the meaningful information and to reduce the complexity of data, for the construction of feature 

vectors we used the first ten singular values of each unfolded submatrix. Then, we concatenated the 

reduced three mode MSVs into vectors for spatial and temporal representation for each frame 

respectively, as follows: 

�� = ���
(�)

, … , ��
(�)

, ��
(�)

, … , ��
(�)

, … , ��
(�)

, … , ��
(�)

  � ∈ ℛ��� (3) 

�� = ���
(�)

, … , ��
(�)

, ��
(�)

, … , ��
(�)

, … , ��
(�)

, … , ��
(�)

  � ∈ ℛ��� (4) 

where � is the size of the descriptors after concatenation and following the use of the first ten 

singular values of each unfolded submatrix. Following the concatenation, we need to create a spatial 

and a temporal feature that will represent each human action sequence. To this end, we estimate two 

histogram representations by defining two different codebooks. Thus, we apply the bag of systems 

approach and use the k-means clustering method for the collection of � spatial and � temporal 

descriptors. Each codebook consists of �  codewords corresponding to the �  representative 

sequence frames. Hence, the set of codewords encode all kinds of spatial and temporal patterns. Then, 

using Euclidean distance and the representative codewords, each human action is represented as a 

term frequency histogram (�� and ��) of the predefined codeword of the MSVs. These vectors may 

be considered to represent the distinctive classes of the human actions. Comparing the results of 

Figure 3 which show the variations of the SVs of each mode for the different actions, it is obvious that 

the SVs can be used as discriminating features for actions differentiation. Furthermore, we observe 

that singular values for mode-� unfoldings are not completely independent, but there are variations 

between neighboring singular values. 
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Figure 3. Distributions of three mode singular values (SVs) for the different human actions of CERTH 

[32] database. In the two first columns, the proposed spatial descriptors for � = 20 and � = 40 are 

shown. In the third column t,he proposed temporal descriptor is shown. The blue line corresponds to 

the ���� − 1 SVs, the black line to the ���� − 2 SVs and the red line to the ���� − 3 SVs. 

2.2. Feature Fusion through Discriminant Correlation Analysis and Classification 

For the fusion of the extracted features, we adopted the DCA [37,38], a level fusion technique, 

that incorporates the class associations into the correlation analysis of the feature sets. Thus, we aim 

to maximize the pairwise correlations across the extracted spatial and temporal feature set. 

Simultaneously, we aim to eliminate the between-class correlations and to restrict the correlations to 
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be within the different human actions. The DCA is a low computational complexity method, and it 

can be employed in real-time applications meeting the requirements of daily living applications. 

In our problem, �� and �� denote the feature vector of each action for spatial and temporal 

analysis and are collected from � human action classes. Assuming that ���� ∈ �� denote the spatial 

feature vector corresponding to the ��� class and in ��� sample, then, the �����
�  and ����� denote the 

means of ���� vectors in the ��� class and the whole feature set, respectively. Thus, the between-

class scatter matrix is defined as: 

����(�×�)
= � ��������

� − ������������
� − ������

�
= ��������

�

�

���

 (5) 

where  

����(�×�)
= ����������

� − ������, ���������
� − ������, … , ���������

� − ������� (6) 

Then, to estimate the most significant eigenvectors of the covariance matrix ��������
�  or 

����
� ����  (if the number of features is higher that the number of classes) we calculate the 

transformations that diagonalize it. 

��(����
� ����)� = Λ� (7) 

where the � is the matrix of orthogonal eigenvectors and Λ� is the diagonal matrix of real and non-

negative eigenvalues sorted in decreasing order [38]. Thus, if � consists of the � most significant 

eigenvectors then, the � most significant eigenvectors of ���� can be obtained with the mapping: 

� → �����. 

(�����)�����(�����) = Λ(�×�) (8) 

Thus, the ���� = �����Λ��/�  is the transformation that unitizes ����  and reduces the 

dimensionality of the data matrix, ����, from � to �. That is 

����
� �������� = I (9) 

The new feature vector ��
� is resulting from 

��
� = ����

� �� (10) 

Similarly, to the above, we estimate also the ��
�  for temporal analysis features �� . Then, to 

make the features of the spatial feature set to have a nonzero correlation with their corresponding 

temporal feature sets, we diagonalize the between-set covariance matrix. To achieve this, we 

diagonalize the �����
� = ��

���
��

 applying singular value decomposition and estimating the �. 

�����
� = ���� and �������

� � = � (11) 

Furthermore, to unitize the between-set covariance matrix, we set ���� = ����/� and ���� =

����/�. 

�����/��
�

�����
� �����/�� = � (12) 

Thus, the features are transformed as follow: 

�� � = W���
� ��

� = W���
� W���

� �� = ����� (13) 

�� � = W���
� ��

� = W���
� W���

� �� = ����� (14) 

where ��� = W���
� W���

�  and ��� = W���
� W���

�  are the transformation matrices for the extracted 

spatio-temporal feature vectors �� and ��, respectively. 

Finally, for the classification of human actions, we used neural networks that have been proved 

[39] a useful tool for various applications which require extensive classification. Specifically, we used 

MATLAB’s Neural Network Toolbox 11 and a two-layer feedforward network, with sigmoid transfer 

functions in both the hidden layer and the output layer. The number of hidden neurons was set to 

10.  
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3. Results 

In this section, we present a detailed experimental evaluation of the proposed methodology 

using three datasets. The goal of this experimental evaluation is three-fold: (a) Initially, we aim to 

define the number of MSVs that will be used for the evaluation, then (b) we want to show that the 

fusion of proposed descriptors improves the classification accuracy significantly, and finally (c) we 

intend to demonstrate the superiority of the proposed algorithm in human action recognition against 

a number of current state-of-the-art approaches.  

To evaluate the proposed method we initially used the Centre for Research and Technology 

Hellas (CERTH) dataset [32], which contains a relative small number of actions, i.e., six different 

actions (bend forward, left kick, right kick, raise hands, hand wave, and push with hands), performed 

by six subjects, each repeated ten times (i.e., 360 actions in total). With regards to the CERTH dataset, 

we used 6 instances of each action per subject for training and 4 instances for testing. Furthermore, 

we used the well-known G3D dataset [40], containing a large range of gaming actions, i.e., 20 gaming 

actions (punch right, punch left, kick right, kick left, defend, golf swing, tennis swing forehand, tennis 

swing backhand, tennis serve, throw bowling ball, aim and fire gun, walk, run, jump, climb, crouch, 

steer a car, wave, flap, and clap), repeated three times by ten subjects (i.e., 600 actions in total). With 

regards to the G3D dataset, we used 1 instance of each action per subject used for training and 2 

instances of each action for testing. Finally, we used the Microsoft Research Cambridge (MSRC)-12 

Kinect Gesture Dataset [41] which consists of 12 gestures (kick, beat both, change weapon, had 

enough, throw, bow, shoot, wind it up, googles, punch right, duck and start system) performed by 

30 people. In all experimental results, we split the datasets into training and testing subsets based on 

[32] and on [27]. Specifically, to have a fair comparison in CERTH and G3D datasets the training and 

testing sets based on [32] were used (i.e., for CERTH dataset, we used six instances of each action per 

subject for training and four instances for testing and for G3D dataset, one instance of each action per 

subject used for training and two instances of each action for testing). For the evaluation of MSRC-12 

dataset, we followed two different protocols: initially, 37% of the dataset was used for training and 

63% for testing based on [32] (Table 2—MSRC-12 1) and secondly a modality-based “leave-persons 

out” protocol was used as proposed in [27] (Table 2—MSRC-12 2). In the second case, for each of the 

instruction modalities of MSRC-12 dataset, the ‘leave-persons-out’ protocol was adopted, keeping 

the minimum subject subset containing all the gestures as the test set and employing all the others 

for training. 

Table 2. Experimental comparison results for CERTH, G3D, and MSRC-12 datasets. 

Method CERTH G3D MSRC-12 1 MSRC-12 2 

Dynamic Time Warping 87.5% 57% 48.12% - 

Hidden Markov Model 96.25% 77.4% 76.2% - 

Restricted Boltzmann Machine 97.1% 84% 79.8% - 

Conditional Random Fields 97.91% 69.25% 67.95% - 

Histograms of Grassmannian Points 98.61% 90.75% 80.15% - 

Multi-Scale Action Detection - - - 63.9% 

Bags of Gesturelets - - - 87.1% 

Extended Gesturelets - - - 91.2% 

LSTM and Grassmannian Pyramids - 92.38% - 94.6% 

Proposed 100% 92.6% 83.1% 92.8% 
1 37% of the MSRC-12 dataset was used for training and 63% for testing [32]. 2 Training and testing 

using “Leave-persons out” protocol [27]. 

3.1. Defining the Number of MSVs 

The selection of the number of MSVs is based on the contribution of each mode-� singular value 

to the recognition results for the proposed spatial and temporal descriptors. Specifically, we 

compared the proposed method results using the first five to fifteen SVs. We used the CERTH dataset 
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to run the experiments. As one can easily see in Figure 4 using more than 10 SVs does not lead to any 

significant improvement in the recognition results. Furthermore, as was expected from observing 

Figure 3, the use of a low number of SVs results in low recognition rates. This is related to the first 

values of SVs that are similar to each other. Significant differences in values are observed between 

the eighth and the twelfth SVs where better results are achieved.  

  
(a) (b) 

Figure 4. Action recognition rates of (a) Spatial Descriptor and (b) Temporal Descriptor using the first 

five to fifteen SVs and applying the proposed method to the CERTH dataset. 

3.2. Contribution of Different Feature Representations and Fusion Results 

 In this subsection, we elaborate a more detailed analysis to evaluate the contribution of 

different feature representations to the human action recognition. Specifically, we analyze the 

contribution of the two different descriptors, and we aim to show that the fusion of these features can 

improve the recognition rates. For the classification of the human actions, in the first case, we used 

the proposed spatial descriptor that achieves 98.6% and 90.5% for CERTH, G3D, and MSRC-12 

datasets respectively. In the second case, we used the temporal descriptor that achieves lower 

accuracy rates than the spatial descriptor and achieves 95.8% and 89.4% for the two datasets. The 

performance of the proposed DCA method and the explanation of how the different descriptors 

contribute to classification rates are shown in Figure 5. It is clear that the fusion approach using the 

proposed spatial and temporal descriptors and a neural network for classification achieves 100%, 

92.6%, and 83.1% classification rates for CERTH, G3D, and MSRC-12 datasets, respectively. The 

accuracy rates make evident that the individual feature representations contain complementary 

information and, therefore, the detection accuracy after fusion is increased. 

 

Figure 5. Contribution of different feature representations and fusion results through discriminant 

correlation analysis for CERTH, G3D, and MSRC-12 databases. 1 37% of the MSRC-12 dataset was 

used for training and 63% for testing. 2 “Leave-persons out” protocol was used. 
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3.3. Comparison with State-of-the-Art Approaches 

Finally, we evaluated the performance of the proposed methodology against other state-of-the-

art techniques, and the comparison is shown in Table 2. Table 2 presents the classification rates of the 

proposed method against nine other state-of-the-art algorithms, i.e., dynamic time warping [42], 

HMMs [8], restricted Boltzmann machine [43], CRFs [14], Histograms of Grassmannian Points [33], 

pyramid of covariance matrices and mean vectors [16], Bags of Gesturelets [17], Extended Gesturelets 

[18], and LSTM and Grassmannian Pyramids [27], on the three datasets. To have a fair comparison, 

we used the joints coordinates as an input signal for all algorithms. Obviously then, for the CERTH 

and G3D datasets, our proposed new method outperforms previously presented action recognition 

approaches. More specifically, our methodology improves the state-of-the-art results by 1.39% and 

0.22% for these datasets respectively. Moreover, from Table 2, it can be observed that our 

methodology outperforms the state-of-the-art methodologies in MSRC-12 dataset when the protocol 

based on [32] was followed. However, employing the modality-based “leave-persons out” protocol, 

the proposed approach shows slightly lower recognition rates from the LSTM and Grassmannian 

Pyramids method. It can be explained by the fact that in this method, a meta-learner step which takes 

advantage of the meta-knowledge is applied. However, as it is observed from the recognition results 

in G3D dataset, it does not work efficiently in the cases that training datasets are small. In contrast, 

the proposed method works better in these cases aiming to support efficiently daily living action 

recognition applications that use small training sets (e.g., safety and security in home appliances). 

Furthermore, the proposed method achieves action recognition in far less than half a second (the 

average time—in a Core i5, 8 GB RAM, 2 GB Internal Graphics Card—for the extraction of feature 

vector and classification was estimated in 0.42 s) making it suitable for real-time applications, which 

could not be achieved using deep learning techniques. 

4. Discussion and Conclusions 

In this paper, we presented a novel methodology for human action recognition. The main 

advantage of the proposed approach is that it exploits the spatio-temporal inter-correlations between 

skeleton joints in different actions by extracting feature representations that contain complementary 

information. More specifically, to exploit the spatial and time-evolving information as well as to 

better model human motion correlations, we use a third-order tensor structure, and then we extract 

different feature representations containing complementary information with regards to the spatial 

and temporal correlations of the signals. Subsequently, we extracted feature representations based 

on higher-order singular value decompositions and mode-n singular values. Furthermore, the 

experimental results in Figure 5 show that the combination of descriptors using DCA and a neural 

network significantly increase the detection rates of individual feature representations. We notice 

that the fusion approach provides excellent results in both CERTH, G3D, and MSRC-12 datasets.  

The proposed method can significantly enhance the accuracy of human action recognition and 

support modern daily living through the action recognition services offered to end-users. Even when 

the number of classes increases, the discrimination ability of the method remains higher than other 

methods. This is mainly because we use intra-correlation information associated with the spatial 

distribution of joints, while we aim to combine it with the time-evolving information of the actions 

encoded in the descriptors.  

However, in the MSRC-12 dataset, the discrimination ability of the extracted features is lower 

than the other datasets. This can be explained by the fact that there is a high intra-class variation of 

the dataset. To overcome this, a weighted approach for automatic adjustment of selected mode-� 

SVs could be employed. Furthermore, a meta-learner that would take the advantage of the meta 

knowledge would achieve better results. Furthermore, some misclassifications in the G3D dataset are 

explained by the fact that there are actions during which most of their human skeleton joints remain 

almost in the same position. Thus, the extracted features lose the high ability to distinguish these 

actions. To overcome this limitation in the future, we aim to create subsets of joints and to apply the 

proposed algorithm in the different subsets weighting the extracted features.  
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In the future, we aim to evaluate the proposed methodology in more databases (e.g., JHMDB 

[44] and in Human3.6M [45]) to assess the effectiveness of the proposed methodology. Based on the 

extracted results and the number of actions (21 and 17 for the two datasets respectively) we believe 

that the extracted features will have the ability to accurately discriminate the actions that are included 

in the datasets.  

Author Contributions: Conceptualization, P.B., T.S. and S.C.; Methodology, P.B., T.S. and S.C.; Validation, P.B.; 

Formal Analysis, P.B.; Investigation, P.B., T.S. and S.C.; Writing—Original Draft Preparation, P.B.; Writing—

Review & Editing, P.B., T.S. and S.C.; Visualization, P.B. 

Funding: This research was funded by the EU H2020 TERPSICHORE project “Transforming Intangible Folkloric 

Performing Arts into Tangible Choreographic Digital Objects” under the grant agreement 691218. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the 

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to 

publish the results.  

References 

1. Han, F.; Reily, B.; Hoff, W.; Zhang, H. Space-time representation of people based on 3D skeletal data: A 

review. Comput. Vis. Image Underst. 2017, 158, 85–105. 

2. Lokare, N.; Zhong, B.; Lobaton, E. Activity-Aware Physiological Response Prediction Using Wearable 

Sensors. Inventions 2017, 2, 32. 

3. Ramanathan, M.; Yau, W.Y.; Teoh, E.K. Human action recognition with video data: Research and 

evaluation challenges. IEEE Trans. Hum. Mach. Syst. 2014, 44, 650–663, doi:10.1109/THMS.2014.2325871. 

4. Han, J.; Shao, L.; Xu, D.; Shotton, J. Enhanced computer vision with microsoft kinect sensor: A review. IEEE 

Trans. Cybern. 2013, 43, 1318–1334, doi:10.1109/TCYB.2013.2265378. 

5. Ngo, T.T.; Makihara, Y.; Nagahara, H.; Mukaigawa, Y.; Yagi, Y. Similar gait action recognition using an 

inertial sensor. Pattern Recognit. 2015, 48, 1289–1301, doi:10.1016/j.patcog.2014.10.012. 

6. Chen, C.; Jafari, R.; Kehtarnavaz, N. A survey of depth and inertial sensor fusion for human action 

recognition. Multimed. Tools Appl. 2017, 76, 4405–4425. 

7. Kim, E.; Helal, S.; Cook, D. Human activity recognition and pattern discovery. IEEE Pervasive Comput. IEEE 

Comput. Soc. 2010, 9, 48. 

8. Rabiner, L.R.; Juang, B.H. An introduction to hidden Markov models. IEEE ASSP Mag. 1986, 3, 4–16. 

9. Hidden Markov Model. Available online: https://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html 

(accessed on 30 May 2016). 

10. Liu, K.; Chen, C.; Jafari, R.; Kehtarnavaz, N. Fusion of inertial and depth sensor data for robust hand gesture 

recognition. IEEE Sens. J. 2014, 14, 898–1903, doi:10.1109/JSEN.2014.2306094. 

11. Ofli, F.; Chaudhry, R.; Kurillo, G.; Vidal, R.; Bajcsy, R. Berkeley mhad: A comprehensive multimodal 

human action database. In Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision 

(WACV), Tampa, FL, USA, 15–17 January 2013; pp. 53–60. 

12. Kosmopoulos, D.I.; Doulamis, N.D.; Voulodimos, A.S. Bayesian filter-based behavior recognition in 

workflows allowing for user feedback. Comput. Vis. Image Underst. 2012, 116, 422–434. 

13. Xia, L.; Chen, C.C.; Aggarwal, J.K. View invariant human action recognition using histograms of 3D joints. 

In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 20–27. 

14. Conditional Random Field. Available online: https://www.cs.ubc.ca/~murphyk/Software/CRF/crf.html 

(accessed on 30 May 2016). 

15. Zhou, L.; Li, W.; Zhang, Y.; Ogunbona, P.; Nguyen, D.T.; Zhang, H. Discriminative key pose extraction 

using extended lc-ksvd for action recognition. In Proceedings of the 2014 International Conference on 

Digital Lmage Computing: Techniques and Applications (DlCTA), Wollongong, Australia, 25–27 

November 2014; pp. 1–8. 

16. Sharaf, A.; Torki, M.; Hussein; M. E.; El-Saban, M. Real-time multi-scale action detection from 3D skeleton 

data. In Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), 

Waikoloa, HI, USA, 5–9 January 2015; pp. 998–1005. 



Inventions 2019, 4, 9 13 of 14 

17. Meshry, M.; Hussein, M.E.; Torki, M. Linear-time online action detection from 3D skeletal data using bags 

of gesturelets. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision 

(WACV), Lake Placid, NY, USA, 7–9 March 2016; pp. 1–9. 

18. Patrona, F.; Chatzitofis, A.; Zarpalas, D.; Daras, P. Motion analysis: Action detection, recognition and 

evaluation based on motion capture data. Pattern Recognit. 2018, 76, 612–622, 

doi:10.1016/j.patcog.2017.12.007. 

19. Du, Y.; Wang, W.; Wang, L. Hierarchical recurrent neural network for skeleton based action recognition. 

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–

12 June 2015; pp. 1110–1118. 

20. Hou, Y.; Li, Z.; Wang, P.; Li, W. Skeleton optical spectra-based action recognition using convolutional 

neural networks. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 807–811, 

doi:10.1109/TCSVT.2016.2628339. 

21. Bilen, H.; Fernando, B.; Gavves, E.; Vedaldi, A. Action recognition with dynamic image networks. IEEE 

Trans. Pattern Anal. Mach. Intell. 2017, 40, 12, doi:10.1109/TPAMI.2017.2769085. 

22. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation 

with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. 

Intell. 2018, 40, 834–848, doi:10.1109/TPAMI.2017.2699184. 

23. Jain, A.; Zamir; A. R.; Savarese, S.; Saxena, A. Structural-RNN: Deep learning on spatio-temporal graphs. 

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 

27–30 June 2016; pp. 5308–5317. 

24. Shi, Z.; Kim, T.K. Learning and refining of privileged information-based RNNs for action recognition from 

depth sequences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), Honolulu, HI, USA, 21–26 July 2017. 

25. Zhu, W.; Lan, C.; Xing, J.; Zeng, W.; Li, Y.; Shen, L.; Xie, X. Co-Occurrence Feature Learning for Skeleton 

Based Action Recognition Using Regularized Deep LSTM Networks. In Proceedings of the Thirtieth AAAI 

Conference on Artificial Intelligence, Phoenix, Arizona, 12–17 February 2016. 

26. Liu, J.; Shahroudy, A.; Xu, D.; Kot, A.C.; Wang, G. Skeleton-based action recognition using spatio-temporal 

LSTM network with trust gates. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 3007–3021, 

doi:10.1109/TPAMI.2017.2771306. 

27. Konstantinidis, D.; Dimitropoulos, K.; Daras, P. Skeleton-based action recognition based on deep learning 

and Grassmannian pyramids. In Proceedings of the 2018 26th European Signal Processing Conference, 

Rome, Italy, 3–7 September 2018; pp. 2045–2049, doi:10.23919/EUSIPCO.2018.8553163. 

28. Ke, Q.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F. A new representation of skeleton sequences for 3D 

action recognition. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4570–4579. 

29. Kim, T.K.; Wong, S.F.; Cipolla, R. Tensor canonical correlation analysis for action classification. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 

17–22 June 2007; pp. 1–8. 

30. Vasilescu, M.A.O.; Terzopoulos, D. Multilinear analysis of image ensembles: Tensorfaces. In Proceedings 

of the 7th European Conference on Computer Vision, Copenhagen, Denmark, 28–31 May 2002; pp. 447–

460. 

31. Koniusz, P.; Cherian, A.; Porikli, F. Tensor representations via kernel linearization for action recognition 

from 3D skeletons. In Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 

October 2016; pp. 37–53. 

32. Dimitropoulos, K.; Barmpoutis, P.; Kitsikidis, A.; Grammalidis, N. Classification of multidimensional time-

evolving data using histograms of Grassmannian points. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 

892–905. 

33. Dimitropoulos, K.; Barmpoutis, P.; Kitsikidis, A.; Grammalidis, N. Extracting Dynamics from Multi-

dimensional Time-evolving Data using a Bag of Higher-order Linear Dynamical Systems. In Proceedings 

of the International Conference on Computer Vision Theory and Applications, Rome, Italy, 27–29 February 

2016; pp. 683–688. 

34. Halko, N.; Martinsson, P.G.; Tropp, J.A. Finding structure with randomness: Probabilistic algorithms for 

constructing approximate matrix decompositions. SIAM Rev. 2011, 53, 217–288, doi:10.1137/090771806. 



Inventions 2019, 4, 9 14 of 14 

35. Hackbusch, W.; Uschmajew, A. On the interconnection between the higher-order singular values of real 

tensors. Numer. Math. 2017, 135, 875–894, doi:10.1007/s00211-016-0819-9. 

36. Padhy, S.; Dandapat, S. Third-order tensor based analysis of multilead ECG for classification of myocardial 

infarction. Biomed. Signal Proc. Control 2017, 31, 71–78, doi:10.1016/j.bspc.2016.07.007. 

37. Haghighat, M.; Abdel-Mottaleb, M.; Alhalabi, W. Discriminant correlation analysis for feature level fusion 

with application to multimodal biometrics. In Proceedings of the 2016 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 1866–1870. 

38. Haghighat, M.; Abdel-Mottaleb, M.; Alhalabi, W. Discriminant correlation analysis: Real-time feature level 

fusion for multimodal biometric recognition. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1984–1996, 

doi:10.1109/TIFS.2016.2569061. 

39. Oniga, S.; Suto, J. Human activity recognition using neural networks. In Proceedings of the 2014 15th 

International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, 28–30 May 2014; 

pp. 403–406. 

40. Bloom, V.; Makris, D.; Argyriou, V. G3D: A gaming action dataset and real time action recognition 

evaluation framework. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition Workshops (CVPRW), Providence, RI, USA, 16–21 June 2012; pp. 7–12. 

41. Microsoft Research Cambridge-12 Kinect Gesture Data Set. Available online: 

https://www.microsoft.com/en-us/download/details.aspx?id=52283 (accessed on 14 January 2019).  

42. ten Holt, G.A.; Reinders, M.J.; Hendriks, E.A. Multi-dimensional dynamic time warping for gesture 

recognition. In Proceedings of the Thirteenth Annual Conference of the Advanced School for Computing 

and Imaging, Heijen, The Netherlands, 13–15 June 2007; Volume 300, p. 1. 

43. Deep Neural Network. Available online: http://www.mathworks.com/matlabcentral/fileexchange/42853-

deep-neural-network (accessed on 30 May 2016). 

44. Jhuang, H.; Gall, J.; Zuffi, S.; Schmid, C.; Black, M.J. Towards understanding action recognition. In 

Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 

2013; pp. 3192–3199. 

45. Ionescu, C.; Papava, D.; Olaru, V.; Sminchisescu, C. Human3.6M: Large scale datasets and predictive 

methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 

1325–1339. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


