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Abstract: In this paper, a high-speed multi-fingered reconfigurable gripper is presented. The aim is
to create a robotic end effector that is capable of handling parts of different geometries and weight.
It consists of three fingers, accounting for a total of eight Degrees of Freedom (DoFs). The paper
discusses the design, control, and reconfiguration aspects of the gripper, and demonstrates its
applicability to different manipulation tasks. The gripper has the ability of high-force movement
and its high number of DoFs enables it to grasp a large variety of geometries, while retaining the
design simplicity. The preliminary grasping experiments highlight its potential in robotic handling
applications in both research and production environments.
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1. Introduction

In the past years, there has been a vast activity towards the development of reconfigurable
resources to increase the flexibility of industrial assembly operations [1]. At the resource level,
this flexibility has been sought in multiple forms and levels: control strategies for flexible lines [2],
reconfigurable robotic systems [3,4], autonomous mobile manipulators [5,6], cooperating robots [7,8],
and advanced perception/sensing technologies [9]. Nevertheless, the ability of the end effectors and
tooling to carry out the task has been the main limitation for actually carrying out the manipulation
tasks [10]. The vision has been the development of low-cost grippers that present dexterity combined
with high speeds and grip forces, yet robust and simple both in its programming and development.
To better satisfy some of these requirements, the design of robotic hands has followed two distinct paths.
The first one was more industrially oriented, focusing on more robust, simple, and low-cost solutions,
while sacrificing dexterity. The second approach has been aiming at achieved higher speed, dexterous
grippers at the expense of high complexity and costs.

The first approach has been pursued by most industrial gripper suppliers. Schunk, being one of
the leading companies in industrial manipulation, has developed a variety of two finger [11] as well
as three finger grippers [12], which have become widely adopted, due to their simplicity in design
and control. On a similar concept, while aiming for greater adaptability, RobotIQ has developed two
two-finger grippers, with one controlled Degree of Freedom (DOF) and a three finger one with four
actuators [13]. The Barrett hand, one of the most commercially successful grippers, can also be placed
in this category [14]. It consists of eight joints, which are controlled by four servomotors, is lightweight
and yet powerful and dexterous in precise motions. On the other hand, it is limited by its relatively
low number of independent DoFs. In a similar direction, several grippers have been presented by
the academic community based on the principle of under actuation. The LARM Hand IV [15] is a
three finger gripper, actuated by four motors that are embedded in the palm of the hand. Furthermore,
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the Tuat/Karlsruhe Hand [16] is a five-finger hand that consists of only one active DoF. The University
of Nazarbayev also presented in 2013 a five-finger gripper whose controlled DoFs had been kept to
the low number of four by creating a dependency in the movement of its last three fingers [17]. On a
similar concept, Prensilia Srl. developed a five-finger hand, called Azzurra IH2, with five active DOFs,
while its two last fingers were forced to open and close at the same time [18].

Highly dexterous grippers consist of a high number of DoFs and mostly use the multigrasp hand
paradigm, while being relatively complex and expensive. The Stanford Hand/JPL [19], Utah/MIT
dexterous hand [20], and the fourteen degrees-of-freedom Robonaut hand for space operations [21]
were among the first high-DoF hands to be developed. The BUAA/Beijing University [22] consists
of four fingers with a total of 16 DoFs, and the NTU hand [23] consists of a five-finger design, which
accounts for an overall of seventeen DoFs. In the Gifu Hand II [24], and III [25] the sixteen actuators
required for the movement of its 20 joints have been incorporated inside the fingers as opposed to
many of the other grippers. The same principle was also applied to the DLR Hand II [26] consisting
of 13 controlled DOFs. The UB Hand IV presented in 2013 [27] has an overall of 20 DOFs, enabling
the movement of its five independent fingers. Another one of the most widely known hands for
its dexterity, is the Shadow C5 Dexterous Hand [28], developed by the Shadow Robot Company that
can reproduce the 26 degrees-of-freedom of the human hand by using 23 DoFs, controlled by remotely
placed motors or pneumatic tendons.

Although some grippers aim at satisfying both high reconfigurability and simplicity, most of them
are characterized by low gripping forces. SCHUNK presented a gripper called the SDH Hand [29],
which consists of three fingers and has seven active DOFs, while the actuators are placed inside the
fingers, having a maximum gripping torque of 1.4 Nm. Elumotion Ltd. (Bath, UK) has also developed
the ELU-2 Hand [30] that has five fingers and an overall of nine DOFs, while being self-contained.
However, its fingertip forces are limited to 4.7 N. Manipulation speed has also been a great issue
as very limited approaches have managed to combine a large number of DoFs with successful and
repeatable high-speed manipulation [31].

The main contribution of this research can be summarized in the following:

- Development of a multi-fingered high-DoF gripper, with anthropomorphic features.
- Simple design and yet capable of grasping parts with varying geometrical and physical properties.
- Providing a good tradeoff between (a) the dimensions and shape of the parts that it can grasp,

including highly asymmetric objects, (b) the achieved gripping forces, and (c) the dynamic
behavior of the fingers that can move at high speed and accelerations.

This paper is organized as follows. In Section 2, the design of the gripper, including the design
principle, the mechanical, and kinematic design, is discussed. In Section 3, the implementation of the
previously described design is documented, along with the actuation and control that were integrated.
Section 4 is dedicated to discussion and future work.

2. Materials and Methods

The design of the discussed gripper has been aimed at satisfying the need for a dynamic,
high-speed, reconfigurable gripper that still retains the design simplicity, which is required for robust
operation and easy maintenance. Such requirements arise from the manufacturing sector such as the
automotive body in white and final assembly stages, where high variation in the parts geometry and
weight are observed. Section 3 provides several examples of such cases that have been used as the
starting point for the design of this gripper.

Starting with the need for high re-configurability and the ability to accommodate a variety
of grasping positions/geometries, a three-finger arrangement with eight DoFs, has been selected.
This design uses the ability of the two fingers to enlarge the grippers’ grasp capabilities, as discussed
in [32]. Generally, for a hand to be able to grasp an object at a random position and orientation, it would
require at least nine DoFs, the gripper in this work has been limited to eight DoFs by reducing the
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middle finger’s ability to rotate around the base of the hand. This DoF greatly simplifies the design
and can be easily compensated through the robotic manipulator where the gripper is attached.

The selection of having eight independent DoFs may seem to contradict the requirement for
weight, space, and complexity minimization, however this is partially addressed by the use of very
efficient (size to performance ration) of the utilized motors that can be connected and controlled
under a single network. The gripper has indeed larger weight and dimensions when compared
to existing ones (see also Section 3.1), but the individual actuation of all links allows for grasping
highly non-symmetric objects by achieving asymmetric configurations for both the adduction and
abduction motions. This benefit, when combined with the ability to handle heavier parts is of vast
importance for the case of industrial assembly where such components are quite common (e.g., in
automotive or white goods assembly sector). A possible coupling between some of the DoFs could
simplify the control, but at the expense of attainable gripper configurations.

When considering the dynamics of the reconfiguration movement, all of the gripper joints have
been designed to be able to execute their full movement in 100 ms. This means that any gripper
joint can execute 180-degree movement in 0.1 s. The weight of the mechanism is a factor of utmost
importance in high-speed applications. For this reason, a limit of 5 kg has been considered, while still
being able to grasp objects weighing a few kilograms.

Finally concluding the requirements for such a gripping system, the control aspects also need to
be considered. Thus, a centralized master node to monitor and control all actuators simultaneously
has been considered. In this case, the exchange of all the messages to/from the controller should be
carried out in real time to enable the required monitoring of the joint movement. Table 1 summarizes
the design requirements as discussed above.

Table 1. Gripper design requirements.

Requirement Type Description

Mechanical

• Number of fingers: 3
• Degrees of Freedom: 8
• Gripper weight: less than 5 kg
• DoF speed: 180 deg/0.1 s

Sensing
• Position
• Velocity
• Force/torque

Control
• Centralized control for all nodes
• Real time monitoring/control of

all actuators

Product • Varying geometries
• Product weight: up to a few kilograms

2.1. Design Principle

The developed gripper is aimed at being reconfigurable for achieving a wide range of
grasping modes. A grasp can be mainly categorized either by the position of the fingers (centripetal,
parallel), or by the way that the final grasp of the object is achieved (encompassing, pinching). As far
as the first category is concerned, Figure 1 depicts how the different grasp modes are achieved by
the gripper.

The actual developed gripper is shown in Figure 2. In the centripetal grasp, all of the fingers are
placed in a position surrounding a central point in space, while in the case of parallel grasps, a number
of fingers are set to a parallel position relative to each other. The encompassing and pinching grasping
modes, on the other hand, comprise a classification that mainly lies in the precision of the task and the
geometrical characteristics of the object [33].
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Enveloping grasps are characterized by a multitude of contact points between the object and the
gripper’s fingers. The object is surrounded by the gripping parts of the hand. This grip is the most
powerful and can passively resist arbitrary external forces exerted on the object. Although this grasp is
the most stable, it can only be used on objects requiring very low dexterity.

The Pinching grasp, on the other hand, consists of relatively few contact points that are mostly
located on the fingertips. On the human hand, in this gripping type, the thumb is placed opposite to
the other fingers to provide the required stability. This grip’s stability may be easily disturbed and it is
subject to the position of the contact points, since their number is very limited in comparison to the
encompassing grip.
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Figure 3 shows one of the possible ways that an encompassing grasp can be accomplished by the
gripper, as well as a feasible pinching grip. The type of grip, and therefore, the required configuration
of the fingers are dependent on the geometry of the object to be grasped.
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2.2. Mechanical Design

When considering the requirements for design simplicity and high-speed movement, simple
articulation and transmission mechanisms have been selected. The rotation of the two fingers around
the gripper base is achieved by fixing the component that supports the fingers on the gripper base
directly on the motor output shaft. In this way, the backlash is drastically reduced, as shown
in Figure 4a. In order for this rotation to be as frictionless as possible, the finger assembly interface is
supported by two single-direction thrust bearings, placed on the top and bottom of it, as illustrated
in Figure 4b. The actual implemented configuration is demonstrated in Figure 4c where the thruster
bearings below and on top of the connecting element (shown in Figure 4a) are clearly shown.

Inventions 2018, 3, 4 5 of 14 

2.2. Mechanical Design 

When considering the requirements for design simplicity and high-speed movement, simple 
articulation and transmission mechanisms have been selected. The rotation of the two fingers around 
the gripper base is achieved by fixing the component that supports the fingers on the gripper base 
directly on the motor output shaft. In this way, the backlash is drastically reduced, as shown in Figure 
4a. In order for this rotation to be as frictionless as possible, the finger assembly interface is supported 
by two single-direction thrust bearings, placed on the top and bottom of it, as illustrated in Figure 4b. 
The actual implemented configuration is demonstrated in Figure 4c where the thruster bearings 
below and on top of the connecting element (shown in Figure 4a) are clearly shown. 

 
(a) (b) (c) 

Figure 4. (a) Gripper design cross section on the finger assembly interface; (b) gripper design and (c) 
developed gripper depicting the thrust bearings. 

For the rest of the gripper joints the motors have been placed inside the body of the fingers and 
thus the axis of rotation has to be converted from vertical to horizontal (relative to the motor’s output 
shaft). For this reason, a pair of straight bevel gears is chosen, as demonstrated in Figure 5. One of 
these is fixed on the motor output shaft and the other one is at a relative 90 degrees position, fitted 
inside a ball bearing. In the center of this bevel gear, the joint axle whose motion is supported is fixed 
supported by another ball bearing in the other end. 

  
(a) (b) 

Figure 5. Design and actual joint views: (a) axle to bevel assembly and (b) axle to bearing. 

The direct connection of the motor shaft with the phalanges, although providing an immediate 
response, may be considered as a weak point as it can lead to motor damage in the case of impact 
loads on the fingers. As the finalization of the gripper end tips is ongoing and field tests will be carried 
out to assess the operating environment of the gripper (forces, loads, acceleration etc.), the 
development of compliant motor control schemes and the integration of elements to absorb the extra 
forces without compromising positioning accuracy is proposed as future work. Under the same 
scope, dedicated experiments will be required to prove the ability of the individual elements to 
absorb collisions. 

Figure 4. (a) Gripper design cross section on the finger assembly interface; (b) gripper design and
(c) developed gripper depicting the thrust bearings.

For the rest of the gripper joints the motors have been placed inside the body of the fingers
and thus the axis of rotation has to be converted from vertical to horizontal (relative to the motor’s
output shaft). For this reason, a pair of straight bevel gears is chosen, as demonstrated in Figure 5.
One of these is fixed on the motor output shaft and the other one is at a relative 90 degrees position,
fitted inside a ball bearing. In the center of this bevel gear, the joint axle whose motion is supported is
fixed supported by another ball bearing in the other end.
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The direct connection of the motor shaft with the phalanges, although providing an immediate
response, may be considered as a weak point as it can lead to motor damage in the case of impact loads
on the fingers. As the finalization of the gripper end tips is ongoing and field tests will be carried out
to assess the operating environment of the gripper (forces, loads, acceleration etc.), the development of
compliant motor control schemes and the integration of elements to absorb the extra forces without
compromising positioning accuracy is proposed as future work. Under the same scope, dedicated
experiments will be required to prove the ability of the individual elements to absorb collisions.

2.3. Kinematics

The kinematic problem of a mechanism can be approached either with the use of forward
or inverse kinematics. Forward kinematics is a set of equations that can define the frame of the
end-effector, as a function of the joint angles. Inverse kinematics, on the other hand, define the
joint parameters of a desired end-effector frame position. In the latter case, one can get a possible
number of joint angles for a specific coordinate frame. Although some of the solutions may be
mathematically correct, it is not guaranteed that they correspond to attainable physical solutions.
Consequently, each set of solutions should be first checked to determine whether it is in agreement
with the physical link limits.

In this case, to also obtain the inverse kinematics of the gripper, each of the fingers has been
viewed as a serial manipulator with its base at the first joint axis. After the forward kinematics of
the serial manipulator has been calculated, a transformation is calculated to consider the difference
between the base of each finger and the user’s frame of reference (the frame on the center of the base of
the gripper). The main idea of this approach is similar to a modular radially symmetric six-legged robot
presented in [34]. The forward kinematics analysis has been carried out using the Denavit-Hartenberg
(DH) parameters [35], as presented in Table 2 for one of the three-DoF fingers.

Table 2. Denavit-Hartenberg (DH) parameters for one of the three Degrees of Freedom (DoF) fingers.

Link θi αi−1 ai−1 di

1 θ1 0 0 0
2 θ2 −π/2 α2 d2
3 θ3 0 α3 0
4 θ4 0 α4 0

A generic transformation matrix has the following form [36].

i−1
i T =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sai−1di
sθisαi−1 cθisαi−1 cαi−1 cai−1di

0 0 0 1

, (1)
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where, cθi, sθi, stand for cosθi and sinθi respectively represent the transformation matrices from i − 1
to the i DoF and can be calculated as shown below.

0
1T =


cθ1 −sθ1 0 0
sθ1 cθ1 0 0
0 0 1 0
0 0 0 1

, (2)

1
2T =


cθ2 −sθ2 0 α2

0 0 1 d2

−sθ2 −cθ2 0 0
0 0 0 1

, (3)

2
3T =


cθ3 −sθ3 0 α3

sθ3 cθ3 0 0
0 0 1 0
0 0 0 1

, (4)

3
4T =


1 0 0 α4

0 1 0 0
0 0 1 0
0 0 0 1

, (5)

where, the angles θ1, θ2, and θ3 are depicted in Figure 6 on the left three-joint finger.Inventions 2018, 3, 4 7 of 14 
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Since the transformation matrices from one link to the next have been defined, it is now that
the final transformation matrix (from the base to the fingertip), can be calculated by multiplying the
matrices from the base link to the fingertip link, as shown below.

0
1T1

2T2
3T3

4T = 0
4T =


r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

 (6)

where:
r11 = c(θ2 + θ3)cθ1 (7)

r12 = −s(θ2 + θ3)cθ1 (8)

r13 = −sθ1 (9)

r21 = c(θ2 + θ3)sθ1 (10)
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r22 = −s(θ2 + θ3)sθ1 (11)

r23 = cθ1 (12)

r31 = −s(θ2 + θ3) (13)

r32 = −c(θ2 + θ3) (14)

r33 = 0 (15)

px = α2cθ1 + α3cθ1cθ2 + α4cθ1c(θ2 + θ3)− d2sθ1 (16)

py = a2sθ1 + α3sθ1cθ2 + α4sθ1c(θ2 + θ3) + d2cθ1 (17)

pz = −α3sθ2 − α4s(θ2 + θ3) (18)

Multiplying both sides of (16) by (−sθ1) and both sides of (17) by (−cθ1), the system can be
solved for θ1:

θ1 = Atan2
(

4px py + d2
2 + d2

√
d2

2 + 4px py + 4p2
x, 2p2

x

)
(19)

Similarly, multiplying (16) and (17) by (cθ1) and (sθ1), respectively, the value of θ2 is calculated as:

θ2 = Atan2
(

t2 + 2a2a3 + t
√

t2 + 4a2a3 + 4a2
2, 2a2

2

)
(20)

where
t = pxcθ1 + pysθ1 − a2 (21)

We multiply again (16) and (17) by (cθ1) and (sθ1) solving for c(θ2 + θ3), and we solve (18)
for s(θ2 + θ3). By dividing the two results, we obtain θ3:

θ3 = Atan2
(
a3sθ2 − pz, a2 + a3cθ2 − pxcθ1 − pysθ1

)
− θ2 (22)

This way, the Inverse Kinematics of one of the three DoF fingers has been defined. Investigation
of similar mechanism structure and inverse kinematics has been discussed in [37]. Figure 7 shows the
kinematic model of the left three-DoF finger on a simple GUI for the Denavit-Hartenberg parameters
robot arm design, as provided by the MRPT (Mobile Robot Programming Toolkit) [38].
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The inverse kinematics has also been calculated and the kinematics of the gripper was visualized
through Matlab with the assistance of the Robotics Toolbox [39]. Since each finger should be able to
achieve a different position from the other ones for the grasping of an object, they are treated as a
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separate serial link, with a specified distance from the gripper base. As such, its inverse kinematics
problem can be solved individually.

For testing and demonstration purposes, a random configuration has been considered. The gripper
initial configuration, set in Matlab, is depicted in Figure 8a. After the final configuration has been
calculated, the required trajectory was executed and ended up with the configuration requested by
the user. The final configuration of the gripper can be seen in Figure 8b.
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In order to investigate the singularity points of the system we investigate the Jacobian
(Equation (23) below):

J =

 −a2sθ1 − a3sθ1cθ2 − a4sθ1c(θ2 + θ3)− d2cθ1 −a3sθ2cθ1 − a4s(θ2 + θ3)cθ1 −a4s(θ2 + θ3)cθ1
a2cθ1 + a3cθ1cθ2 + a4cθ1c(θ2 + θ3)− d2sθ1 −a3sθ1sθ2 − a4s(θ2 + θ3)sθ1 −a4s(θ2 + θ3)sθ1

0 −a3cθ2 − a4c(θ2 + θ3) −a4c(θ2 + θ3)

 (23)

Singularities occur where the determinant of the Jacobian equals zero

det = a3a4(a2 + a3cθ2 + a4c(θ2 + θ3))sθ3 (24)

Thus, the below conditions can be identified:

a3 = 0, meaning zero link length for link 3 (25)

a4 = 0, meaning zero link length for link 4 (26)

θ3 =


0
π

± a cos(−(a2+a3cθ2))
a4

− θ2

(27)

3. Results and Discussion

This chapter is dedicated to presenting the gripper that was developed and the components that
were used for its implementation. In Figure 9, the implemented gripper is shown in various grasping
positions using two or three fingers in asymmetric positions to grasp parts that are often encountered
in the automotive assembly and its suppliers.
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The ability of the fingers to be individually configured thanks to the separately actuated joints,
allows for the achievement of non-symmetric configurations both in terms of the finger joints, as well
as the palm element, which eventually define the abduction/adduction motion. With this degree of
flexibility, multiple configurations can be used to achieve similar grasping, where it would not have
been possible with kinematically coupled joints.

3.1. Actuation and Drive Electronics

In order for the requirements of precise position and speed control as well as maximum output
torque to be satisfied, brushless direct current (DC) servomotors have been selected thanks to
their speed and efficiency in the most compact size. Table 3 summarizes the specifications of
these actuators. These actuators are fitted with planetary gearheads and have integrated high resolution
absolute encoders. Regarding size restrictions, the motors that control the fingertips are smaller,
and therefore, less powerful than the rest of the actuators. Based on this selection of actuators,
the specifications of the proposed gripper are presented in Table 4.

Table 3. Specifications of the actuators.

Characteristic Fingertip DoF Middle and Base Finger DoF

Motor type DC brushless DC brushless
Reduction rate 25 29

Max. speed (rpm) 300 300
Max. torque (Nm) 1.5 8

Size (mm) Φ22 × 85 Φ32 × 100
Weight (g) 100 200

Sensor resolution 4096 4096
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Table 4. Specifications for the developed robotic hand.

Specification Value

Max. speed (at tip) (m/s) 24 (*1)
Max. force (at tip) (N) 55 (*2)

Total DoF 8
Weight (kg) ≈3.5

Joint resolution (deg) 0.0035 or 0.003 (*3)

*1 fingertip at 0 degrees and both finger motors output maximum speed; *2 fingertip at 90 degrees and middle finger
joint outputs maximum torque; *3 0.0035 resolution for the smaller motors and 0.003 for the larger ones.

3.2. Gripper Control

The selected motors for the gripper have been provided by Faulhaber (www.faulhaber.com/) and
are directly controlled by motion controllers that allow various operation modes: the speed, position,
speed and acceleration curve, and voltage or current control. The motion controllers, apart from the
aforementioned operation modes, are also used as a breaking mechanism, and therefore, there is no
need for the motors to have mechanical breaks integrated. The motion controller communication
protocol chosen is the CAN (Controller Area Network) bus, which has a lot of similarities with the
older RS232, but allows for higher transfer rates of up to 1 Mbits/s (dependent on the wire length).
The physical connection of the CAN is based on the logic that all of the nodes are connected in parallel
and they are terminated at both ends with one 120 Ohm resistor on each side. In this case, every motor
is connected to its own motion controller and the controllers are connected to an external computer
(see Figure 10).Inventions 2018, 3, 4 11 of 14 
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In order for any user to easily control the position of the gripper fingers, a custom Graphical
User Interface has been developed. The GUI is based on the way the messages are transmitted on
the PEAK’s PCAN-Light API and it has been developed using visual C#. Apart from the connection
and message I/O parts of the software, as shown below in Figure 11, the main section responsible for
the position control of the gripper’s DOFs is the “Forward Control” section. The user can control the
joints either by using the textboxes and pressing the execute position with an accuracy of two decimals,
or use the sliders to move the joints at the same time with the positioning accuracy of one degree.
The user is also allowed to record a group of positions in order to export them and use them, at a
later instance, through importing the same file and selecting the position to be executed from the
dropdown list.

www.faulhaber.com/
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Having presented the design and implementation of the reconfigurable gripper, Table 5 provides
a short comparison of the gripper against a set of the five most relevant three finger grippers identified
in the literature.

Table 5. Comparison with other gripper specifications.

Gripper DoF
(Total/Actuated)

Weight
(kg)

Object Diameter for
Encompassing (mm)

Maximum Payload
(Encompassing Grip) (N)

Robotiq 3 Finger Gripper [40,41] 10/4 2.3 20–155 100
Schunk SDH [42] 8/7 1.95 17–215 N/A

Barret Hand [43,44] 8/4 1.2 Up to 240 60
LARM Hand IV [45] 9/3 1.5 10–100 N/A

Proposed Gripper 8/8 3.5 Up to 215 >150

4. Conclusions

In this paper, a modular reconfigurable anthropomorphic gripper with multiple fingers that
can execute high speed movements and grasp components weighing a few kilos, while keeping its
design simple and its dimensions relatively compact, has been developed. The gripper has been tested
for its capability of implementing on-demand reconfiguration of its fingers through the developed
control modules. Different grasp types (pinching, enclosing, etc.) have been successfully tested, and
more are considered possible with the use of customized finger tips.

Following the design and the construction of the first prototype, future work will focus on the
experimental evaluation to ensure that it can sufficiently achieve the force/torque and speed values
that are considered in the design stage. Furthermore, the implementation of a system that would
provide feedback to the gripper’s executed motion, and correct any mistakes, should be the next goal.
Finally, automatic grasp planning algorithms should be developed to facilitate the automated and
optimized grasping of different objects.
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