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Abstract: Prediction of physiological responses can have a number of applications in the health
and medical fields. However, this can be a challenging task due to interdependencies between
these responses, physical activities, environmental factors and the individual’s mental state. In this
work, we focus on forecasting physiological responses in dynamic scenarios where individuals are
performing exercises and complex activities of daily life. We minimize the effect of environmental
and physiological factors in order to focus on the effect of physical activities. In particular, we focus
on forecasting heart rate and respiratory rate due to their relevance in medical and fitness training.
We aim to forecast these physiological responses up to 60 s into the future, study the effect of different
predictors that incorporate different sensing modalities and different amounts of historical data
and analyze the performance of various strategies for prediction. Activity information is incorporated
by clustering the data streams and fitting different predictive models per cluster. The effect of
clustering is also studied by performing a hierarchical analysis on the clustering parameter, and we
observe that activity clustering does improve the performance in our proposed methodology when
predicting physiological response across modalities.

Keywords: time series analysis; physiological parameter forecasting; cluster analysis; multi-modal data

1. Introduction

Once limited to the domain of elite athletes, wearable devices are increasingly used by the general
public for health and wellness monitoring ranging from clinical rehabilitation to activity (e.g., running
or swimming) tracking. These devices have made it possible to continuously monitor not only daily
activities, but also heart rate, skin temperature, breathing rate and many other physiological, as well
as environmental parameters. Due to the rapid technological advancements in sensor technologies,
vast amounts of raw data streams are being generated, which justifies the need for new methods to
analyze these data and provide valuable feedback to the user. Most fitness devices available provide
simple alerts, such as reminding a person to be active or to practice deep breathing if their heart
rate is too high, thus providing vital feedback for not only fitness training, but also as indicators of
medical conditions.

It is evident that continuous monitoring of physiological responses is beneficial, while forecasting
or predicting these quantities into the future can be also advantageous. For example, in endurance
training, knowing ahead of time what your heart rate and breathing rate will be a minute into the
future can allow the individual to maintain a desired intensity level for their workout. In the medical
field, if a person suffers from asthma, then predicting his/her total exposure to particulate matter
based on their prediction of air volume intake may be used by the individual to decide whether to
keep performing a particular activity, slow down or even go indoors. Furthermore, prediction of
these physiological quantities can be used to determine anomalies in an individual’s response by

Inventions 2017, 2, 32; doi:10.3390/inventions2040032 www.mdpi.com/journal/inventions

http://www.mdpi.com/journal/inventions
http://www.mdpi.com
https://orcid.org/0000-0002-4056-8309
http://dx.doi.org/10.3390/inventions2040032
http://www.mdpi.com/journal/inventions


Inventions 2017, 2, 32 2 of 22

capturing how it deviates from the expected values. However, predicting physiological responses into
the future can be a challenging problem since there are a number of factors that need to be taken into
account including: physical activities, environmental factors (e.g., temperature, humidity, ozone levels)
and cognitive and affective factors (e.g., stress levels). Furthermore, as continuous monitoring using
wearable devices becomes ubiquitous, we anticipate predictive models that are personalized to each
individual will become more essential to characterize what is normal for a particular individual as
opposed to the norm for the population.

In this article, we focus on the analysis of the effect of physical activities on the prediction of
physiological responses. We consider stationary activities, transition activities (transitions between
activities) and complex activities of daily life. Activities are executed at varying paces due to inter
subject variability. Data are captured from individuals in a controlled environment (in order to reduce
the effect of environmental and cognitive/affective factors) while performing high level activities of
daily life such as setting up a table, moving objects and typing a document; and exercise activities
such as riding a bicycle, walking on a treadmill and rowing. Our aim is to learn the strength and
weaknesses of predictive techniques on these controlled environments while performing continuous
monitoring during the execution of complex activities and their transitions. In this study, we focus on
the prediction (up to 60 s into the future) of heart rate and respiratory rate as a case study. However,
this methodology can be extended to other physiological measurements such as blood pressure, minute
ventilation or energy expenditure. The main contributions of this work include:

1. The introduction of a new dataset that incorporates physiological and activity information while
performing activities of daily life (see Figure 1 for a snapshot of the data);

2. Introducing a methodology for quantifying the accuracy of predictive algorithms for heart rate
and respiratory rate under varying physiological activities and using different predictors;

3. Studying the performance of various prediction approaches for physiological responses;
4. Studying the effect of predictors that incorporate historical information of physiological

parameters for prediction;
5. Studying the effect of the forecast window size (i.e., how far into the future we predict responses)

on prediction accuracy;
6. Studying the effect of activity clustering for prediction of physiological responses.

Figure 1. Snapshot of the data streams collected with two activities (orange boxes) and transitions
(green boxes) highlighted.

We focus on the regression problem using a single window of historical values. However, this
framework can provide the building blocks for time series analysis when longer datasets are available
to enable proper validation and testing of these approaches.

As an outcome of this study, we verified that it is possible to forecast (up to 60 s into the future)
heart rate and respiratory rate using personalized models for individuals in scenarios with complex
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activities and dynamic transitions without the effect of environmental or cognitive/affective factors.
Furthermore, it is observed that activity clustering does improve the predictive power in our dataset
when performing predictions across different modalities (i.e., using heart rate to predict breathing rate,
or vice versa). Linear models seems to be sufficient when considering regression that includes prior
measurements of the same modalities.

This article is organized as follows: materials and methods are discussed in Section 2, results and
discussion are presented in Section 3; and conclusions and future work are listed in Section 4.

2. Materials and Methods

In this Section we discuss background on the relationship between heart rate, respiratory rate and
physical activities in Section 2.1. We present our data collection efforts in Section 2.2, followed by the
pre-processing and alignment of different data streams in Section 2.3. In Section 2.4, we discuss our
proposed pipeline for forecasting.

2.1. Relationship between Heart Rate, Respiratory Rate and Physical Activity

In this subsection, we discuss the importance of heart rate and respiratory rate for health
monitoring applications and provide some references to known relationships between these parameters.
For this study, we do not aim to discover new relationships, but to quantify how well existing
algorithms can capture these relationships in order to provide accurate physiological response
prediction. The tools presented in this study can also be used to identify new relationships across other
sensing modalities.

For most fitness [1,2] and medical [3] applications, heart rate and breathing rate are important and
commonly measured quantities. In the medical field specifically, monitoring of physiological signals is
routine. While heart rate is commonly measured, respiratory rate is not frequently recorded due to the
cumbersome equipment and the discomfort that it causes to the patient [4,5]. As an alternative
to respiratory rate measurements, pulse oximetry is used, which actually is not an appropriate
substitute [4]. For example, pulse oximetry is inaccurate in low perfusion states and does not provide
information of hemoglobin level, efficiency of oxygen delivery or adequacy of ventilation [6].

Apart from clinical environments, monitoring physiological responses during everyday life is
also beneficial. For example, one of the most obvious and straightforward signs of asthma is the
abnormal increase of respiratory rate [3]. In many cases, an abnormal change of respiratory rate is
not easily noticed before it gets worse as time goes on, which further signifies the importance to daily
monitoring of this quantity for people who have such pre-existing conditions. Besides preventing
potential chronic illness, monitoring physiological signals in the mobile environment is also helpful for
either fitness-oriented or professional physical training. The respiratory rate is also a reliable marker
of anaerobic threshold, which is important to measure the progress of endurance athletes and to plan
training regime programs [7,8].

It is known that physical activities have an effect on the heart rate [9,10]. Prior work in heart
rate prediction based on physical activities [11] further highlights the relationship between heart rate
and physical activities. Studies have also shown a good correlation between heart rate, ventilation
and oxygen consumption [12,13]. Some studies use minute ventilation as a predictor of cardiac heart
failures [14,15]. It is however difficult to measure ventilation in field studies. Prior studies [12,16] have
addressed this limitation by estimating ventilation using heart rate, which can be easily monitored by
a portable heart rate monitor.

2.2. NCSU-ADL Dataset

This subsection introduces the dataset recorded for this study. As discussed in Section 1, we aim
to predict physiological responses in realistic scenarios. Our dataset focuses on capturing physiological
signal and motion information of individuals in scenarios with complex activities and dynamic
transitions without the effect of environmental and cognitive/affective factors.
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The data collection was undertaken at North Carolina State University (NCSU) under Institutional
Review Board (IRB) 7799. All participants in the study were healthy individuals in the age group
ranging from 18–30 years old. We collected data from 10 volunteers. The layout of the space where
all the activities were performed is shown in Figure 2 and a panoramic view of the space in Figure 3.
We focus on activities of daily life (ADL), including periodic (e.g., walking, bicycling), non-periodic
(e.g., setting up a dinner table) and stochastic (e.g., typing a document). The participants had to
undergo a 2-h session for training, placing sensors and data collection (approximately 1 h).
The following tasks were included in the protocol:

• Row on a rowing machine
• Move a 20-lb object from one table to another
• Ride an exercise bicycle
• Rest on a chair for three minutes
• Set up dinner and clean up the table
• Walk on the treadmill
• Drink water
• Type a one-page document
• Lie down for three minutes

Figure 2. Data collection setup. (a) Individual with wearable sensors and (b) physical layout.

Figure 3. Panoramic view of the data collection space highlighting some of the stations.
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In order to ensure that we capture enough transitions between the different activities,
the participants were asked to perform short activities (e.g., moving a 20-lb object) four times
throughout the protocol and longer activities (e.g., walking on the treadmill) two times. Participants
were also asked to perform complex activities such as typing a document or setting up a dinner
table at their own pace. The first half of the protocol was the same as the second half of the protocol.
This was done so we can use the first half for training and the second for prediction in order to mimic
more realistic scenarios in which only historic information is available to predict future instances.
The sensors used for data collection are:

• BioHarness: This sensor [17] is an off-the-shelf sensor that can measure subject’s heart rate
(beats per minute), breathing rate (breaths per minute), acceleration (g), skin temperature (◦C)
and activity levels. This device has an adjustable chest strap, and it is worn by the volunteer
throughout the data collection process. We collected accelerometer, EKG (electrocardiogram) and
breathing rate. The sampling rate was 100 Hz, 250 Hz and 25 Hz, respectively.

• Shimmer Platform: Each sensor in this platform [18] contains an off-the-shelf inertial measurement
unit, which has a three-axis low-noise accelerometer, a three-axis gyroscope and a three-axis
magnetic sensor, which measures acceleration, orientation and magnetic field, respectively. Five
of these devices were worn: two on the wrists, two on the legs and one on the chest. The sampling
rate for these devices was set to 202 Hz. In addition to the IMU unit, the Shimmer sensor [18] on the
chest can record EKG signals. We use this sensor to record the EKG measurements at a sampling rate
of 202 Hz.

• Smartphone: A Motorolla Moto E (2nd Generation) was used in the experiment to give instructions
to the user. The user was given instructions through an application called TaskTracker (see Figure 4
for a snapshot). This tool was developed in house. The user interacts with the protocol by pressing
“Next”, “Play”, “Stop” or “Previous”. If something goes wrong during an ongoing segment, the
user can press “Previous” to go back to the last segment. The app beeps when the task starts
or ends and also includes a countdown timer for certain instructions. This helped us to sync
between activities and also allows the participant to move at his/her own pace and indicate
when the activity is complete and he/she ready to move on to the next task. The interactions
with the app are stored locally and used as ground truth for the activity labels. We also use an
application called ScienceJournal [19] to record the phone’s accelerometer data (x, y and z axes)
for alignment purpose.

Figure 4. Data alignment and snapshot of protocol, (a) after preprocessing (the highlighted orange
regions shows a minor misalignment between the peaks caused due to jumps on each device), (b) after
post-processing (the highlighted green regions showing the corrected alignment via a manual process)
and (c) snapshot of the protocol from the TaskTracker app.
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For this study, we use the respiratory and heart rate measurements from the BioHarness sensor and
accelerometer data from Shimmer sensors. We also use the accelerometer data from the smartphone and
BioHarness sensor, but only for data alignment purpose; this is discussed in Section 2.3. Prior studies
have used smartphone accelerometer data and have shown that even though it is possible to do activity
recognition with smartphone data, they are not suitable for activities and motions that incorporate
upper limb motion [20]. Motion artifacts (caused due to movement of the sensor while recording)
and poor contact of the sensor can influence the heart rate and respiration rate measurements, thus
making them unusable in the analysis. According to [2,21], the BioHarness was found to provide
reasonably accurate heart rate and respiratory rate measurements during exercises of varying intensity.
In our experiments, we noticed consistent good signal quality when the sensor was properly secured
to the individual. However, several individuals had low quality signals with motion artifacts when
the BioHarness had poor contact with the skin. Due to this issue, only the data from five subjects are
used for this study.

Figure 1 shows a snapshot of the different data streams that are used. The figure also highlights
transition regions; these are the times when a subject was switching between activities. It is worth
pointing out that the physiological quantities vary during these transition regions; we can see for
instance a clear drop in heart rate and respiration rate in the highlighted green regions in Figure 1.

2.3. Data Alignment

Data alignment is a key step in analyzing multi-modal data streams. We use the smartphone
accelerometer data to align the different data streams. The protocol followed by the subject has a start
and end sequence where he/she were asked to jump two times, so that the jumps are captured in
the accelerometer data on all the devices. These spikes appear at the beginning and the end of the
protocol. Figure 4a shows the spikes (highlighted in orange) at the beginning of the protocol before
alignment. We see that the spikes from the jumps are evident, but they are slightly off from each other
due to time misalignment; notice the automatically picked boxes show peaks, but they are not exactly
aligned. In order to fix this, we manually align these streams. We aligned the signals using the highest
peak on the accelerometer values, which we associated with the instance in which an impact with the
ground was recorded. Since the sensors were located at different parts of the body, this could lead to
additional offsets not considered by this alignment process. However, even in this case, we do not
expect offsets greater than 100 milliseconds. Since the features extracted for this study use windows in
the order of seconds and tens of seconds, then we do not consider this a big source of error for our
analysis. The highlighted regions in Figure 4b show the outcome of this manual alignment. Figure 4c
shows an example of one set of instructions in the protocol given to the participant by the TaskTracker
app. Annotations of the data streams for data retrieval are produced automatically from the log files
generated by TaskTracker. The NCSU-ADL data and details of its content can be found in the provided
website [22].

2.4. Methodology for Forecasting

For this study, we focus on personalized models since physiological responses are known to
greatly vary across individuals, which is also observed in our dataset. We consider scenarios in which
individuals wear sensing devices for a period of time in order to provide enough data to train models
that can later be used for forecasting physiological responses into the future. As an illustration, let us
consider an individual that has a device that measures respiratory and heart rate and a separate device
that only measures heart rate. In the proposed framework, we can record data from the first device
(which has both sensing modalities) for a period of time, and then provide predictions into the future
for respiratory and heart rate when the user is using either one of these devices. As more data are
collected from the user, these models can be improved by re-training the models in a smartphone
platform or the cloud.
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In the rest of this subsection, we discuss our pipeline to forecast physiological responses (see
Figure 5). Features extracted from the accelerometer data are projected to a lower dimension via
locally linear embedding (LLE); this is a dimension reduction technique (discussed in Section 2.4.1).
Unsupervised clustering is then performed on these lower dimensional features to group similar
activities together (discussed in Section 2.4.2). Windows in the past of physiological sensor data,
namely breathing rate and heart rate, are extracted and used to create models for each cluster (discussed
in Section 2.4.3). We propose an ensemble approach for forecasting of physiological responses by
incorporating activity information from multiple scales (discussed in Section 2.4.4). For every test point,
we repeat a similar procedure of extracting features and windows to find which cluster it belongs to
and further use the model trained for that particular cluster to forecast these physiological quantities.
We use standard evaluation metrics (discussed in Section 2.4.5) for analysis of the models. Different
components of the pipeline are described in the following sub-sections.

Figure 5. Pipeline for forecasting of physiological parameters.

2.4.1. Extracting Features and Windows of Data

In this subsection, we go over how windows of data and features are extracted for activity
clustering and training our predictive models. First, a brief overview of activity recognition
is presented.

Real-time activity recognition has been widely studied in the past, and the most commonly-used
feature extraction techniques rely on a sliding window-based approach for extracting various statistical,
time-domain, frequency-domain and time-frequency features [23–25]. The effect of window length on
classification accuracy has been studied in the past [26–30], suggesting optimal values ranging from
0.25–12.8 s [31–33]. However, a single fixed window size might not work best for all activities [31,34],
so a dynamically-varying window size was proposed in [35,36]. Furthermore, window size
affects computational cost and thus power consumption; a major concern in wearable sensors
computing [37–39], especially for multi-modal data streams.

For our application, choosing an optimal window size τ translates to extracting features that
properly discriminate between activities at the right temporal scale. It is desirable to have similar
activity clusters close to each other, while dissimilar activities farther away. In order to select the values
of τ1 and τ2, we performed an analysis similar to the one presented in our prior work [40]. In this work,
a classifier is used to determine the pair (τ1, τ2) that yields the best F1 score for activity recognition.
This classifier combines activity label predictions from features using either τ1 or τ2 window sizes
via a maximum likelihood approach. These values for τ are also consistent with the range between
0.25 and 12.8 s, which has been previously reported in the literature for best classification [31–33].
Therefore, we use values obtained from this analysis: τ1 = 1 s and τ2 = 3.5 s.

We use acceleration data from one leg and one wrist sensor; this ensures that we capture both
upper and lower body activities (e.g., bicycling will be captured by the leg sensor and drinking water
will be captured by the wrist sensor). Specifically, in our analysis, we use acceleration data from the
left wrist and right leg. Time domain features extracted for each joint are the mean, variance, skewness,
kurtosis and correlation between the axis (xy, yz and xz); frequency domain features are mean power
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spectral density and peak power spectral density. The dimensionality of the feature set was 42; this
was reduced using locally linear embedding to dimension 3.

These multi-modal data streams have different sampling rates, i.e., the numbers of data points
per stream are different. We interpolated the heart rate and breathing rate to 1 Hz. Interpolation is
necessary in order to have data points for all time values used to make predictions. Raw breathing rate
and heart rate were extracted over windows in the past (δest) of size 20, 30, 40 and 50 s and used as
predictors to assess the impact of the different sizes of windows on the forecasting results.

2.4.2. Unsupervised Clustering of Activities

Unsupervised clustering was performed on the reduced acceleration features using the revised
DBSCAN (density-based spatial clustering of applications with noise) method [41], which is more
robust to the issue of border objects than the original DBSCAN [42]. The clustering radius ε is used in a
hierarchical fashion. We start with a small radius and increase it gradually until we reach an ε at which
all points belong to the same cluster. The ε range chosen during these experiments was 0.0002–0.06.
Figure 6 shows an example of one such clustering for a fixed ε value. We colored points using the
manual activity labels for visualization purposes only. We can see that similar activities are clustered
close together, and dissimilar ones are far away from each other.

Figure 6. Visualization of different clusters with their true activity labels after performing unsupervised
clustering on the acceleration features.

The clustering radius governs the number of clusters in a level of the hierarchy. Small values of
ε (radius parameter) have a larger number of clusters, but as the ε increases, some of these clusters
start merging with others to create more compact clusters. Figure 7a, shows number of clusters (log
scale) versus the clustering radius for the 5 subjects in the study. We see that as the ε value increases
the number of clusters drops.
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Figure 7. (a) Number of clusters shown on a log scale versus the clustering radius, (b) number of
clusters shown on a log scale versus the clustering radius after removing the outlier clusters.

We choose an unsupervised methodology to address real-time scenarios when it is not feasible to
manually segment and label activities. Activity-aware models have been used in the context of energy
expenditure in [43]; the authors generate activity clusters using unsupervised clustering to accurately
estimate energy expenditure. Inspired by this idea, we decided to use unsupervised clustering to group
activities into different categories. Moreover, for predicting physiological parameters, recognizing
exactly which activities the subjects are performing is unnecessary; however, it may be helpful to cluster
activities with similar movement properties (e.g., intensity or pattern) because similar movements
might have a similar effect on physiological responses.

2.4.3. Learning Models

Modeling physiological signals has drawn considerable attention in the past 30 years. Numerous
studies have studied the relationship among different physiological responses and physical activities.
For example, Xiao et al. [11] take advantage of physical activities data to forecast the heart rate with
the evolutionary neural network. However, few studies have focused on real-time respiratory rate
forecasting using activity information, although it is well understood that physical activities have
a significant effect on respiratory rate [44].

In our forecasting pipeline, we adopt an SVM regression model with a Gaussian kernel. The kernel
scale was decided using a heuristic procedure provided by MATLAB when the corresponding
parameter is set to be “auto”. We also perform an analysis by replacing the SVM regression model
with a simple linear model to further analyze the relationship between predictors.

Any clusters that have less than 5 points are considered as outlier clusters and are excluded from
the training procedure. Figure 7b, illustrates the number of clusters actually used for training models
after the outlier clusters are removed; we observe that the number of clusters reduces significantly.
Models are trained per cluster to forecast for a period δ f = 10, 30 and 60 s for τ1 and τ2 (window
parameters for activity clustering). The predictions for a future data point at tk + δ f are made based
on the data from [tk − δest, tk]. The range of δ f depends on the application of interest. Models were
trained for the following scenarios:

• Predicting breathing rate when breathing rate is measured: This scenario is of interest when
a device such as a chest strap with a breathing rate sensor is worn by the subject.

• Predicting breathing rate with heart rate measurements only: Most of the wearable devices
available today measure heart rate, but not respiratory rate. This model then is useful when
we do not have a chest strap.

• Predicting breathing rate with heart rate and breathing rate measurements: This model uses
a combination of both breathing rate and heart rate, when both quantities are available from the
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sensors. This model was specifically trained to determine if past heart rate values were helpful to
forecast breathing rate.

• Predicting heart rate when heart rate is measured: Heart rate is the most commonly-measured
quantity by fitness devices; this model forecasts heart rate.

• Predicting heart rate with breathing rate measurements only: This model was designed when
the heart rate is not available, but the breathing rate is measured. We consider this model for
completeness of our analysis even though we anticipate that most scenarios will have heart rate
accessible, as well.

• Predicting heart rate with heart rate and breathing rate measurements: This model uses
a combination of both breathing rate and heart rate, when both quantities are available from
the sensors. This model was specifically trained to determine if past breathing rate values were
helpful to forecast heart rate.

Experiments were also conducted to determine if the features from the accelerometer data could
be used as direct predictors (in conjunction with other physiological measurements) for heart rate
(HR) and breathing rage (BR). We found that they did not improve performance, so we do not report
those results.

2.4.4. Ensemble Modeling

Models generated from τ1 and τ2 are combined using an ensemble methodology. We first divided
the data into two blocks. The training and cross-validation set were chosen from the first block, while
the second block was used for testing. We created four datasets by shifting the sampling windows in
the first block of the data. The training dataset has a sampling rate of 2 samples per second, while the
shifting distances are 0 s, 0.15 s, 0.3 s and 0.45 s respectively. The cross-validation set is the one with
a 0-s shift.

For each point xi (i.e., a location in time for which we want to predict a physical response in the
future) in the cross-validation set, we obtain a pair of clusters (Cτ1i, Cτ2i), where Cτ1i and Cτ2i are the
activity clusters that xi belongs to for window parameter τ1 and τ2. We denote yi as the true response
value associated with the sample xi and ŷτ1(xi) and ŷτ2(xi) as the predictions for parameters τ1 and
τ2, respectively. Predictions ŷτ1(xi) and ŷτ2(xi) are computed by using the SVM regression model as
discussed in Section 2.4.3. Furthermore, we compute the empirical error on the cross-validation set
associated with the cluster pair (p, q) as:

Eτ1,pq =
1

npq
∑

{i | (Cτ1 i=p,Cτ2 i=q)}
|ŷτ1(xi)− yi| (1)

and:
Eτ2,pq =

1
npq

∑
{i | (Cτ1 i=p,Cτ2 i=q)}

|ŷτ2(xi)− yi| (2)

where npq is the number of points in the cluster pair (p, q). Eτ1,pq and Eτ2,pq are estimates of the expected
errors if τ1 or τ2 were used for forecasting. For all points in the test set we use the ensemble scheme in
Algorithm 1 to get new predictions, which returns the prediction that minimizes the expected error
given that a sample from the cluster pair (p, q) is observed.

Algorithm 1 Ensemble scheme.

1: procedure PREDICT

2: Compute Cτ1 , Cτ2

3: if Eτ2,pq > Eτ1,pq then return ŷτ1

4: else if Eτ2,pq < Eτ1,pq then return ŷτ2

5: else return (ŷτ1+ŷτ2 )
2
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2.4.5. Evaluation Metrics

We adopted two metrics: the root mean square error (RMSE) and normalized root mean square
error metric (NRMSE), to evaluate the forecasting results. The NRMSE is obtained by normalizing the
RMSE by the difference between the maximum and minimum values of the signal [45].

RMSE =
n

∑
i=1

√
1
n
(yi − ŷi)2 (3)

and

NRMSE =
n

∑
i=1

√
1
n (yi − ŷi)2

(ymax − ymin)
(4)

where {y1, y2, ..., yn} are the ground truth response values, ymax and ymin are the maximum and
minimum values, respectively, of the response variable observed for a subject, {ŷ1, ŷ2, ..., ŷn} are the
predicted values and n is the number of test points.

3. Results for Cluster-Aware Methodology and Discussion

The proposed pipeline was tested on 5 subjects. Half of the data were used for training and
the other half for testing for each individual. This is done in order to mimic a scenario in which
historical data of an individual are used to train a personalized model for predictions into the future.
As discussed in Section 2.4.1, we use the window sizes τ1 = 1 and τ2 = 3.5 for activity clustering.
Physiological parameters do not change as quickly as the activities, so we need to pick larger windows
to capture the variation from the data streams corresponding to physiological parameters. We show
our analysis for forecast periods δ f = 10, 30 and 60 s, for which we picked historical windows with
δest = 20, 30, 40, and 50 s in the past. We go only up to a 60-s forecast since in the dataset, we had
activities that spanned for only a couple of seconds.

The clustering radius was chosen to be in the 0.0002–0.06 range. Since clusters merged much
faster when the radius is small, the intervals between two tested radii are exponentially distributed
between 0.0002–0.0147. Then, one single large radius 0.06 was tested for the situation where all the
clusters have merged for all the subjects.

For each subject, we divided the data into two blocks. The training and cross-validation set
were chosen from the first block, while the second block was used for testing. Because of the
essential randomness of the clustering and regression models, we adopted two approaches to make the
evaluation results more stable: (1) We created four training datasets by shifting the sampling windows
in the first block of the data. The training dataset has a sampling rate of two samples per second,
while the shifting distances are 0 s, 0.15 s, 0.3 s and 0.45 s respectively; (2) To obtain more testing data,
the testing dataset has a higher sampling rate of 2.35 samples per second. Due to the limited amount of
data per subject, the cross-validation set was chosen to be the set with a zero-second shift and trained
independently of our models using the three remaining sets.

Although we performed the analysis on an individual level, this can also be extended to
population level models if enough data are available.

3.1. Effect of the δest Parameter on the Forecast

We choose different windows in the past over the physiological signals in order to assess the
impact on the forecast error. The windows (δest) chosen were 20, 30, 40 and 50 s. In Figure 8, we plot
the NRMSE (averaged over all subjects) as a function of ε for the model predicting BR from HR using
our cluster SVM strategy. Similar patterns were observed for other prediction models.

We observe that δest = 50 gives the lowest NRMSE for all forecast windows. Hence, we decided
to choose δest = 50 s as our parameter for further analysis.
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Figure 8. Illustration of the effect of the δest parameter on the NRMSE for the model predicting
breathing rate (BR) from heart rate (HR) for a (a) 10-s, (b) 30-s and (c) 60-s forecast.

3.2. Cluster Analysis

We perform a hierarchical analysis on the clustering parameter to understand the effect of changes
in the clustering as the ε parameter increases. Figure 9 shows the NRMSE for the prediction of BR
from HR using our cluster SVM strategy as a function of the clustering radius ε for two subjects in the
study, as well as the number of clusters as a function of ε. These clusters correspond to the clusters
remaining after outlier removal. In the figure, the plots for δ f = 10, 30, 60, s are shown.

Figure 9. NRMSE and cluster count as a function of ε values (i.e., clustering radius) for two participants.
(a,b) correspond to τ1 and τ2 for Subject A and (c,d) correspond to τ1 and τ2 for Subject B, respectively.
For each δ f , we show the NRMSE for the selected τ values.

These plots illustrate that for Subjects A and B, we see that changes in the cluster count have
a significant effect on the NRMSE. Specifically, we see that smaller values of ε (i.e., more clusters
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are present) produce lower NRMSE. As the cluster count drops to one, we see a large increase in
the NRMSE values. For both Subjects A and B, we see that with the appropriate number of clusters,
a lower NRMSE can be achieved.

To further study the clustering outcomes, we analyze the correspondence between clusters and
available activity labels from the dataset. Figure 10 shows the distributions of data points in each
cluster over the different activity labels for one subject. We show the results for ε = 0.0002 for which
there is the largest number of clusters. In order to visualize the sample distributions in each cluster
more clearly, we filtered out the clusters with less than 20 samples in Figure 10. The total number
of samples in each cluster is shown in the column labeled “Sum”. From the figure, we observe that
different activities can be mostly associated with one or two clusters. We also observe that samples
from activities: (3) “carrying a box,” (5) “drinking,” (7) “set dinner table” and (8) “clean up a table”
were either merged with other activity clusters or filtered out. This is expected since these activities do
not show motion patterns that are as distinctive as other activities such as running, rowing or bicycling.
Considering these activities’ effect on physiological responses, it is reasonable to merge those activities
with other low-intensity activities such as resting or walking and not train specific models since they
are likely to have similar physiological responses.

Figure 10. Distributions of data points in each cluster for one subject for the two values of τ used in
this study. The activity IDs correspond to: (1) unlabeled, (2) rowing, (3) carrying a box, (4) bicycling,
(5) drinking, (6) rest, (7) set dinner table, (8) clean up a table, (9) walking, (10) typing and (11) laying down.
(a) τ = 1 s, (b) τ = 3.5 s.

3.3. Forecasting Breathing Rate

In this subsection, we perform prediction of breathing rate using our proposed approach.
We analyze and compare predictions from τ1, τ2 and ensemble methods. Models were trained for
different scenarios: BR present, HR present and both BR and HR present. The results are shown in
Figure 11. Columns 1, 2 and 3 show average NRMSE values for a forecast of 10, 30 and 60 s, respectively,
for τ1, τ2 and ensemble predictions.

Each row in the figure depicts the following:

• Prediction of BR with only HR (past) using an SVM regression (Gaussian kernel model).
• Prediction of BR with only HR (past) using a linear model.
• Prediction of BR with only BR (past) using an SVM regression (Gaussian kernel model).
• Prediction of BR with only BR (past) using a linear model.
• Prediction of BR with both BR and HR (past) using an SVM regression (Gaussian kernel model).
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• Prediction of BR with both BR and HR (past) using a linear model.

These results show (Figure 11, Rows 1 and 2) that using heart rate can be useful to forecast
breathing rate when the latter is not measured. In the SVM case (Row 1), smaller ε values
(more clusters) result in a lower NRMSE as compared to larger ε value (fewer clusters). For ε ≈ 0.010,
we observe that the average NRMSE values increase dramatically as the number of clusters decreases
(i.e., ε increases). However, the linear model (Row 2) does not show the same pattern, indicating that
clustering does not help this model to predict BR from HR only.

The average standard deviation reported in Table 1 corresponds to the average over all subjects of
the standard deviation of all the predictions obtained per subject. Comparing the values from Table 1,
we see that clustering SVM performs best for a 10- and 30-s forecast, while for a 60-s forecast, the
clustering linear and clustering SVM methods perform similar to each other. This indicates that for
predicting BR from HR, clustering improves performance.

Table 1. Table showing NRMSE for the prediction of breathing rate using different predictors. Highlighted
text in blue and green shows the lowest and second lowest (respectively) NRMSE values for 10, 30 and
60 s for each scenario. Units: HR, beats per minute; BR, breaths per minute.

Forecasting
Period Method HR for BR

NRMSE (avg std)
BR for BR

NRMSE (avg std)
HR + BR for BR

NRMSE (avg std)

Linear 0.212 (0.23×10−5) 0.071 (0.49×10−5) 0.071 (0.52×10−5)
SVM 0.238 (0.46×10−2) 0.193 (0.43×10−2) 0.180 (0.91×10−2)
RF 0.216 (0.09×10−2) 0.117 (0.09×10−2) 0.115 (0.11×10−2)

Cluster SVM 0.179 (0.35×10−2) 0.179 (0.55×10−2) 0.171 (0.52×10−2)
10 s

Cluster Linear 0.198 (0.23×10−2) 0.071 (0.01×10−2) 0.072 (0.01×10−2)

Linear 0.215 (0.34×10−5) 0.166 (0.64×10−5) 0.163 (0.66×10−5)
SVM 0.248 (0.99×10−2) 0.213 (0.22×10−2) 0.223 (0.32×10−2)
RF 0.225 (0.12×10−2) 0.193 (0.10×10−2) 0.189 (0.12×10−2)

Cluster SVM 0.189 (0.55×10−2) 0.190 (0.58×10−2) 0.185 (0.22×10−2)
30 s

Cluster Linear 0.202 (0.37×10−2) 0.164 (0.04×10−2) 0.164 (0.04×10−2)

Linear 0.212 (0.59×10−5) 0.207 (0.54×10−5) 0.200 (0.81×10−5)
SVM 0.252 (0.39×10−2) 0.230 (0.20×10−2) 0.243 (0.56×10−2)
RF 0.227 (0.11×10−2) 0.234 (0.08×10−2) 0.234 (0.18×10−2)

Cluster SVM 0.210 (0.36×10−2) 0.209 (0.10×10−2) 0.205 (0.19×10−2)
60 s

Cluster Linear 0.209 (0.03×10−2) 0.207 (0.01×10−2) 0.201 (0.02×10−2)

In the case where we predict BR with only past BR (Rows 3 and 4), the linear model and clustering
linear perform the best, but give similar performance to each other. This indicates that a linear model
is sufficient if historical values are observed when we are considering a short forecasting window.
Clustering does not help in this scenario.

For the case of predicting BR with past HR and BR values (Rows 5 and 6), we observe that
the linear model is sufficient to predict BR. Note that linear on around 10 clusters also shows a
similar performance as the linear model on a single cluster. The differences between the values is not
significant. From Table 1, we observed that the models that use past BR perform just as well as the
models that use past HR and BR values, which indicates that HR does not contribute much to the
prediction when BR is present.
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Figure 11. Average NRMSE versus clustering radius ε for respiratory rate forecasting. Columns 1, 2
and 3 show average NRMSE values for a forecast of 10, 30 and 60 s, respectively. Rows 1 and 2: Forecast
of BR with HR only with cluster SVM regression (Gaussian kernel) and cluster linear regression,
respectively; Rows 3 and 4: Forecast of BR with past BR with cluster SVM regression (Gaussian kernel)
and cluster linear regression; Rows 5 and 6: Forecast of BR with past BR and HR with cluster SVM
regression (Gaussian kernel) and cluster linear regression, respectively.

3.4. Forecasting Heart Rate

In this subsection, we perform the prediction of heart rate using our proposed approach.
We analyze and compare predictions from τ1, τ2 and ensemble methods. Figure 12 shows the results
from three models trained for forecasting heart rate using SVM with the Gaussian kernel and the
linear model.
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Figure 12. Average NRMSE versus clustering radius ε for heart rate forecasting. Columns 1, 2, 3 and 4
show RMSE values for a forecast of 10, 30 and 60 s, respectively. Rows 1 and 2: Forecast of HR with
BR only with cluster SVM regression (Gaussian kernel) and cluster linear regression, respectively;
Rows 3 and 4: Forecast of HR with past HR with cluster SVM regression (Gaussian kernel) and cluster
linear regression; Rows 5 and 6: Forecast of HR with past BR and HR with cluster SVM regression
(Gaussian kernel) and cluster linear regression, respectively.

Row 1 shows the NRMSE obtained by using an SVM regression (Gaussian kernel) on past HR for
forecasting for τ1, τ2 and the ensemble method. We see a similar pattern for 10-, 30- and 60-s forecasts.
Smaller ε gives lower NRMSE values, while larger values result in larger NRMSE values. Similar
patterns are observed for other models HR for HR and HR + BR for HR (Rows 3 and 5).
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The average standard deviation reported in Table 2 corresponds to the average over all subjects of
the standard deviation of all the predictions obtained per subject. In the case of predicting HR with BR
from Table 2, we see that the clustering SVM performs the best for all forecast windows. This indicates
that having clusters helps in this scenario.

In the case of predicting HR for HR, clustering linear performs the best for 10-, 30- and 60-s
forecasts. Note that the linear model shows performance similar to the clustering linear model.

In the case of predicting HR using HR and BR, we see that a linear model is sufficient to predict
HR. We also note a similar observation as in case of predicting HR for HR; the clustering linear and
linear models show the same performance. From Table 2, we observed that the models that use past
HR perform just as well as the models that use past HR and BR values, which indicates that BR does
not contribute much to the prediction when HR is present.

Table 2. Table showing NRMSE for the prediction of heart rate using different predictors. Highlighted
text in blue and green shows the lowest and second lowest (respectively) NRMSE values for 10, 30 and
60 s for each scenario. Units: HR, beats per minute; BR, breaths per minute.

Forecasting
Period Method BR for HR

NRMSE (avg std)
HR for HR

NRMSE (avg std)
HR + BR for HR

NRMSE (avg std)

Linear 0.225 (1.16×10−5) 0.121 (0.59×10−5) 0.121 (0.60×10−5)
SVM 0.238 (0.61×10−2) 0.186 (0.23×10−2) 0.188 (0.19×10−2)
RF 0.238 (0.13×10−2) 0.140 (0.07×10−2) 0.139 (0.13×10−2)

Cluster SVM 0.200 (0.62×10−2) 0.166 (0.48×10−2) 0.178 (0.47×10−2)
10 s

Cluster Linear 0.220 (0.26×10−2) 0.120 (0.04×10−2) 0.121 (0.01×10−2)

Linear 0.226 (0.75×10−5) 0.166 (0.96×10−5) 0.162 (0.77 ×10−5)
SVM 0.246 (0.56×10−2) 0.235 (0.14×10−2) 0.214 (0.22×10−2)
RF 0.250 (0.16×10−2) 0.200 (0.08×10−2) 0.177 (0.08×10−2)

Cluster SVM 0.215 (0.11×10−2) 0.206 (0.25×10−2) 0.195 (0.19×10−2)
30 s

Cluster Linear 0.225 (0.02×10−2) 0.160 (0.09×10−2) 0.162 (0.02×10−2)

Linear 0.229 (0.66×10−5) 0.204 (0.63×10−5) 0.197 (0.90×10−5)
SVM 0.252 (0.44×10−2) 0.269 (0.57×10−2) 0.236 (0.48×10−2)
RF 0.256 (0.07×10−2) 0.230 (0.09×10−2) 0.203 (0.21×10−2)

Cluster SVM 0.220 (0.29×10−2) 0.219 (0.34×10−2) 0.211 (0.17×10−2)
60 s

Cluster Linear 0.229 (0.01×10−2) 0.200 (0.43×10−2) 0.198 (0.04×10−2)

3.5. Comparison between Cluster-Aware Prediction and Traditional Modeling Methods

We compared our methodology to four state-of-the-art forecast/regression approaches:
linear regression (LR), SVM regression with a Gaussian kernel (SVM) and random forest regression
(RF). The train and test data was the same as used for our proposed approach.

Table 1 shows the prediction performance of each of these methods for forecasting windows δ f
of 10, 30 and 60 s. Traditional modeling methods used in this setup are equivalent to having one
cluster; a single model is trained over all the training data. For SVM regression with a Gaussian kernel,
we choose the kernel scale heuristically. Random forests were trained for 50, 100, 150 and 200 trees
in the model. We report the results for the random forest model that gave us the best performance
(150 trees). All algorithms are implemented in MATLAB using the Econometrics Toolbox.

In Table 1, we highlight the methods that gave us the best results (highlighted in blue). When it
comes to forecasting BR just with HR measurements, the ensemble method with SVM regression
is the best choice. These results are comparable to the errors seen when BR measurements are
available. This is a strong indicator that HR can be used to forecast BR within the experimental setup
under consideration.

In the case of forecasting BR with past BR, we expect BR to be linearly related to past BR, i.e., the
linear model should perform better in this case. Table 1 (column for “BR for BR”) shows that for
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10-, 30- and 60-s forecasts, the cluster linear model and linear model perform the best with a small
difference between them.

Using both HR and BR to forecast BR, we see that the linear regression without clustering performs
better for all forecast windows. We observe that the terms associated with HR are not significant (large
p-values); only past BR values are dominant in the prediction. Hence, we see similar results as for the
case when we predict BR with past BR values only.

In terms of forecasting HR, we note the following observations from Table 2. Forecasting HR with
past BR shows the same pattern as in the case of forecasting BR with past HR. Cluster SVM gives the
lowest NRMSE for all forecast windows. We note that in cases of cross-modality forecasts, a non-linear
model captures the non-linearity in the relationship between HR and BR and that clustering helps in
this scenario.

Forecasting HR with past HR values also shows similar results as in the case of forecasting BR with
past BR. Finally, using past BR and HR to forecast HR, we see that the linear and cluster linear methods
are interchangeable, giving the lowest NRMSE, with a slight difference in the values. The models yield
values similar to the one returned by the model where we use past HR to forecast HR. This along with
the coefficient analysis indicates that the past BR values are not contributing to the model.

Figures 13 and 14 show predictions for a subject for the models that perform best for each scenario.
We overlay the forecasts with the ground truth.

Figure 13. Illustration of forecast breathing rate for a subject. For each scenario, the best performing
models are seen in Table 1. Forecasts (red) are overlaid on the ground truth (blue) waveform.
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Figure 14. Illustration of forecast heart rate for a subject. For each scenario, the best performing models
are seen in Table 2. Forecasts (red) are overlaid on the ground truth (blue) waveform.

4. Conclusions

We propose a pipeline to forecast physiological parameters consisting of models based on an
unsupervised physical activity clustering. Forecast results for a subject are shown in Figures 13 and 14.
We experimented with different types of models to study the relationship between the physiological
quantities and physical activities. Detailed experiments were also conducted to study the effects of
different window sizes and clustering radius in the pipeline.

We demonstrate that clustering based on activities and only using past heart rate (HR) values
is sufficient to forecast breathing rate (BR) in our experimental setting. The results for this scenario
are comparable to forecasting BR just with the history of BR, thus indicating that HR in conjunction
with activity clusters is a good predictor and can help in cases when we do not have BR measurements.
A similar trend is seen for the scenarios of predicting HR with BR and activity clusters.

Results show that clustering does not help much in cases where we forecast BR with past BR
values and HR with past HR values. For both of these scenarios, we see that the linear model and
cluster linear model perform similar to each other. This is true for the case when we predict BR with
past BR and HR values and HR with past BR and HR values. All of these scenarios indicate that
a linear model is sufficient for these cases. In cases where the prediction is across modalities (i.e., HR
for BR and BR for HR), we conclude that clustering is beneficial to get a lower NRMSE as compared to
the non-clustering methods.

We aim to extend this work in a number of ways in order to design more accurate models that
incorporate environmental factors, as well as cognitive and affective states [46]. From an environmental
perspective, we will aim to add sensing modalities that capture temperature, humidity, concentrations
of particulate matter, etc. In order to capture affective state information, we can make use of sensors
such as galvanic skin response (GSR) sensor, which are known to be correlated with arousal [47].
Furthermore, more contextual information can be utilized, as well, by providing location information
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(e.g., GPS) or surrounding noise-levels. For these extensions, the outcomes of this study can serve as
a guideline for the use of appropriate predictive models and provide a baseline for the levels of
accuracy that should be expected.
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