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Abstract

The evolution of the winemaking industry towards intelligent and digitalized systems is
crucial for precision winemaking and ensuring product safety. In this context, the Internet
of Things (IoT) provides a key strategy for real-time monitoring and data management
throughout the winemaking process. However, comprehensive multi-parameter IoT-based
monitoring and time-series prediction of physicochemical parameters during storage are
currently lacking, limiting the ability to assess storage conditions and provide early warning
of quality deterioration. To address these gaps, a multi-parameter IoT monitoring system
was designed and developed to track conductivity, dissolved oxygen, and temperature in
real time. Data were transmitted via a 4th-generation (4G) mobile communication module
to the TLINK cloud platform for storage and visualization. An 80-day storage experiment
confirmed the system’s reliability for long-term monitoring, and analysis of parameter
trends demonstrated its effectiveness in assessing storage conditions and wine quality
evolution. Furthermore, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),
Temporal Convolutional Network (TCN) models, and Autoregressive Integrated Moving
Average (ARIMA) were implemented to predict physicochemical parameter trends. The
TCN model achieved the highest predictive performance, with coefficients of determina-
tion (R?) of 0.955, 0.968, and 0.971 for conductivity, dissolved oxygen, and temperature,
respectively, while LSTM and GRU showed comparable results. These results demonstrate
that integrating IoT-based multi-parameter monitoring with deep learning time-series pre-
diction enables real-time detection of abnormal storage and quality deterioration, providing
a novel and practical framework for early warning throughout the wine storage process.

Keywords: wine storage; physicochemical parameters; deep learning; IoT; time series
prediction

1. Introduction

Rosé wine has gained increasing popularity among younger consumers in recent
years [1] due to its pink hue, fruity aroma, low alcohol-by-volume, and sessionable profile,
resulting in a steady rise in both production and sales [2]. Compared to red and white
wines, rosé wine is more vulnerable to external factors such as temperature and oxygen
during storage [3]. Dissolved oxygen is a direct participant in the oxidation process of
wine. The higher the concentration of dissolved oxygen, the more complete and faster
the oxidation reactions proceed, making it a core factor leading to wine spoilage [4,5].
An increase in wine temperature significantly accelerates the rates of various biochemical
reactions in the wine, including oxidative reactions that cause spoilage [6], leading to a
faster loss of fresh fruit aromas and the development of off-flavors [7]. Changes in electrical
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conductivity—usually an increase—can serve as an indicator of oxidative deterioration, as
it reflects the rising concentration of ions produced by oxidation reactions in the wine [8],
suggesting that irreversible chemical spoilage may have already occurred [9]. Therefore,
real-time monitoring of these critical parameters during the storage phase is essential for
maintaining product quality, extending shelf life, and achieving precise quality control.

Traditional methods for measuring dissolved oxygen, electrical conductivity, and
temperature in liquids primarily rely on manual sampling and offline analysis, which are
cumbersome and result in significant delays in obtaining data [10]. With the development of
Internet of Things (IoT) technologies toward miniaturization and low power consumption,
real-time, in situ monitoring of multiple parameters has become increasingly feasible.
A wireless monitoring system was developed using Arduino-based technology, with sensor
nodes embedded in barrel bungs to measure physical and chemical parameters, including
temperature, of wine during barrel aging [11]. In [12], a multipurpose and low-cost sensor
was presented for monitoring the temperature of wine in barrels during two of the most
important stages of winemaking: fermentation and maturation. Morais et al. [13] developed
a distributed monitoring system based on IoT to monitor temperature, dissolved oxygen,
and other parameters during Tawny Port wine aging in oak barrels. Online monitoring
methods for electrical conductivity in wine have been proposed in a study [14]; however,
monitoring methods based on IoT technology have not yet been reported in the literature.

A large volume of historical time-series data on the physicochemical parameters of
wine can be continuously monitored through IoT technology, while time-series forecasting
models can uncover underlying patterns and reveal potential future trends [15]. In the
analysis of wine-related data, time-series forecasting models have been developed to
study the trends of economic data, such as sales [16] and prices [17]; however, time-
series prediction research focusing on the physicochemical parameters of wine has not yet
been reported in the literature. In recent years, deep learning models have demonstrated
remarkable capabilities in time-series forecasting tasks due to their strong nonlinear feature
extraction and temporal dependency learning abilities. Models such as Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU), and Temporal Convolutional Networks
(TCNSs) are particularly effective in capturing long-term trends and complex temporal
dynamics [18,19], making them well-suited for forecasting over extended time horizons.
The applications of LSTM, GRU, and TCN models to the prediction of water quality
parameters have been reported [20,21].

To enable comprehensive monitoring of the wine storage process and provide early
warning of potential quality deterioration, this study designed and implemented a real-time,
Internet of Things (IoT)-based system for continuous online acquisition of dissolved oxygen,
electrical conductivity, and liquid temperature during rosé wine storage. The collected
data were transmitted to a cloud platform for visualization and management. Leveraging
these time-series physicochemical data, deep learning models were developed to predict
parameter trends. Unlike conventional single-parameter or offline monitoring methods, this
integrated approach allows continuous, multi-parameter tracking combined with predictive
analysis, providing a novel and intelligent framework for wine storage management
and serving as a methodological reference for time-series prediction of physicochemical
parameters in wine.

The overall framework of the proposed system is illustrated in Figure 1, which depicts
the process from sample monitoring to data transmission, cloud management, predictive
modeling, and decision support.
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Figure 1. Overall framework of the IoT-based monitoring and prediction system for rosé wine storage.

2. Materials and Methods

2.1. Design of the Monitoring Device for Physicochemical Parameters in Rosé Wine

GD52-RS500A (Gandan, Handan, China): The GD52-RS500A sensor is capable of
simultaneously measuring dissolved oxygen, liquid temperature, and electrical conduc-
tivity. This sensor features an integrated hardware design in which different signal types
share a common communication channel. This approach significantly reduces the overall
device size. It supports the standard MODBUS Remote Terminal Unit (MODBUS/RTU)
communication protocol with R5-485 digital signal output. The housing is made of 316L
stainless steel, a chemically stable material commonly used in fermentation tanks due to its
excellent resistance to corrosion caused by acidic substances in wine.

DR154 (USR, Jinan, China): DR154 is a high-speed, low-latency wireless data transfer
unit (DTU) based on 4th-generation (4G) mobile communication technology. Its dimensions
are extremely compact, approximately the size of a lipstick. It supports a wide input voltage
range (5 to 24 volts direct current), making it suitable for diverse application environments.
Users can configure parameters such as the gateway mode, serial port settings, and socket
server address by scanning a Quick Response code with a smartphone, instead of using a
serial cable and computer. With a built-in embedded subscriber identity module (eSIM)
card, the device connects to the network immediately upon power-up. The DTU does not
perform any processing on the data packets and transmits them directly, operating in a
transparent transmission mode.

T60D (MEAN WELL, Guangzhou, China): T60D serves as a power converter that
transforms a 220 volts alternating current input into three direct current outputs (5 volts,
12 volts, and 24 volts), with the 12 volts output specifically utilized for powering the 4G
DTU and the sensor. It delivers a stable direct current output, with a ripple noise level
of 100 mVp-p. It is also designed with overcurrent, overload, and short-circuit protection
features, thereby ensuring a high level of electrical safety.
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Table 1 lists the models and prices of the modules integrated into the monitoring
device, with a total hardware cost of 369.00 United States dollars, which is comparable to
the combined cost of separate single-parameter sensors for temperature, dissolved oxygen,
and electrical conductivity. Due to the higher level of integration in the GD52-RS5004, the
overall device volume is significantly smaller than that of conventional multi-parameter
sensors that simply combine independent modules for each parameter.

Table 1. Table of module models and prices.

Module Model Size Price (USD)
Sensor module GD52-RS500A 246.5 mm x ® 44 mm 348.00
Data transmission module DR154 DTU 74 mm X 24 mmx22 mm 14.60
Power module T60D 159 mm x 97 mm x 38 mm 6.40

The GD52-RS500A multi-parameter sensor measures electrical conductivity based on
the two-electrode principle, dissolved oxygen via the ultraviolet fluorescence principle,
and temperature using the thermistor principle. The performance specifications of the
sensor are listed in Table 2, demonstrating its capability for precise monitoring of the
physicochemical parameters of wine. The sensor incorporates a built-in control program for
automated data acquisition, periodically collecting raw electrical signals of the parameters
at a preset interval of one minute. The acquired signals are processed through amplification
circuitry and an analog-to-digital converter to obtain digital signals, which are subsequently
processed by a microcontroller. These are then transmitted via an RS-485 interface to a
4G DTU wireless transmission terminal. The DTU receives the RS-485 signals from the
GD52-RS500A sensor and establishes bidirectional communication with the TLINK IoT
platform under a transparent transmission mode. Through hardware integration and
program control, the system achieves a fully automated workflow from parameter sensing
to wireless transmission and cloud-based visualization. Figure 2 illustrates the scheme of
the monitoring device hardware structure and IoT system architecture.

Table 2. Table of the sensor technical specifications.

Parameters Detection Range Resolution Accuracy Detection Principle
Conductivity 1.0~2000 uS/cm 1uS/cm +2.5%FS Two-electrode
Dissolved oxygen 0~20 mg/L 0.01 mg/L +04 Ultraviolet fluorescence
Temperature 0~40 °C 01°C +0.3°C Thermistor
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Figure 2. Scheme of the monitoring device hardware structure and IoT system architecture.
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2.2. 10T Cloud Configuration Design

TLINK is an IoT platform that supports the development of cloud-based configurations
for a variety of application scenarios. Users log in to TLINK to create and manage virtual
devices and establish connections with monitoring devices via the MODBUS/RTU protocol.
The platform decodes data packets and visualizes real-time monitoring data. In this study,
scrolling tables and composite curves were inserted and linked to the devices for the real-
time display of three physicochemical parameters during the storage process. Subsequently,
relevant components were added and bound to the devices to present information such as
online status, connection status, and alarm status. Additional elements, including images,
time, air quality, weather, and geographic location, were also incorporated to enhance the
functionality of the monitoring interface.

2.3. Monitoring Test of Physicochemical Parameters During Rosé Wine Storage

The monitoring period of this experiment spanned from 22 April to 11 July 2025,
lasting a total of 80 days. The monitoring device was placed in the underground wine
cellar of the College of Enology, Northwest A&F University. Prior to the experiment, the
sensor was rinsed with deionized water and disinfected with alcohol, and then immersed
in a glass fermentation tank containing rosé wine, ensuring that the probes for dissolved
oxygen, electrical conductivity, and temperature were fully submerged in the wine. The
fermentation tank was subsequently sealed, and the entire device was shielded from light.
The prepared device was positioned on a flat surface within the cellar, connected to the
TLINK cloud platform, and configured to transmit real-time monitoring data. As shown in
Figure 3, the monitoring test of physicochemical parameters during rosé wine storage is
presented.
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Figure 3. Monitoring test of physicochemical parameters during rosé wine storage.

2.4. Time-Series Prediction Models
2.4.1. Data Preprocessing

The raw water quality monitoring data (dissolved oxygen, electrical conductivity,
and temperature) were stored in Excel format, containing timestamps and corresponding
measurement values. First, the “time” field was converted to the datetime type and sorted
in chronological order. To eliminate the impact of irregular sampling intervals on model
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training, the data were resampled on an hourly basis using the pandas.resample(‘H’) method
to compute the hourly mean values, and rows with missing data were removed (dropna()).

To improve training stability, all the parameters were normalized to the range [1, 1]
using the MinMaxScaler. A sliding time window of length t was then constructed, in
which the observations from the previous ¢ time steps served as input features, and the
observation at the (t + 1)-th time step served as the prediction target.

The dataset was split into training and testing sets in a 3:1 ratio according to chronolog-
ical order, ensuring that all testing data occurred strictly after the training data to prevent
information leakage.

2.4.2. Model Construction

In this study, the physicochemical data of rosé wine were used as input for three deep
learning architectures—LSTM, GRU, and TCN—to learn patterns from historical variations
and predict future trends.

LSTM, a specialized type of recurrent neural network (RNN), retains and updates
long-term dependencies through input, forget, and output gates. The proposed LSTM
model comprised two hidden LSTM layers with 64 and 32 neurons, respectively, using
the tanh activation function. A dropout rate of 0.2 was applied between layers to mitigate
overfitting, and the final output was produced via a fully connected layer.

The GRU architecture, which simplifies the LSTM design by utilizing only update
and reset gates, achieves higher computational efficiency while maintaining comparable
performance. The GRU model in this study adopted a similar configuration to the LSTM
model, consisting of two hidden layers with 64 and 32 neurons, respectively, a dropout rate
of 0.2, and a fully connected output layer.

The TCN architecture leverages causal and dilated convolutions for long sequence
modeling, offering parallel computation advantages and avoiding gradient vanishing
issues inherent in recurrent structures. The TCN model was constructed using multiple
one-dimensional convolutional layers with a kernel size of 3, dilation factors of 1, 2, 4, and
8, and 64 channels. The ReLU activation function was applied, and residual connections
were incorporated after each convolutional layer to enhance stability. Table 3 presents
the key hyperparameters of the LSTM, GRU, and TCN models, highlighting their input
features, architecture settings, and training configurations.

Table 3. Key hyperparameters of the LSTM, GRU, and TCN models.

Parameter LSTM GRU TCN
Input features 3 3 3
Time steps 24 24 24
Hidden units 64 64 64
Number of layers 2 2 3
Kernel size - - 3
Number of channels - - [64, 64, 64]
Batch size 32 32 32
Learning rate 0.001 0.001 0.001
Optimizer Adam Adam Adam
Loss function MSE MSE MSE
Epochs 100 100 100
Early stopping patience 12 12 12

As a comparison to the deep learning models, an ARIMA (AutoRegressive Integrated
Moving Average) model was constructed for each rosé wine parameter. The ARIMA model,
defined by its order (p, d, q), was fitted to the training data using maximum likelihood
estimation, and forecasts were generated for the testing set. Unlike LSTM, GRU, and
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TCN, which are data-driven neural networks capable of capturing complex nonlinear
dependencies, ARIMA is a classical statistical model that explicitly models linear temporal
correlations and trends in stationary or differenced time-series.

2.4.3. Model Training and Evaluation Indicators

The models were trained using the Adam optimizer, with the mean squared error
(MSE) as the loss function, a batch size of 32, and a maximum of 100 training epochs. An
Early Stopping strategy was employed, whereby training was terminated if the training
loss failed to decrease for 12 consecutive epochs, and the model parameters were reverted
to the best-performing weights to prevent overfitting.

The coefficient of determination for both the training set (R?,; ) and the test set (RZ,,),
along with the root mean square error for training (RMSE;,,;,,) and test (RMSE,s;), were
calculated to evaluate the performance of models. All the data preprocessing, model
construction, and training procedures were programmed in PyCharm Community Edition
2024.2.1 (JetBrains, Prague, Czech Republic).

3. Results
3.1. IoT Cloud Configuration

Figure 4 shows the interface layout of the physicochemical parameter monitoring
system’s cloud configuration. Device and connection status information are displayed in
the upper-left corner, while the right section provides weather conditions and equipment
geographical locations. A scrolling table in the lower-left corner presents the monitoring
data for the past four minutes, and the data trend curves are shown in the lower center.
Due to the significant differences in magnitude among the three parameters and their
relatively slow variation, the curves appear approximately linear. The IoT platform can
store, query, and download historical monitoring data for up to three months, facilitating
long-term trend analysis and traceability. Users can configure triggers for threshold and
disconnection alerts; when a parameter exceeds the set threshold or a device loses connec-
tion, notifications are promptly sent to administrators via text message or linked WeChat
accounts. This functionality enables wineries to quickly detect anomalies during storage
and efficiently manage and maintain monitoring devices. The cloud configuration system
is built on the open-source TLINK platform, offering wineries a fast and low-cost solution
for implementing IoT-based monitoring.
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Figure 4. The IoT cloud configuration for the rosé wine storage morning system.
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3.2. The Changes in Physicochemical Parameters in Rosé Wine During Storage

Over the 80-day storage period of rosé wine, continuous monitoring was conducted at
a 1 min sampling interval, yielding a total of 115,200 data points per parameter. The multi-
parameter monitoring device accurately measured the three physicochemical parameters
and maintained stable wireless connectivity and power supply in the underground wine
cellar, demonstrating its reliability for long-term monitoring. For ease of subsequent data
processing and analysis, the parameters were averaged hourly. Figure 5 shows the variation
curves of dissolved oxygen, electrical conductivity, and temperature during storage. The
three parameters exhibited similar overall trends, and the entire storage process was
divided into four stages (S1-S4) based on their variation characteristics, as indicated by the
dashed lines in the figure.
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Figure 5. The physicochemical parameters obtained by the rosé wine storage monitoring device,
averaged at one-hour intervals: (a) trend of dissolved oxygen over time; (b) trend of temperature
over time; (c) trend of conductivity over time.

In stage S1 (from 22 April to 24 May), all three parameters showed a gradual increase.
Dissolved oxygen rose from 7.58 mg/L to 9.80 mg/L, reaching a stable state earlier than the
other two parameters. Electrical conductivity increased from an initial value of 1689 uS/cm
to 1720 uS/cm, while temperature slowly increased from 18.9 °C to 21.5 °C. In stage S2
(from 24 May to 6 June), the three parameters remained relatively stable. Temperature
showed little variation and remained around 21.5 °C, dissolved oxygen reached a saturated
and steady state at approximately 9.95 mg/L, while electrical conductivity fluctuated within
the range of 1718-1730 uS/cm. In stage S3 (from 10 June to 24 June), the three parameters
exhibited noticeable changes. Temperature increased from 21.6 °C to 23.6 °C due to the
influence of ambient conditions, electrical conductivity rose from 1718 to 1753 uS/cm, and
dissolved oxygen showed a decreasing trend, declining from 10.00 mg/L to 9.55 mg/L.
In stage S4 (from 24 June to 11 July), the three parameters increased gradually. Temperature
rose from 23.5 °C to 24.3 °C, electrical conductivity increased from 1747 to 1759 uS/cm,
and dissolved oxygen slightly increased from 9.56 mg/L to 9.80 mg/L.
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3.3. The Time-Series Prediction Results of Physicochemical Parameters in Rosé Wine Based on
Deep Learning Models

Table 4 presents the prediction results of physicochemical parameters of rosé wine
using the LSTM, GRU, TCN, and ARIMA models based on hourly averaged data. The LSTM
model achieved test set coefficients of determination of 0.956 and 0.960 for dissolved oxygen
and temperature, respectively, which were higher than that for electrical conductivity
(R? = 0.946). The GRU model yielded slightly better predictive performance than the LSTM
model, while the TCN model further improved prediction accuracy, with all R? values
exceeding 0.950. In contrast, ARIMA, used as a baseline model, showed lower overall
performance than the deep learning models, with its highest R? being 0.946.

Table 4. Prediction results of physicochemical parameters of rosé wine using LSTM, GRU, TCN, and
ARIMA models based on hourly averaged data.

Model Parameter RZ . RMSE;, i, R%,, RMSE¢,st
Conductivity 0.973 2.489 0.946 0.718
LSTM Dissolved oxygen 0.983 0.102 0.956 0.012
Temperature 0.985 0.167 0.960 0.045
Conductivity 0.974 2413 0.947 0.712
GRU Dissolved oxygen 0.984 0.100 0.957 0.012
Temperature 0.985 0.167 0.961 0.045
Conductivity 0.977 2.297 0.951 0.695
TCN Dissolved oxygen 0.988 0.085 0.964 0.011
Temperature 0.990 0.134 0.966 0.042
Conductivity 0.958 3.109 0.930 0.830
ARIMA Dissolved oxygen 0.971 0.133 0.944 0.014
Temperature 0.975 0.207 0.946 0.052

Figure Al in Appendix A shows the time-dependent variation curves of the physico-
chemical parameters based on 3 h averaged data, and Table 5 summarizes the corresponding
prediction results. Compared with Table 4, all the models achieved improved accuracy. This
improvement can be attributed to the 3 h averaging, which reduced short-term fluctuations
and yielded smoother trends in the data. Among the models, the TCN model achieved the
best overall performance, the GRU model outperformed the LSTM model slightly, while
the ARIMA model remained the least accurate. In terms of parameter-specific performance,
dissolved oxygen achieved higher R? values than electrical conductivity, but slightly lower
values than temperature.

Table 5. Prediction results of physicochemical parameters of rosé wine using LSTM, GRU, TCN, and
ARIMA models based on three-hour averaged data.

Model Parameter RZ . RMSE,, i, R%,, RMSE;,;
Conductivity 0.978 2.251 0.950 0.724
LSTM Dissolved oxygen 0.987 0.089 0.962 0.011
Temperature 0.989 0.136 0.965 0.042
Conductivity 0.979 2.184 0.951 0.724
GRU Dissolved oxygen 0.989 0.082 0.963 0.011
Temperature 0.990 0.136 0.965 0.042
Conductivity 0.984 1.912 0.955 0.705
TCN Dissolved oxygen 0.994 0.060 0.968 0.011
Temperature 0.996 0.080 0.971 0.039
Conductivity 0.965 2.819 0.936 0.778
ARIMA Dissolved oxygen 0.977 0.116 0.948 0.013

Temperature 0.979 0.192 0.951 0.050
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4. Discussion

The present study designed and developed an IoT system for monitoring the storage
parameters of rosé wine. During an 80-day monitoring experiment, the system was able
to record changes in conductivity, dissolved oxygen, and temperature in real time, and
transmit the data to the TLINK cloud platform for storage and visualization. Compared
with previously reported devices that combine single-parameter sensors [22,23], the present
system features higher integration and a more compact form factor, enabling deployment in
various wine storage containers such as stainless steel tanks, glass fermentation vessels, and
oak barrels. The experimental results demonstrate that the developed monitoring device
can be used for long-term monitoring of wine storage, effectively reflecting changes in the
storage environment while also indirectly capturing the dynamic evolution of wine quality.

The variation trends of the three parameters can generally be divided into a gradual
increase phase and a slow increase phase. Temperature changes were strongly influenced
by seasonal warming—in Yangling District, Xianyang City, the daily temperature range
increased from 9-21 °C on 22 April to 24-36 °C by 11 July. The increase in temperature
accelerated the thermal motion of molecules in the wine and enhanced the dissolution
and diffusion of gas molecules in the headspace, resulting in a gradual rise in dissolved
oxygen content during the early stage, which subsequently stabilized in the later stage.
The dissolved oxygen levels observed in this study were notably higher than those re-
ported in [24,25] and comparable to those of wine stored in a glass cup in [26], indicating
inadequate sealing performance of the glass container used in this experiment. Elevated
temperatures accelerated redox reactions in the wine, thereby increasing its electrical con-
ductivity [27] and resulting in a change trend that showed a certain degree of synchrony
with temperature. During rosé wine storage, a continuous increase in dissolved oxygen may
accelerate oxidation reactions of phenolic compounds and pigments, causing progressive
browning, while higher temperatures may promote the degradation of aroma compounds
and the transformation of flavor substances, diminishing the freshness and fruity character
of the wine [28]. These observations are consistent with the sensory evaluation of color and
aroma at the end of the experiment. Therefore, maintaining proper sealing during storage
is crucial for preserving wine quality [29].

The comparison of the prediction results among the three deep learning models shows
that the performance of LSTM and GRU is quite similar, which may be related to their
model architectures. Both belong to gated recurrent neural networks (Gated RNNs), with
GRU being a variant of LSTM featuring a simplified structure that only includes an update
gate and a reset gate, resulting in fewer parameters [30]. In contrast, the TCN model
demonstrates superior predictive performance, likely due to its advantages in multi-scale
feature extraction and long-term dependency modeling [31]. Study [32,33] also employed
the same three models to predict water quality parameters, and the results were consistent
with those of the present study. Due to their advantages in capturing complex nonlinear
relationships and long-term dependencies in time-series, the LSTM, GRU, and TCN models
achieved better predictive performance for the physicochemical parameters of rosé wine
than the ARIMA model.

The comparison of the prediction results for the three parameters indicates that all the
models achieved good fitting performance for temperature, with slightly better results than
for dissolved oxygen, while the lowest performance was observed for electrical conductivity.
This discrepancy may be attributed to the characteristics of the parameter variation curves.
As shown in Figure 5, after resampling the original per-minute measurements into hourly
averages, the temperature curve appears the smoothest, whereas the conductivity curve
exhibits the most pronounced fluctuations. In contrast, Figure A1 demonstrates that
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resampling into 3 h averages further reduced local fluctuations, resulting in smoother
variation curves for all physicochemical parameters.

The physicochemical parameter monitoring device can be directly installed in stain-
less steel storage tanks or fixed on the inner wall of oak barrels. By logging into the IoT
system via computers or mobile devices, users can monitor in real time the physicochemi-
cal changes in wine during storage and aging and receive abnormal alarm notifications.
Previous research [11] mainly focused on monitoring a limited set of parameters, such as
temperature or pH, with measurements constrained in scope and analysis restricted to the
data acquisition level. In contrast, the present study expands the monitoring framework to
include multiple physicochemical parameters, such as dissolved oxygen and conductivity,
which are critical for evaluating wine storage and aging. Furthermore, by integrating
deep learning models (LSTM, GRU, and TCN), the system strengthens data processing
and predictive analysis capabilities. This multi-parameter monitoring and forecasting
approach provides a more comprehensive solution, offering greater practical value for
wineries in storage management and quality control. On the one hand, the system enables
timely detection of abnormal fluctuations in wine quality and evaluation of the maturation
state during aging, thereby maximizing product quality assurance; on the other hand, it
provides robust guidance for optimizing storage conditions, such as container sealing and
temperature regulation.

The integrated multi-parameter sensors need to be immersed in wine to monitor the
relevant parameters, and therefore, the devices must be disinfected during installation
to prevent potential microbial contamination. Due to the limitations of the integrated
wireless communication module, the monitoring system can only be deployed in cellars
or wineries with 4G signal coverage. The device is powered by a switched-mode power
supply and will not operate during AC power outages, and its installation locations are
further constrained by the AC wiring layout. These factors somewhat limit the deployment
flexibility and general applicability of the system and should be carefully considered in
practical applications.

5. Conclusions

This study designed and developed a highly integrated IoT system for real-time
monitoring of conductivity, dissolved oxygen, and temperature in rosé wine, with the
TLINK cloud platform enabling data acquisition, storage, and visualization. The monitoring
experiment validated the system’s reliability for long-term observation. Analysis of the
trends in physicochemical parameters effectively revealed changes in storage conditions,
the evolution of wine quality, and the impact of storage conditions on wine quality. These
results highlight the necessity of real-time monitoring during wine storage. This integrated
system enables continuous, multi-parameter tracking and indirect assessment of wine
quality evolution, highlighting its novelty and practical significance.

In this study, LSTM, GRU, TCN, and ARIMA models were established to predict the
physicochemical parameters of rosé wine. The results indicate that all four models can
accurately predict the trends of these parameters, with the TCN model demonstrating
the best predictive performance. Among the three parameters, temperature exhibited the
highest fitting accuracy. The findings suggest that integrating loT-based monitoring with
deep learning prediction models can effectively forecast the dynamic changes in physico-
chemical parameters during wine storage, providing an innovative approach and practical
applications for early warning of abnormal storage conditions and quality deterioration.
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Abbreviations

The following abbreviations are used in this manuscript:

TIoT Internet of Things

LST™M Long Short-Term Memory

GRU Gated Recurrent Unit

TCN Temporal Convolutional Networks

RNN Recurrent Neural Network

DTU Data Transfer Unit

MSE Mean Squared Error

Rt2r ain Coefficient of Determination for the Training Set
thest Coefficient of Determination for the Test Set

RMSEy,;,  Root Mean Square Error for Training Set
RMSE;st Root Mean Square Error for Test Set

eSIM Embedded Subscriber Identity Module

4G 4th-generation

ARIMA AutoRegressive Integrated Moving Average

Appendix A

Figure A1 shows the physicochemical parameters obtained by the rosé wine storage
monitoring device, which were averaged at three-hour intervals.
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(a) Dissolved Oxygen Changes Over Time (3h interval)
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Figure Al. The physicochemical parameters obtained by the rosé wine storage monitoring device,
averaged at three-hour intervals: (a) trend of dissolved oxygen over time; (b) trend of temperature
over time; (c) trend of conductivity over time.
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