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Abstract: Recently, power quality improvement has gained a lot of attention due to the rapidly
increasing use of power electronics equipment. Several control strategies for DC/AC Voltage Source
Inverters (VSI) have been developed to obtain good quality output with low harmonic distortion. This
paper proposes a robust control scheme to improve the power quality of a three-phase DC/AC VSI.
The control scheme includes an outer voltage loop and an inner current loop, with both controllers
designed by the standard H∞ robust control technique. The system with the proposed controller has
a low total harmonic distortion (THD) and improved power quality of output voltage in the presence
of linear and non-linear loads. The simulation is carried out in MATLAB/Simulink environment,
and the results of the proposed control scheme are compared with the performance of dead-beat
(DB) predictive control and conventional proportional integral (PI) control. It is observed from the
results that the proposed control scheme outperforms other control schemes in terms of the THD
level, having a better steady-state and transient performance.

Keywords: power quality; robust control; predictive control; DC/AC; inverters

1. Introduction

Voltage Source Inverters (VSI) produce sinusoidal waveforms and unity power factor resulting
in a feasible solution for distributed power generation [1]. A Distributed Power Generation System
(DPGS) is a system typically based on renewable energy resources (RES), power electronics, loads,
and intermediate energy resource units [2]. However, high-frequency switched voltages are generated
because of the Pulse Width Modulation (PWM) of VSI which results in the distortion of output voltage
and load currents [3]. Generally, these distortions are removed by using a filter which is integrated at
the output of the inverter system. The control strategies for the inverter systems are established to
guarantee the maximum quality of the control parameters, which can lead researchers to have a great
interest in improving these strategies.

In a literature survey, several control techniques have been applied to a converter system
which includes, proportional-integral (PI) control [4,5], H∞ control [6–8], sliding mode control
(SMC) [9,10], adaptive control [11,12] repetitive control [13,14], model predictive control (MPC) [15,16],
and dead-beat (DB) control [17,18]. In reference [4], PI control is easier to implement, but since it
requires proper gain tuning, it is hard to optimize the closed-loop performance of the system. Moreover,
under the non-linear condition the total harmonic distortion (THD) value of the output voltage is not
low. In another study [7], a loop-shaping control strategy using the H∞ control scheme is investigated
on a single-phase inverter which possesses a simple structure and is also robust against the model
uncertainties, whereas this control technique only ensures local stability. In references [9,10], the SMC
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and adaptive control [11] are robust to load disturbance, but due to the switching structure of the
system, a chattering problem is produced which can reduce the output performance of the system,
while the adaptive control has the computational complexity. In reference [13], a repetitive control
method is applied on a three-phase UPS system in order to deal with fluctuating loads and parameters
variations and to achieve high-quality sinusoidal output voltage, whereas in the case of computation
and gain selection, this method becomes complicated and has a slow response time. To model the
three-phase inverter with a DB controller, various studies have been carried out. For instance, the
conventional DB control technique in reference [17] is found to be robust and have a rapid response;
however, it is highly sensitive to disturbances, parameters mismatching, and steady-state error. For
current control, a novel adaptive self-tuning technique based on DB control has been proposed for a
three-phase PWM voltage source inverter in a study [18]. In reference [15], MPC has a simple structure
and a good performance but it needs an accurate model of the converter system, which makes it highly
sensitive to model uncertainties and parameter mismatching. In reference [16], the MPC technique is
discussed for a three-phase VSI with an output LC filter. The proposed technique is found to be robust
and has the ability to handle several disturbances. The cost function in the system is also found to be
adequate to obtain the minimal voltage error. However, the MPC method needs to calculate a cost
function for seven possible switching vectors to select an optimum one. These calculations impose a
high computational burden. Over the past few years, the H∞ robust control theory has also received
great attention in the field of control, and its applicability has been reported to some extent. H∞ robust
control is quite a handy tool, especially when it comes to the robustness of the closed-loop system. The
H∞ control systems are monolithic, where embedded control systems are decentralized collections of
simple control elements.

This paper addresses the design of a robust control scheme for a three-phase DC/AC VSI.
The main aim is to improve the power quality of output voltage having a low THD value in the
presence of linear and non-linear loads. This control strategy comprises an outer voltage and an
inner current control loop designed by using standard H∞ control formulation. While designing
a controller, the selection of weighting function and weighting parameters plays an important role,
as the suitable weighting function results in the controller having an improved system response.
In order to demonstrate improvements, the proposed controller is compared with a DB predictive
and a PI controller. The simulation results under linear and non-linear loads are presented using
MATLAB/Simulink environment, verifying the feasibility and good performance of the proposed
control strategy.

2. Proposed Control Scheme

In this section the design of H∞ robust control is discussed [18]. The schematic diagram of the
system with the controller is shown in Figure 1.

The H∞ control theory is an effective method of designing a controller to guarantee the
performance of the system under worst case disturbance. The key objective of the H∞ controller is to
keep a clean and balanced output voltage in the presence of linear and non-linear loads. The general
description of a standard feedback robust control system structure is shown in Figure 2a, where P(s) is
the generalized system, and F(s) is the controller model. The transfer function from the input w to the
output z is denoted by Tzw. Here, it should be noted that the block diagram shown in Figure 2a is fairly
general. The signal w can include both reference and disturbance signals. P(s) can include both the
plant and the disturbance model. Moreover, the uncertainties can also be included in P(s). The main
idea of the robust control is to separate the known part and the unknown part from the knowledge
about the uncertain system under investigation.
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Figure 1. Schematic of the system with the H∞ robust controller. Figure 1. Schematic of the system with the H∞ robust controller.
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3. State Space Model of the Augmented Plant

As depicted in Figure 3, the system consists of an inverter, an LC filter, and a PWM generator.
The series winding resistance R f and damping resistance Rd are also included in the filter circuit to
decrease the ringing effect. The inverter and PWM are modelled by using an average voltage approach
with the limits of the DC-link voltage [19]. Over one cycle period, the average value of u f is equal to uc.
So, the inverter parameters and PWM blocks are neglected while deriving the plant transfer function.

The inductor current and capacitor voltage are chosen as state variables x =
[

iL uc

]T
. The external

input w =
[

i2 ure f

]T
consists of the load current i2 and the reference voltage ure f , as shown in

Figure 2b; the control input is denoted as u. The output signal from the plant P is the tracking error
e = ure f − uo, which is the difference between the reference voltage and the output voltage. The state
space description of the plant P is given as follows:

.
x = Ax +

[
B1 B2

][ w
u

]
, , y = C1x +

[
D1 D2

][ w
u

]
(1)

.
x = Ax + B1w + B2u (2)

y = C1x + D1w + D2u (3)

A =

 − R f +Rd
L f

− 1
L f

1
C f

0

; B1 =

[ 1
L f

0

− 1
C f

0

]
; B2 =

[
1

L f

0

]
; C1 =

[
−Rd −1

]
; D1 =

[
Rd 1

]
; D2 = [0]
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The corresponding transfer function of the plant becomes P =
[

D1 D2

]
+C1(sI − A)−1

[
B1 B2

]
.

In the results, the following matrix is used:

P =

[
A B1 B2

C1 D1 D2

]
(4)
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4. Formulation of the Standard H∞ Control Problem

To assure the system stability, an H∞ control problem is formulated for the voltage loop, as
shown in Figure 4. In order to minimize the H∞ norm, Figure 4 is proposed for the transfer function

Tz̃w̃ = K
(

P̃, C
)

from w̃ =
[

v w
]T

to z̃ =
[

z1 z2

]T
, after opening the feedback loop, and the

weighting parameters ξ and µ are introduced. The closed loop system can be realized as:[
z̃
ỹ

]
= P

[
w̃
u

]
; u = Cỹ (5)
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Here, P̃ is the extended plant, and C is the controller to be designed. The extended plant P̃ consists
of the original plant P together with the low-pass filter WL and the weighting parameter ξ and µ,
which are added to provide freedom in designing the controller. The weighting parameter ξ is added
to adjust the relative importance of v with respect to w, and another weighting parameter µ is added to
adjust the relative importance of u with respect to z1. The parameters ξ and µ also play an important
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role in order to guarantee system stability; these parameters are selected on the basis of the procedure
provided in reference [18].

The weighted function WLu is realized as:

WLu =

[
ALu BLu

CLu DLu

]
=

[
−ωc ωc

1 0

]
(6)

ỹ = e + ξuv = ξuv +

[
A B1 B2

C1 D1 D2

][
w
u

]
(7)

ỹ =

[
A 0 B1 B2

C1 ξu D1 D2

] v
w
u

 (8)

z1 = WLuỹ (9)

z1 =

[
ALu BLu

CLu DLu

][
A 0 B1 B2

C1 ξu D1 D2

] v
w
u

 (10)

z1 =

 A 0 0 B1 B2

BLuC1 ALu BLuξu BLuD1 BLuD2

0 CLu 0 0 0

 (11)

z2 = µuu (12)

The extended plant can be realized as follows:

P̃u =


A 0 0 B1 B2

BLuC1 ALu BLuξu BLuD1 BLuD2

0 BLu 0 0 0
0 0 0 0 µu

C1 0 ξu D1 D2

 (13)

The controller Cu can then be found according to the extended plant P̃u using the H∞ control theory
problem, e.g. using the function hinfsyn provided in MATLAB®.

5. Design Example

As an example, the controller will be designed in this section for a simulation setup on the
MATLAB/Simulink software package with the system parameters given in Table 1.

Table 1. System parameters.

Description Variable Value

DC-Link Voltage VDC 440 V
Rated Power Output Po 9 kW

Filter Capacitance Cf 15 µF
Filter Inductance Lf 2.7 mH
Filter Resistance Rf 0.1 Ω

Damping Resistance Rd 1 Ω
Frequency PWM fS 12.8 kHz
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5.1. Design of H∞ Current Controller

The inner current loop should be designed such that it has a high bandwidth in order to get
better disturbance rejection capability. For this purpose, while designing the H∞ current controller, the
weighting function was chosen as WLi = 20 × 3142

s2+50s+3142 , and the weighting parameters were selected
as ξi = 100 and µi = 2.5. Finally, by defining the inputs and outputs of the augmented plant using the
linear analysis tool and applying the hinfsyn function on MATLAB, the H∞ current controller Ci was
obtained as:

Ci =

9.694s9 + 6.039s8 + 1.035 × 1013s7 − 3.619 × 1016s6 − 1.981 × 1021s5−
1.49 × 1024s4 + 1.275 × 1029s3 − 1.8 × 1031s2 + 1.138 × 1034s − 2.39 × 1036

s10 + 2.463 × 105s9 + 6.642 × 1010s8 + 6.576 × 1015s7 + 2.528 × 1020s6 + 4.174 × 1024s5

+2.524 × 1028s4 + 3.308 × 1030s3 + 4.99 × 1033s2 + 2.846 × 1035s + 2.408 × 1038

(14)

Using the reduced-order model approximation technique [20] on MATLAB, the controller is reduced to
second order without causing any noticeable performance degradation, after canceling the poles and
zeros that are close to each other. The bode plots of the original and reduced H∞ current controllers
are shown in Figure 5b.

Ci =
9.403 × 10−4s2 − 5.315s + 978.9

s2 + 49.99s + 9.862 × 104 (15)
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system parameters of the plant, the H∞ voltage controller 𝐶  was obtained, which nearly minimized 
the H∞ norm of the transfer function 𝑤  to �̃� , using the hinfsyn function as: 
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5.3. Design of PI and DB Predictive Control Schemes 

In the literature, several analytical methods have been proposed to design a PI controller; 
however, in this case, the gains of PI voltage and current controllers are calculated using the method 
described in reference [5]. After calculating the PI values for voltage and current loop, the gains are 
optimized using trial and error for the optimum design of a PI controller. Table 2 shows the values 
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5.2. Design of the H∞ Voltage Controller

For designing the H∞ voltage controller, the weighting function WLu was chosen as WLu =
3142

s2+50s+3142 for 50 Hz, and the weighting parameters were selected as ξu = 100 and µu = 2.5. For the
system parameters of the plant, the H∞ voltage controller Cu was obtained, which nearly minimized
the H∞ norm of the transfer function w̃u to z̃u, using the hinfsyn function as:

Ci =

1.025 × 106s9 + 9.433 × 1010s8 + 3.531 × 1015s7 + 6.294 × 1019s6 + 7.678 × 1023s5+

4.851 × 1027s4 + 1.566 × 1031s3 + 1.022 × 1034s2 + 1.962 × 1036s + 8.856 × 1038

s10 + 2.463 × 105s9 + 6.642 × 1010s8 + 6.576 × 1015s7 + 2.528 × 1020s6 + 4.174 × 1024s5

+2.524 × 1028s4 + 3.308 × 1030s3 + 4.99 × 1033s2 + 2.846 × 1035s + 2.408 × 1038

(16)

Using the reduced-order model approximation technique [20] on MATLAB, the controller is reduced to
second order without causing noticeable performance degradation, after canceling the poles and zeros
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that are close to each other. The bode plot of original and reduced H∞ voltage controller is shown in
Figure 5a.

Ci =
9.812 × 10−2s2 + 557.4s + 3.627 × 105

s2 + 49.99s + 9.862 × 104 (17)

5.3. Design of PI and DB Predictive Control Schemes

In the literature, several analytical methods have been proposed to design a PI controller; however,
in this case, the gains of PI voltage and current controllers are calculated using the method described in
reference [5]. After calculating the PI values for voltage and current loop, the gains are optimized using
trial and error for the optimum design of a PI controller. Table 2 shows the values of gain selected for
the optimum design of PI and DB predictive controllers.

Table 2. Optimal gains for a proportional-integral (PI) and a dead-beat (DB) predictive controller.

Controller Gain Value

Current Loop Proportional Gain kpc 3.0
Current Loop Integral Gain kic 5.21

Voltage Loop Proportional Gain kpv 0.1756
Voltage Loop Integral Gain kpi 0.25449

Luenburger Gain LM
[

5.3519 1.0460
]T

Observer Gain η 0.1

The design of the DB predictive controller consists of an inner current loop and an outer voltage
loop designed by the DB predictive control scheme described in references [21,22]. However, for an
optimum design and precise voltage control, a disturbance observer and a state estimator have been
incorporated into the system. The final equation of the DB control law which is used to generate
reference signals for PWM is given as:

ur,re f (k) = uc(k + 1) +
L
Ts

[iL,re f (k)− iL(k)] (18)

Here, ur,re f is the reference voltage, L is the filter inductance, Ts is the sampling time, iL,re f is the current
control loop reference value, and iL is the output value of current control loop. Also, the equations of
the state estimator (19) and disturbance observer (20) are given as follows:

.
x̃d = (AM − LMCM)x̃d + BM d̃

.
x̃d = AH x̃d + BM d̃

(19)

.

d̃ = −ηCM AM x̃d − CMBM d̃ (20)

Here, x̂d is the estimated system states, d̂ is the estimated disturbances, LM is the Luenburger gain
matrix, and the observer gain is η. The Equations (19) and (20) can be combined to form a matrix given
as: [ .

x̃d.
d̃

]
=

[
AH BM

−ηCM AM −ηCMBM

][
x̃d
d̃

]
(21)

.
w̃ = Kw̃ (22)

The tuning parameters are selected such that matrix K should be Hurwitz, i.e. all closed-loop
poles are on the left half plane [23]. After some trial and error, the parameters for the Luenburger gain

matrix LM and observer η gain were selected as LM =
[

5.3519 1.0460
]T

and η = 0.1, respectively.
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6. Simulation Results

The evaluation of the proposed controller was made in stand-alone mode with linear and
non-linear loads. The control strategy was evaluated in three situations: (i) steady-state response with
linear (ii) steady-state response with non-linear loads and (iii) transient response with linear load. In
order to demonstrate improvements in the results, the proposed controller was compared with a DB
predictive controller and a PI controller.

6.1. Steady-State Performance in Stand-Alone Mode

In this section, the steady-state performance of the system with the aforementioned controller is
discussed in detail. The evaluation of the controller was made for a resistive load, i.e. Ra = Rb = Rc =
12 Ω, and a non-linear load (uncontrolled rectifier loaded with an LC filter L = 150 mH, C = 1000 µF,
and a resistor R = 20 Ω).

6.1.1. Steady-State Performance with a Resistive Load

The waveform of the output voltage va, vb, vc, the load current ia, ib, ic, and the THD graph for H∞
robust controller, DB predictive controller, and PI controller with linear resistive loads in steady-state
condition are shown in the Figures 6–8, respectively. The THD values of voltage and current with
linear resistive loads are also given in Table 3. As can be seen from Table 3, in the case of linear resistive
load, the output voltage THD for H∞ robust control was recorded as 0.30%, whereas the THD value of
the output voltage in the case of the DB predictive controller was 0.60%, and for the PI controller, it was
0.4%. The reference value for attaining the static response was set to 200 V, and the resistive load was
taken as 12 Ω. It can be observed from Figure 8a that, in the case of the PI controller, the system starts
with fluctuations and achieves the reference value within 50 ms. In contrast, while taking the static
response for the H∞ robust controller and DB predictive controller as depicted in Figures 6a and 7a,
the system starts without any large fluctuation or perturbation and achieves the referred value rapidly.
The simulation results show that the system has a smooth output voltage and current waveforms
which depict its satisfactory performance with linear resistive loads in steady-state condition.
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Figure 6. Simulation results with the H∞ robust controller in steady-state condition. (a) Output 
voltage, (b) Load current, (c) α-frame voltage waveform, (d) Voltage tracking Error, (e) Voltage THD, 
(f) Current THD. 
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Figure 6. Simulation results with the H∞ robust controller in steady-state condition. (a) Output 
voltage, (b) Load current, (c) α-frame voltage waveform, (d) Voltage tracking Error, (e) Voltage THD, 
(f) Current THD. 
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Figure 7. Simulation results with the DB predictive controller in steady-state condition. (a) Output 
voltage (b) Load current, (c) α-frame voltage waveform, (d) Voltage tracking error, (e) Voltage THD, 
(f) Current THD. 
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Figure 7. Simulation results with the DB predictive controller in steady-state condition. (a) Output
voltage (b) Load current, (c) α-frame voltage waveform, (d) Voltage tracking error, (e) Voltage THD, (f)
Current THD.
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Figure 7. Simulation results with the DB predictive controller in steady-state condition. (a) Output 
voltage (b) Load current, (c) α-frame voltage waveform, (d) Voltage tracking error, (e) Voltage THD, 
(f) Current THD. 
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Figure 8. Simulation results with the PI controller in steady-state condition with linear loads. (a)
Output voltage, (b) Load current, (c) d-frame voltage waveform, (d) d-frame voltage tracking error, (e)
Voltage THD, (f) Current THD.

Table 3. Voltage and current THD values at steady-state condition with linear resistive loads.

Controller H∞ Robust DB Predictive Proportional Integral

Linear Loads (Voltage) 0.30% 0.60% 0.40%

Linear Loads (Current) 1.60% 3.38% 2.83%

6.1.2. Steady-State Performance with Non-Linear Load

The waveforms of output voltage va, vb, vc, the load current ia, ib, ic, and the THD graphs with the
H∞ robust controller, DB predictive controller, and PI controller are shown in Figures 9–11, respectively.
The THD values of voltage and current with non-linear loads are also given in Table 4. As can be seen
from Table 4, in the case of non-linear loads, the output voltage THD for the H∞ robust controller
was recorded as 3.06%, whereas the THD value of output voltage in the case of the DB predictive
controller was 4.54%, and for the PI controller THD was 4.7%. The reference value for attaining
the static response was set to 200 V, and a non-linear load uncontrolled rectified loaded with LC
filter L = 150 mH, C = 1000 µF, and a resistor R = 20 Ω was considered. It can be observed from
Figure 9a that with the H∞ robust controller, the system has fewer fluctuations than with the DB
predictive controller and the PI controller, as depicted in Figures 10a and 11a, in the case of non-linear
uncontrolled rectified load. The simulation results showed that the H∞ robust controller performs
better with non-linear loads in steady-state condition.
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Figure 9. Simulation results with the H∞ robust controller in steady-state condition with non-linear 
loads. (a) Output voltage, (b) Load current, (c) THD value of voltage, (d) THD value of current. 

 

 

 

Figure 9. Simulation results with the H∞ robust controller in steady-state condition with non-linear
loads. (a) Output voltage, (b) Load current, (c) THD value of voltage, (d) THD value of current.Inventions 2019, 2, x  11 of 15 
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Figure 10. Simulation results with the DB predictive controller in steady-state condition. (a) Output 
voltage, (b) Load current, (c) THD value of voltage, (d) THD values of current. 
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Figure 11. Simulation results with the PI controller in steady-state condition. (a) Output voltage, (b) 
Load current, (c) THD value of voltage, (d) THD value of current. 
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Figure 11. Simulation results with the PI controller in steady-state condition. (a) Output voltage, (b)
Load current, (c) THD value of voltage, (d) THD value of current.

Table 4. Voltage and current THD values at steady-state condition with non-linear loads.

Controller H∞ Robust DB Predictive Proportional Integral

Non-Linear Loads (Voltage) 3.06% 4.54% 4.70%

Non-Linear Loads (Current) 85.96% 93.34% 98.98%

6.1.3. Transient Response with Resistive Load

The waveform of output voltage va, vb, vc, and the load current ia, ib, ic of the H∞ robust controller,
DB predictive controller, and PI controller in transient state are shown in Figures 12–14, respectively.
In Figures 12–14, it is shown that the system is provided with a voltage change for the time instant of
300ms to evaluate its dynamic response. Here, the reference voltage level is changed from 200 V to
150 V, from 150 V to 100 V, from 100 V to 150 V, and then from 150 V back to 200 V again. The system
performance was analyzed, and it was found that the transient time for the H∞ robust controller and
DB predictive controller was almost negligible where the system tracked the voltage change very
rapidly without any fluctuation and changed its state according to the change in the reference value.
In contrast, in the case of the conventional PI controller, as illustrated in Figure 14a,b, the system had a
large transient time and it required more settling time, which shows its slow dynamic performance.
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7. Conclusion

This paper presents a robust control scheme proposed for a three-phase DC/AC VSI. The control
scheme consists of an inner current loop and an outer voltage loop, both designed by H∞ robust
control technique. The main aim is to improve the power quality of VSI having a low THD value of
output voltage, both with linear and non-linear loads. This control scheme can be used for single-phase
and three-phase systems. The proposed H∞ robust controller was compared with a DB predictive
controller and a conventional PI controller, with a focus on improved power quality and low voltage



Inventions 2019, 4, 18 14 of 15

THD. It was observed from the simulation results that the proposed controller offers a significant
improvement over the DB predictive and conventional PI controllers by having better steady-state and
transient responses.
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