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Abstract

Large language models (LLMs) show promise in enhancing medical research through
domain-specific question answering. However, their clinical application is limited by
hallucination risk, limited domain specialization, and privacy concerns. Public LLMs
like GPT-4-Consensus pose challenges for use with institutional data, due to the inability
to ensure patient data protection. In this work, we present a secure, custom-designed
retrieval-augmented generation (RAG) LLM system deployed entirely within our institu-
tion and tailored for radiology research. Radiology researchers at our institution evaluated
the system against GPT-4-Consensus through a blinded survey assessing factual accuracy
(FA), citation relevance (CR), and perceived performance (PP) using 5-point Likert scales.
Our system achieved mean =+ SD scores of 4.15 + 0.99 for FA, 3.70 £ 1.17 for CR, and
3.55 + 1.39 for PP. In comparison, GPT-4-Consensus obtained 4.25 + 0.72, 3.85 + 1.23,
and 3.90 £ 1.12 for the same metrics, respectively. No statistically significant differences
were observed (p = 0.97, 0.65, 0.42), and 50% of participants preferred our system’s output.
These results validate that secure, local RAG-based LLMs can match state-of-the-art per-
formance while preserving privacy and adaptability, offering a scalable tool for medical
research environments.

Keywords: radiology; large language models; retrieval-augmented generation; institutional
Al semantic search; medical research; data privacy

1. Introduction

The advent of large language models (LLMs) has transformed how researchers interact
with biomedical literature, particularly in high-information domains like healthcare [1]. In
radiology, LLMs show promise as research tools capable of assisting with literature synthe-
sis, protocol development, and hypothesis generation [2]. However, their adoption within
clinical research environments remains limited due to privacy concerns, infrastructure
constraints, and lack of domain-specific adaptation.

General-purpose models such as GPT-4-Consensus attempt to mitigate hallucina-
tion by citing published sources [3]. Yet, these models remain externally hosted, making
them incompatible with institutional use cases that require strict data privacy and security

Inventions 2025, 10, 55

https://doi.org/10.3390/inventions10040055


https://doi.org/10.3390/inventions10040055
https://doi.org/10.3390/inventions10040055
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inventions
https://www.mdpi.com
https://orcid.org/0000-0003-0656-3552
https://doi.org/10.3390/inventions10040055
https://www.mdpi.com/article/10.3390/inventions10040055?type=check_update&version=1

Inventions 2025, 10, 55

20f11

guarantees. Additionally, broad training corpora result in limited radiology-specific com-
prehension, leading to outputs that often lack the precision or contextual appropriateness
needed in this field [4].

Prior work has also highlighted the importance of ethical oversight and bias mitigation
when deploying artificial intelligence (Al) systems in radiology, where LLM-driven tools
may influence clinical decision making [5]. Despite their impressive capabilities, LLMs are
at risk of “stochastic parroting”—regurgitating training data without true understanding [6].
Public-facing tools like GPT-4-Consensusfurther introduce the risk of overconfidence and
misuse by patients who may rely on oversimplified or inaccurate outputs. These challenges
necessitate privacy-compliant, auditable, and locally controlled systems.

Retrieval-augmented generation (RAG) system architectures enhance LLM responses
by incorporating semantically relevant context from a curated literature corpus rather
than relying solely on pre-trained weights [7]. This improves domain specificity and
transparency while also enabling institutions to retain control over input, retrieval, and
output. Local, domain-specific RAG systems can serve as viable and secure alternatives
to commercial LLMs [8]. This aspect of RAG systems allows for deployment within
an institution without additional external API calls or data transfer.

Prompt engineering, defined as crafting and writing inputs to guide LLMs, increas-
ingly facilitates their skilled use while improving user experience. By tailoring prompts,
users can get more precise responses with topic-specific requirements; for example, it can
improve the quality and acceptability of LLM-generated responses in a clinical setting [9,10].

To determine if RAG models can effectively support radiology research, we devel-
oped a secure, radiology-specific RAG system deployed entirely within our institutional
infrastructure. Our RAG system leverages a database of 167,028 radiology-related abstracts
sourced from PubMed. Prompts answered by both our RAG LLM and GPT-4-Consensus
models were evaluated for factual accuracy (FA), citation relevance (CR), and perceived
performance (PP). While prior work has used similar scoring frameworks—such as factu-
ality, citation relevance, and readability [11]—to assess LLM outputs, our study empha-
sizes not only the objective quality of responses but also the user-perceived utility in the
context of radiology research. This paper presents the system design, implementation
and evaluation processes, and broader implications of RAG models in radiology clinical
research environments.

2. Materials and Methods
2.1. Data Collection via Webscraping

To construct a domain-specific knowledge base, we programmatically extracted
radiology-related article metadata and abstracts from PubMed using BeautifulSoup [12].
PubMed provides public access to abstracts and metadata (titles, authors, affiliations, jour-
nals, dates, and keywords), while restricting access to full texts. Due to API limitations
and pagination constraints (maximum 10,000 “best matching” results per query), search
queries were issued, in compliance with PubMed policies, separately for each calendar
year from 2000 through February 2024 using the case-insensitive keyword “radiology.” The
year 2000 was chosen as a natural lower bound based on article volume and indexing con-
sistency. For each query, all resulting article URLs were enumerated and asynchronously
parsed to extract the title, abstract, authors, affiliations, journal, publication date, keywords,
and URL.

Postprocessing involved aggregating raw CSVs and deduplicating entries by title,
abstract, and URL. Records without abstracts were excluded. The final dataset com-
prised 167,028 unique articles spanning 2000-2024, totaling 331 MB, with an average of
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~6700 usable entries per year; Figure 1 shows the exact distribution. Webscraping took
approximately 7 days of continuous execution using 4 CPU cores and 8 GB of RAM.

Annual Distribution of Radiology-Related PubMed Abstracts (Jan. 2000 —Feb. 2024)
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Figure 1. Yearly distribution of 167,028 webscraped radiology-related PubMed abstracts (January
2000-February 2024), showing a consistent volume of approximately 6700 unique entries per year.

2.2. Embedding and Vector Database Construction

To enable semantic retrieval, each entry in the curated PubMed-derived dataset was
embedded into a high-dimensional vector space using the state-of-the-art 7B parameter
instruction-tuned model “intfloat/e5-mistral-7b-instruct” [13], made available through
HuggingFace [14]. This model was selected based on its performance on the Massive Text
Embedding Benchmark, where it consistently outperformed other open-weight embedding
models of similar size [15]. It can embed an input size up to 4096 tokens and is optimized
for dense retrieval tasks. Abstracts and associated metadata (title, journal, date, etc.) were
serialized into string representations and tokenized for embedding generation. Embeddings
were normalized and stored in a persistent, disk-backed ChromaDB vector database [16].

ChromaDB was chosen for its native Python 3.9 support, ease of integration, and
efficient handling of up to 1 million entries with low latency. Its support for local filesystem
storage aligns with institutional constraints on cloud-based tools. Each record in the
ChromaDB collection was stored with an associated unique ID, original metadata, and full
document string to support future auditing and traceability.

The embedding process was conducted in batches using 4-bit quantized [17] inference
on an NVIDIA A100 GPU with flash attention enabled [18], 4 CPU cores, and 32 GB of
RAM. Vector generation and ingestion into ChromaDB took approximately 8 h.

The vectorized prompt embedding was compared with stored vector embeddings, and
the top similar abstracts were selected using the k-nearest neighbor (kNN) classifier [19].
Similarity was measured with cosine similarity metrics:

ATB iz1 AiBi
AlB| —
IANIBI S a2, /e B2

where A and B are two vectors with n elements and S, is the cosine similarity [20]. T is for

SC(ArB) -

vector transpose.
This semantic retrieval mechanism surfaced conceptually similar documents regard-
less of vocabulary mismatch, paraphrasing, or surface-level token overlap. By retrieving
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vectors that are meaningfully similar rather than merely textually similar, the system
mitigated irrelevant context and reduced the LLM’s reliance on hallucinated content or
unsupported prior assumptions [21]. In effect, high-quality retrieval shifts the burden of
reasoning to grounded, verifiable evidence.

2.3. LLM Integration and Prompt Engineering

For response generation, we integrated the open-weight, instruction-tuned language
model mistral-7b-instruct-v0.2, which outperforms several 13B parameter models in
instruction-following tasks [22,23]. This model, also made available through HuggingFace,
was selected for its strong performance in general-purpose language understanding paired
with its ability to be run on a single 16 GB VRAM GPU via 4-bit quantization.

Prompt engineering played a central role in eliciting high-quality responses. The
prompt template (Figure 2) explicitly defined the model’s role as a radiology research
assistant, imposed behavioral guardrails (e.g., respectfulness, ethical integrity, fairness),
defined citation requirements for the inserted context, and included an example to guide
output structure. The user’s question was appended at the end of the prompt to maintain
instructional focus.

Role
Declaration

Context
Insertion

~N
"You are a radiology research assistant."
J
N
"Always assist with care, respect, and truth. Respond with utmost utility, yet securely. Avoid harmful,
unethical, prejudiced, or negative content. Ensure replies promote fairness and positivity."
J
~N

"You are given the following article abstract(s) [{'title': ..., 'abstract’: ...}, ...] from the system (not the user)
as context which may help answer the user's prompt."

J

Citation
Requirement

"If using an abstract to answer the prompt, you must state the abstract's title in quotation marks the first )
time you use information related to it to cite it; this is very important. Do not include a works-cited at the
end of your answer. Only use an abstract if it is relevant to answering the prompt. Failure to meet these
requirements will result in penalty." )

"For example, given a title 'Dogs Make the Best Pet' for the abstract with text 'Dogs are happy animals... )
and that is why they are the best.', as well as the prompt 'What animal is best?', the format of your
answer should be similar to: 'According to "Dogs Make the Best Pet", dogs... therefore dogs are the best
animal.'."

J

User-Prompt
Insertion

~N

"Now, answer the user's prompt, as if you are speaking directly to the user: {'user prompt': ...}"

Figure 2. Stepwise prompt template used to structure LLM behavior, incorporating role declaration,
safety guardrails [23], context insertion, citation formatting requirements, an example, and user-
prompt insertion.
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To provide factual grounding, the prompt was augmented with the top-k most se-
mantically similar articles (k = 5 by default) retrieved from the ChromaDB vector database.
We selected k = 5 based on a soft cap of ~2000 words (~3000 tokens) for context to avoid
exceeding the 4096-token input limit of the generation model. If the combined length
of retrieved abstracts exceeded the limit, fewer than five were used, with priority given
to higher-ranked results. This approach ensured consistent retrieval latency and model
performance across queries.

Each selected document was serialized to include only the title and abstract, formatted
as a list of Python-like dictionaries to discourage hallucinated content. The LLM was
instructed to reference source documents by title (in quotes) when incorporating claims,
and a structured citation list was explicitly programmed to be appended to the end of each
response for reliable transparency.

Inference was executed using 4-bit quantized weights on an NVIDIA 16 GB VRAM
GPU with flash attention enabled for memory and throughput optimization. The gener-
ation parameters included a temperature of 0.2, top-k of 50, and top-p of 0.95 to balance
determinism with creativity. Streaming token generation was implemented to support
responsiveness in the user interface (UI).

2.4. System Deployment

This RAG system leverages only open-weight 7-billion parameter models and is fully
runnable on a single 16 GB NVIDIA GPU. Both the embedding model and the generation
model require approximately 6 GB of VRAM each, leaving sufficient headroom for runtime
memory and intermediate buffers. This compact resource footprint allows the entire RAG
system—including embedding, retrieval, and generation—to execute on a single GPU
without requiring specialized hardware or distributed infrastructure.

The system, shown in Figure 3, was deployed on an internal institutional server, ensur-
ing that all computation—including vector embedding, semantic retrieval, and language
generation—occurred in a secure environment without reliance on external APIs or data
transfer. This design safeguarded patient privacy and institutional data security throughout
the inference process.

User Input
Free-text radiology research prompt submitted through the user interface

Embedding Model
Prompt encoded into vector

Vector Database
Semantic search performed using vector for the top 5 relevant abstracts

Prompt Engineering
User prompt augmented with retrieved abstracts

Generation Model
Response generated using augmented prompt

Post-Processing
Citation list explicitly appended to generation model's response

Final output shown through user interface

Figure 3. End-to-end system architecture illustrating the flow from user input through embedding,
retrieval, prompt augmentation, generation, and final response display via a secure local interface.
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To facilitate access and usability, the system was exposed to end users via a lightweight
Python-based Ul built with Gradio [24], shown in Figure 4. Gradio enabled rapid prototyp-
ing and deployment through a browser-accessible interface while maintaining full local
execution. The interface allowed radiology researchers to submit free-text prompts, receive
model-generated responses, and inspect the cited supporting abstracts.

Radiology Research Assistant

Chatbot

To properly dictate the correct terminology to describe rotator cuff tears, it's essential to be familiar with the different types and patterns of tears. Here are some key points from the given abstracts:
1. There is no universally accepted classification for rotator cuff tears.
2. New patterns such as delamination or myotendinous junction tears have been defined.
3. The most difficult feature to assess in full thickness tears on MRI is the pattern.
4. Fatty infiltration of the RC tendons is crucial in the prognosis and outcome.

5. Radiologists should be aware of these different patterns of tears and understand how they might influence treatment and surgical approach.

When dictating the report, you can use the following terminology:
1. Rotator cuff tear: A tear in one or more of the rotator cuff tendons.
2. Full thickness tear: A tear that extends through the entire thickness of the tendon.
3. Partial thickness tear: A tear that does not extend through the entire thickness of the tendon.
4. Delamination tear: A tear that involves the separation of the layers within the tendon.
5. Myotendinous junction tear: A tear that occurs at the attachment of the tendon to the muscle.

6. Fatty infiltration: The presence of fat within the tendon, indicating tendon degeneration.
By using this terminology, you can provide a clear and accurate description of the rotator cuff tear, which will help guide the surgeon's treatment and serve as a prognosis for the patient.

References (context given to LLM to generate above response):

1. Rotator cuff tear patterns: MRI appearance and its surgical relevance (2024)
- https://pubmed.ncbi.nlm.nih.gov/38411840

2. Rotator cuff tears: diagnosis and therapy (2000)

- https://pubmed.ncbi.nlm.nih.gov/10798229

3. Rotator cuff tears: clinical, radiographic, and US findings (2005)

- https://pubmed.ncbi.nlm.nih.gov/16284137

4. Rotator cuff tear arthropathy (2007)

- https://pubmed.ncbi.nlm.nih.gov/17548883

5. Rotator cuff rupture. Diagnostic imaging (2000)
- https://pubmed.ncbi.nlm.nih.gov/11450126

k&) Retry &) undo T Clear

Submit

Figure 4. Ul displaying the example user prompt “How do I properly dictate the correct terminology
to describe rotator cuff tears?”, and the system’s structured, citation-backed response generated via
the RAG LLM system. Citations shown are part of the generated output and are not cited elsewhere
in this manuscript.

2.5. Survey Design and Statistical Analysis

To assess the comparative quality of our RAG-based LLM system, we conducted
a single-blinded evaluation study after IRB exemption. Twenty radiology-related prompts
were collected from practicing radiologists and clinical researchers to ensure domain
relevance and diversity of information needs.

Each prompt was submitted to both our local RAG LLM and GPT-4-Consensus,
a publicly available state-of-the-art model. The outputs were randomized in order and
anonymized to prevent any indication of the source. Participants—comprising radiology
researchers and clinicians—were blinded to the model identity behind each response and
instructed to evaluate their pair of answers independently.

Survey responses were collected using a structured three-question rubric. For each
response, participants rated the following:

e Factual Accuracy (FA): the degree to which the response was correct and free
of hallucination;
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e Citation Relevance (CR): the alignment of the cited literature with the prompt and
response content;

e  Perceived Performance (PP): the overall quality and usefulness of the response as
perceived by the participant.

Each criterion was scored on a 5-point Likert scale (1 = poor, 5 = excellent) [25]. Addi-
tionally, participants were asked to indicate their preferred response for their submitted
prompt. After all prompts and responses were recorded, a board-certified radiologist
reviewed the responses, counting the occurrence of hallucination.

Statistical analysis was conducted using the Wilcoxon signed-rank test [26] to eval-
uate paired differences in Likert scores between the two systems across all prompts.
A p-value of less than 0.05 was considered statistically significant. Descriptive statistics
(mean =+ standard deviation [SD]) were calculated for each metric. Preferred response
frequencies were also reported to assess overall user preference. The full list of prompts, re-
sponses, Likert scores, and output preferences is provided in the Supplementary Materials.

3. Results
3.1. Performance Metrics

For the RAG system, the means =+ SD of the FA, CR, and PP ratings were 4.15 & 0.99,
3.70 £ 1.17, and 3.55 + 1.39, respectively. For GPT-4-Consensus, they were 4.25 £ (.72,

3.85 + 1.23, and 3.90 & 1.12, respectively. These Likert scores can be visualized in Figure 5.
No statistically significant differences were found between these ratings (p = 0.97, 0.65, and

0.42, respectively).
Likert Score (Mean + SD) vs. Metric
6
5 - — —_——
3 a-
+ ®
£ ®
s
~— 3 -
<
o —_
A
(2]
£ (1
22
-
]_ =
® RAGLWM
GPT-4-Consensus
0 T T r
Factual Accuracy Citation Relevance Perceived Performance

Figure 5. Comparison of mean =+ standard deviation Likert scores for FA, CR, and PP across RAG
LLM and GPT-4-Consensus outputs.

3.2. Output Preference

In addition to scoring individual responses on specific criteria, participants were
asked to indicate their overall preference between the two outputs for their prompt. Out
of 20 prompts, preferences were evenly divided: 10 participants preferred the output
generated by our local RAG LLM system, while the other 10 preferred the GPT-4-Consensus
output. Table 1 showcases the output preference for each prompt. A board-certified
radiologist found no occurrence of hallucination in any of the outputs.
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Table 1. Output preference for each prompt.

RAG LLM System

GPT-4-Consensus

What is the best imaging modality to
determine lymphatic flow?

What is the role of ferumoxytol as

a contrast agent for intracranial
arteriovenous malformations in pediatric
patients?

How does microvascular imaging
ultrasound aid radiologists in detecting
strokes in neonates and infants?

How to differentiate Osgood-Schlatter
disease from tibial tubercle fracture?

What is the safety profile of core needle
biopsy to diagnose neuroblastoma vs.
excisional/open biopsy?

What hospitals in the US already adopted
ceVUS as the main diagnostic tool for
vesicoureteral reflux?

How can you differentiate a fetal ovarian
cyst and a fetal enteric duplication cyst on
prenatal ultrasound?

What are the principles of quality
improvement in healthcare?

What imaging characteristics are utilized
in differentiating patellar sleeve fractures
from Sinding-Larsen—-Johansson
syndrome?

What are the current guidelines of kidney
size for children?

What are the normal dimensions of the
aortic root?

What is the prevalence of intracranial
hemorrhage in autosomal recessive
polycystic kidney disease?

How do I properly dictate the correct
terminology to describe rotator cuff tears?

What is the genetic mutation for
Klippel-Trenaunay syndrome?

What is the most severe complication of
slipped capital femoral epiphysis?

How can I differentiate pneumonia and
atelectasis on contrast CT of the chest?

Does using different types of ultrasound
contrast agents for the same liver lesion
have an effect on the time-intensity curve
(TIC) obtained from contrast-enhanced
ultrasound images? Are there any related
studies?

How does room temperature affect brown
fat uptake on PET scans?

What are the physiological and
pathological uptake patterns in a
whole-body Ga68 PSMA PET CT scan?

What are the main differential diagnoses
for posterior fossa ependymoma type A?

4. Discussion

This study demonstrates that a locally deployed RAG-based LLM system, operating
entirely on institutional infrastructure and restricted to open-weight 7-billion parame-
ter models, can achieve performance comparable to GPT-4-Consensus—a proprietary
state-of-the-art language model. Quantitatively, the two systems received statistically in-
distinguishable scores across three key evaluation metrics: FA, CR, and PP, with p-values
of 0.97, 0.65, and 0.42, respectively, based on 20 prompts. Preferences between outputs
were also evenly split (10 vs. 10 prompts), further supporting the interpretation that users
perceived the systems as equally viable.

These similarities in performance demonstrate promise for implementing RAG LLM
systems in the clinical space. Unlike general-purpose LLMs, our approach leverages
domain-specific knowledge bases, allowing control over source content and subsequently
increasing model interpretability, which are important in clinical settings. The relatively
high CR scores suggest that the retrieved citations closely matched the prompts, indicating
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effective semantic retrieval. Future work should include controlled experiments to measure
how much this context improves response quality.

Both systems received consistently high FA scores, and a formal review of all outputs
confirmed that no hallucinations occurred. While GPT-4-Consensus generates responses
using full-text articles, our RAG LLM system relies solely on abstracts. Papers—particularly
their abstracts—often emphasize positive or novel findings, which could lead to overrep-
resentation of certain conclusions relative to their actual frequency or clinical relevance.
For instance, a response citing a study on lymphatic imaging described spin labeling MRI
techniques as a key modality, a claim technically supported by the paper but overstated
in terms of real-world clinical usage. Future work should assess whether using full texts
helps mitigate such biases and yields more balanced, practice-aligned outputs.

Security and data privacy were also central to our design. Because all computation
occurred on a local GPU server without API calls or external dependencies, the system
inherently avoided exposing patient health information to third-party services.

An additional strength of our system lies in its modularity and adaptability. The
knowledge base was built from PubMed abstracts related to radiology, but the same system
could be easily extended to other medical specialties—such as cardiology or oncology—by
altering the embedded corpus. Furthermore, the generation model (mistral-7b-instruct-v0.2)
performed well without fine-tuning, suggesting that domain-specific retrieval combined
with robust prompting can remove the need for costly model customization. Nonetheless,
fine-tuning remains a promising direction for future optimization.

Despite its success, the current system has limitations. The UI, developed in Gradio,
was suitable for prototyping but lacks the robustness required for clinical deployment.
A production-ready system would require secure authentication, access controls, logging
mechanisms, and audit trails. Additionally, while participants were given consistent
instructions, consistency in prompt formulation was not assessed in this study. Future work
should incorporate a larger number of prompts and examine how variations in prompt
formulation affect system output.

Opverall, our findings highlight the potential of localized RAG LLM systems as scalable,
privacy-preserving research tools. By enabling transparent, verifiable, and adaptable Al-
assisted literature synthesis, this approach offers a compelling model for responsible LLM
integration in medical research environments. Such systems could serve as foundational
tools across academic medical centers, enabling secure, high-quality, and explainable Al
assistance at scale.

5. Conclusions

There is a growing institutional demand for LLM-based tools that can support med-
ical research while preserving data privacy, offering output transparency, and enabling
domain-specific customization. Existing public-facing LLM models, while powerful, are
constrained by privacy risks and general-purpose design. To address this gap, we de-
veloped and validated a secure, locally deployable RAG LLM system tailored for radi-
ology research. Our system enabled semantic retrieval via a vector database of 167,028
PubMed-derived abstracts using e5-mistral-7b-instruct and generated grounded responses
using mistral-7b-instruct-v0.2, all while running efficiently on a single 16 GB GPU within
institutional infrastructure.

In a blinded evaluation comparing our system to GPT-4-Consensus, participants
rated responses from both systems on FA, CR, and PP. The results revealed statistically
indistinguishable scores across all three metrics, where user preferences were evenly split,
and no hallucination occurred. These findings indicate that a well-designed local RAG
LLM system can match the perceived quality of proprietary state-of-the-art systems while
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offering substantial advantages in terms of privacy, interpretability, and adaptability across
medical domains.

Nonetheless, challenges remain. The prototype U, while functional, requires further
development to meet clinical-grade deployment standards, including authentication, log-
ging, and auditability. Future improvements will focus on refining the UI, expanding to
other specialties, enabling user feedback loops, and exploring fine-tuning strategies to
further enhance generation quality and alignment.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/inventions10040055/s1: Table S1: List of 20 radiology-related prompts
used in the survey and the corresponding responses generated by the two evaluated systems: our
RAG-based LLM system (Output 1) and GPT-4-Consensus (Output 2); Table S2: Survey participant
ratings for each of the 20 radiology-related prompts. Scores are based on a 1-5 scale (1 = very low,
5 = very high).
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The following abbreviations are used in this manuscript:

Al Artificial Intelligence
CR Citation Relevance
FA Factual Accuracy

GPU Graphics Processing Unit

LLM Large Language Model

NLP Natural Language Processing

PP Perceived Performance

RAG Retrieval-Augmented Generation
RAM Random Access Memory

SD Standard Deviation

Ul User Interface

VRAM  Video Random Access Memory

Singhal, K.; Azizi, S.; Tu, T.; Mahdavi, S.S.; Wei, J.; Chung, H.W.; Scales, N.; Tanwani, A.; Cole-Lewis, H.; Pfohl, S.; et al. Large
Language Models Encode Clinical Knowledge. Nature 2023, 620, 172-180. [CrossRef] [PubMed]
Rao, A.; Kim, J.; Kamineni, M.; Pang, M.; Lie, W.; Succi, M.D. Evaluating ChatGPT as an Adjunct for Radiologic Decision-Making.

References
1.
2.
medRxiv 2023. [CrossRef]
3.

Consensus. Introducing: GPT-4-Powered, Scientific Summaries. 2023. Available online: https://consensus.app/home/blog/

introducing-gpt-4-powered-scientific-summaries/ (accessed on 30 May 2025).


https://www.mdpi.com/article/10.3390/inventions10040055/s1
https://www.mdpi.com/article/10.3390/inventions10040055/s1
https://doi.org/10.1038/s41586-023-06291-2
https://www.ncbi.nlm.nih.gov/pubmed/37438534
https://doi.org/10.1101/2023.02.02.23285399
https://consensus.app/home/blog/introducing-gpt-4-powered-scientific-summaries/
https://consensus.app/home/blog/introducing-gpt-4-powered-scientific-summaries/

Inventions 2025, 10, 55 11 of 11

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.
26.

Shen, Y.; Heacock, L.; Elias, J.; Hentel, K.D.; Reig, B.; Shih, G.; Moy, L. ChatGPT and Other Large Language Models Are
Double-Edged Swords. Radiology 2023, 307, €230163. [CrossRef] [PubMed]

Weinert, D.A.; Rauschecker, A.M. Enhancing Large Language Models with Retrieval-Augmented Generation: A Radiology-
Specific Approach. Radiol. Artif. Intell. 2025, 7, €240313. [CrossRef] [PubMed]

Akinci D’Antonoli, T.; Stanzione, A.; Bluethgen, C.; Vernuccio, F; Ugga, L.; Klontzas, M.E.; Cuocolo, R.; Cannella, R.; Kogak,
B. Large Language Models in Radiology: Fundamentals, Applications, Ethical Considerations, Risks, and Future Directions.
Diagn Interv Radiol. 2024, 30, 80-90. [CrossRef] [PubMed]

Lewis, P; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Kiittler, H.; Lewis, M.; Yih, W.; Rocktdschel, T.; et al.
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In Proceedings of the Advances in Neural Information
Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 9459-9474.

Savage, C.H.; Kanhere, A.; Parekh, V,; Langlotz, C.P; Joshi, A.; Huang, H.; Doo, FX. Open-Source Large Language Models in
Radiology: A Review and Tutorial for Practical Research and Clinical Deployment. Radiology 2025, 314, €241073. [CrossRef]
[PubMed]

Bluethgen, C.; Van Veen, D.; Zakka, C.; Link, K.E.; Fanous, A.H.; Daneshjou, R.; Frauenfelder, T.; Langlotz, C.P,; Gatidis, S.;
Chaudhari, A. Best Practices for Large Language Models in Radiology. Radiology 2025, 315, €240528. [CrossRef] [PubMed]
Mesko, B. Prompt Engineering as an Important Emerging Skill for Medical Professionals: Tutorial. . Med. Internet Res. 2023, 25,
e50638. [CrossRef] [PubMed]

Soong, D.; Sridhar, S.; Si, H.; Wagner, ].-S.; 54, A.C.C.; Yu, C.Y,; Karagoz, K.; Guan, M.; Kumar, S.; Hamadeh, H.; et al. Improving
Accuracy of GPT-3/4 Results on Biomedical Data Using a Retrieval-Augmented Language Model. PLOS Digit. Health 2024, 3,
e0000568. [CrossRef] [PubMed]

Beautifulsoup4. Available online: https://beautiful-soup-4.readthedocs.io/en/latest/ (accessed on 30 May 2025).

Wang, L.; Yang, N.; Huang, X.; Yang, L.; Majumder, R.; Wei, F. Improving Text Embeddings with Large Language Models.
arXiv 2024, arXiv:2401.003638.

Hugging Face—The AI Community Building the Future. Available online: https:/ /huggingface.co/ (accessed on 30 May 2025).
MTEB Leaderboard—A Hugging Face Space by Mteb. Available online: https://huggingface.co/spaces/mteb/leaderboard
(accessed on 30 May 2025).

Chroma. Available online: https:/ /trychroma.com (accessed on 30 May 2025).

Liu, S.; Liu, Z.; Huang, X.; Dong, P.; Cheng, K.-T. LLM-FP4: 4-Bit Floating-Point Quantized Transformers. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, Vancouver, BC, Canada, 6-12 December 2023;
pp. 592-605.

Dao, T; Fu, D.; Ermon, S.; Rudra, A.; Ré, C. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness. Adv.
Neural Inf. Process. Syst. 2022, 35, 16344-16359.

Peterson, L.E. K-Nearest Neighbor. Scholarpedia 2009, 4, 1883. [CrossRef]

Cosine Similarity. Wikipedia. Available online: https://en.wikipedia.org/w/index.php?title=Cosine_similarity (accessed on
30 May 2025).

Shuster, K.; Poff, S.; Chen, M.; Kiela, D.; Weston, ]. Retrieval Augmentation Reduces Hallucination in Conversation. arXiv 2021,
arXiv:2104.07567.

Mistralai/Mistral-7B-Instruct-v0.2 Hugging Face. Available online: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
(accessed on 30 May 2025).

Jiang, A.Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.; Chaplot, D.S.; de las Casas, D.; Bressand, F.; Lengyel, G.; Lample, G.;
Saulnier, L.; et al. Mistral 7B. arXiv 2023, arXiv:2310.06825.

Team, G. Gradio. Available online: https://gradio.app (accessed on 30 May 2025).

Batterton, K.A.; Hale, K.N. The Likert Scale What It Is and How To Use It. Phalanx 2017, 50, 32-39.

Wilcoxon Signed-Rank Test-Woolson-2005-Major Reference Works—Wiley Online Library. Available online: https://onlinelibrary-
wiley-com.proxy.library.upenn.edu/doi/full /10.1002/0470011815.b2a15177 (accessed on 30 May 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1148/radiol.230163
https://www.ncbi.nlm.nih.gov/pubmed/36700838
https://doi.org/10.1148/ryai.240313
https://www.ncbi.nlm.nih.gov/pubmed/40072217
https://doi.org/10.4274/dir.2023.232417
https://www.ncbi.nlm.nih.gov/pubmed/37789676
https://doi.org/10.1148/radiol.241073
https://www.ncbi.nlm.nih.gov/pubmed/39873598
https://doi.org/10.1148/radiol.240528
https://www.ncbi.nlm.nih.gov/pubmed/40298602
https://doi.org/10.2196/50638
https://www.ncbi.nlm.nih.gov/pubmed/37792434
https://doi.org/10.1371/journal.pdig.0000568
https://www.ncbi.nlm.nih.gov/pubmed/39167594
https://beautiful-soup-4.readthedocs.io/en/latest/
https://huggingface.co/
https://huggingface.co/spaces/mteb/leaderboard
https://trychroma.com
https://doi.org/10.4249/scholarpedia.1883
https://en.wikipedia.org/w/index.php?title=Cosine_similarity
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://gradio.app
https://onlinelibrary-wiley-com.proxy.library.upenn.edu/doi/full/10.1002/0470011815.b2a15177
https://onlinelibrary-wiley-com.proxy.library.upenn.edu/doi/full/10.1002/0470011815.b2a15177

	Introduction 
	Materials and Methods 
	Data Collection via Webscraping 
	Embedding and Vector Database Construction 
	LLM Integration and Prompt Engineering 
	System Deployment 
	Survey Design and Statistical Analysis 

	Results 
	Performance Metrics 
	Output Preference 

	Discussion 
	Conclusions 
	References

