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Abstract: As products are required with higher precision, vibration control becomes more
important for precision machining and inspection. A stage with both fast positioning and relative
vibration eliminated can improve product quality. Elastomeric bearings are widely used in
the seismic engineering and precision machining fields. By utilizing their stiffness anisotropy,
miniaturized bearings can be made of rubbers and have the same function as much larger compliant
mechanism–based designs. This provides possible advantages in precision positioning. In this paper,
to model the system dynamics of the stage, the mechanical properties of elastomeric bearings are
determined through essential material tests of the load cells in this system. The results show that the
bearing stiffness is both frequency- and time-dependent. A single-degree-of-freedom precision
stage containing four elastomeric bearings is then designed and realized. The stiffness of the
elastomeric bearings is modeled as a generalized Maxwell model by system dynamics testing of
the controller design. A closed-loop control system comprising an AVM40-20 voice coil motor, an
ASP-10-CTR capacitance probe, and an Integral Sliding Mode controller is proposed for the precision
stage. Signal processing for the entire system is performed under an NI cRIO-9014 LabVIEW
field-programmable gate array real-time controller. In comparison with a previous compliant
mechanism-based design, the stage size is reduced from 130 × 40 × 15 mm3 to 30 × 33 × 33 mm3,
the positioning stroke is increased from 101 to 139 µm, and the bandwidth is increased from 29 to
350 Hz.

Keywords: elastomeric bearings; generalized Maxwell model; positioning stage; controller design

1. Introduction

As requirements of product accuracy become more serious, vibration control in precision
machining [1] and inspections [2] become more important. In order to achieve vibration suppression
and isolation, adequate feedback controls also need to be implemented [3,4]. Precision positioning
stages that provide high-speed positioning and control capabilities are a method to solve the
above-mentioned vibration problems for improving machine performance and product qualities.

Traditionally, compliant stages actuated by piezoelectric (PZT) actuators are typical designs for
achieving vibration control. For example, Chang and Du [5] designed a micropositioning stage with a
stroke of 100 µm and a resolution of 0.04 µm. Wang and Lee [6] developed a single-degree-of-freedom
PZT compliant positioning stage for automatic optical inspection (AOI) applications. It can provide a
maximum stroke of 101 µm with a 53.8 nm steady state error and a bandwidth of 29 Hz. Wang and
Lee [6] further extended their design to form a stacked two-degree-of-freedom PZT compliant
positioning stage.

Compliant mechanisms usually have complicated shapes and large volumes for specific
mechanical designs. When the design purpose is changed, the compliant mechanism must be
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redesigned. However, its large volume may impose limits on the design. Elastomeric bearings—which
are flexible with regard to stiffness design—are another good choice for mechanical design.

Previously, Cuff [7] developed a single-degree-of-freedom electromagnetic nanopositioner with
elastomeric bearings that provides a 100 µm stroke and 580 Hz bandwidth. Kluk [8] developed an
advanced fast steering mirror for optical communication with elastomeric bearings that provides
3.5 mrad angular motion and 10 kHz bandwidth. These are typical examples of elastomeric bearings
in precision stage control.

However, elastomers are viscoelastic materials, which means that their stiffness is time- and
frequency-dependent. Without adequate system modeling, an elastomeric-bearing stage may not be
adequately controlled. One can refer to Gent’s book [9] for rubber engineering and previous works
on dealing with the constitutive behaviors of elastomers for a review of the basic concepts in their
mechanical properties. For example, see [10–15]. In previous works [7,8], researchers used linear
elastic models to model the mechanical behavior of elastomers. On the contrary, elastomeric bearings
are modeled as viscoelastic materials in this work, and associated controllers are designed. By this
approach, it is expected that the advantages and superiority of elastomeric bearing stages can be
fully realized.

The rest of this article presents the work in detail. In Section 2.1, the conceptual design of
the overall system is presented. The design of the elastomeric bearing is presented in Section 2.2.
In Section 2.3, the mathematical model of the bearing is derived, and several tests are applied to figure
out the characteristics of the bearing and the voice coil motor. The design and implementation of the
controller design are presented in Section 2.4. The positioning experiments are presented in Section 3.
Essential discussions are provided in Section 4. Finally, Section 5 concludes the paper.

2. Methods

2.1. Approach

The research flow of this work is shown in Figure 1. The first issue is to perform mechanical
analysis and design of the stage body, followed by basic dynamic testing to obtain the system model.
With proper integration of the sensor and actuator, the controller design is then investigated in order
to evaluate the performance and quality of the design.

In this paper, instead of using compliant structures, elastomeric bearings are used to provide
stiffness and control the dynamic behavior of the proposed precision positioning stage. An elastomeric
material (silicone) is chosen for the elastomeric bearings. First, the shape and size of the bearings are
designed by considering the stiffness and natural frequencies of the stage. A viscoelastic model is
applied to model the stiffness of the elastomeric bearings. Then, several system dynamics experiments
are performed to find the parameters of the viscoelastic model.

The main purpose of the stage is single-degree-of-freedom precision positioning with a motion
stroke of 100 µm. The system—shown schematically in Figure 2—contains an AVM40-20 voice coil
motor (bandwidth 2000 Hz, peak actuating force 29 N) for actuation, an ASP-10-CTR capacitive probe,
an aluminum block with four elastomeric pads as rubber bearings, and a LabVIEW field-programmable
gate array (FPGA) controller to control the motion. The voice coil motor actuates the stage and the
capacitive probe for movement sensing. The design exploits the deformation of the elastomeric bearing
to provide essential structural stiffness, and the overall performance is a compromise between desired
specifications, static and dynamic responses, and controllability considerations. The ASP-10-CTR
capacitive probe has a measurement range of 254 µm, a resolution of 10 nm, and a bandwidth of 1 kHz,
and is extremely suitable for this design. Meanwhile, to investigate the mechanical properties and
for pre-load adjustment of the elastomeric bearings, one LM-10 and two S-100 load cells were also
mounted on the experiment structure to observe the loading on the elastomeric bearings and the force
transmitted from the voice coil motor. Notice that the selection of sensor and actuator in this work
is not unique but is based on the compromise between performance, cost, and system integration
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factors. For example, it is also possible to use a piezoelectric (PZT) actuator [6,16] or a magnetostrictive
actuator [16] in this design. However, in comparison with voice coil motors at the same characteristic
length, the stroke of PZT actuators is usually much less, and the magnetostrictive actuators are much
heavier—neither of them can satisfy the design goal. The entire control flow is shown in Figure 3.
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2.2. Stage Design and Realization

As shown schematically in Figure 4, the stage mainly included an aluminum block and four
silicone elastomeric bearings attached to it. To conduct the mechanical analysis in order to determine
the system stiffness, this work follows a similar flow to [7], based on the textbook content of [9],
before considering the viscoelastic effect. The stiffness in the positioning (z-axis) direction, kz, can be
expressed as the combined shear stiffness (i.e., ks, shown below) of all four bearings. On the other hand,
the stiffness of the other two axes (x- and y-axes), kx and ky, can be modelled as the combined stiffness
(i.e., kc, shown below) of two ks and two kc stiffnesses of individual bearings. Although rubbers are
nonlinear materials, they behave linearly under small strain conditions. In terms of linear elasticity,
kz is proportional to the stage stroke, and the natural frequency of the stage strongly depends on kz.
On the other hand, since the design has a single degree of freedom, kx and ky should be much larger
than kz. In this work, a ratio of 10 is used for structural design, such that the motions in both in-plane
degrees of freedom (i.e., x and y) are much stiffer than that in the out-of-plane direction (i.e., z-direction)
to ensure the single degree of freedom approximation.
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The compression modulus, Ec, of the elastomeric bearings is strongly related to their shape factor
S, and one can modify their geometry to adjust kc. On the other hand, the shear modulus is 1/3 of
the Young’s modulus E0. In this work, by evaluating all these issues, the dimensions of the bearing
and stage are finally designed to be four 15 × 15 × 1.5 mm3 (silicone) elastomeric bearings and
a 30 × 30 × 30 mm3 aluminum stage, respectively. The experimental system is realized as shown in
Figure 5.

The stiffness of the elastomeric bearing is related to the elastic modulus and shape factors, and
can be expressed as [7,10] for a rubber pad with length L, width H, and thickness W.:

For compression, Ec = E0(1 + 2κS2)⇒ kc =
EcLH

W
; (1)

For shear, G =
E0

3
⇒ ks =

GLH
W

, (2)
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where
S =

LH
2W(L + H)

(3)

From Equations (1) and (2), the stiffnesses kx, ky, and kz of the x-, y-, and z-axes are 4.10, 4.10,
and 0.36 N/µm, respectively. The natural frequencies of the x, y, and z-axes are 864, 864, and 256 Hz.
The maximum output force of the voice coil motor is 27 N, and the corresponding maximum stroke is
150 µm.
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2.3. Dynamic Testing and Modeling of the Stage

2.3.1. Stage Model

The stage is modeled as a single-degree-of-freedom vibration system (shown in Figure 6a) with a
mass M, a damper with damping coefficient C, and a time- and frequency-varying spring K(s), which
is mainly caused by the viscoelastic effect of the elastomeric materials. It is modelled by using a
generalized Maxwell model [17] with two dampers, c1 and c2, and three linear springs, k1, k2, and
k3, shown schematically in Figure 6b. Notice that there are no distinctive physical dampers installed
in the experimental system. The equivalent damping considered in the stage model actually comes
from the material damping of the elastomers and the magnetic damping from the voice coil actuator.
By force equilibrium, it can be shown that the transfer function, K(s), of this stiffness element can be
expressed as:

K(s) =
αs2 + γs + k1k2k3

c2c3s2 + (k2c3 + c2k3)s + k2k3
, (4)

where
α = k1c2c3 + k2c2c3 + c2c3k3 (5)

γ = k1k2c3 + k1c2k3 + c2k2k3 + k2k3c3. (6)
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The mass M of the model is taken as the mass of the aluminum stage and the coil of the voice
coil motor, 139 g, since the mass of the four elastomeric bearings is negligible in comparison with
that of the stage. The damping coefficient C is difficult to obtain analytically, and is experimentally
determined by examining the open-loop step response. All model parameters are listed in Table 1. The
entire stage transfer function can thus be expressed as:

Gs(s) =
X
F

=
1

Ms2 + Cs + K(s)
. (7)
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Table 1. Fundamental design parameters of the system.

C (N·s/m) k1 (N/m) k2 (N/m) k3 (N/m) c2 (N·s/m) c3 (N·s/m)

800 3.86 × 105 6.3 × 104 4.4 × 104 504 101,200

2.3.2. Stress Relaxation Experiment

Using a stress relaxation test, the time history of the stiffness under a given initial fixed
displacement can be obtained, and is shown in Figure 7. By using a Prony series approach, the
stiffness can be fitted in the following form:

K(t) = k1 + k2e−k2t/c2 + k3e−k3t/c3 . (8)
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The parameters in Equation (4) and shown in Table 1 can be obtained once the curve fitting of
Equation (8) is determined.
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2.3.3. Damping Coefficient Experiment

A comparison of the simulation and the experimental results of the open-loop step response of
the stage is shown in Figure 8. The experimental data can be treated as the contribution of two major
sources. That is, a slow rising part and an oscillation part. The vibration frequency of the oscillation
part is about 140 Hz, which differs from the natural frequency of the stage. We believe that this is
possibly due to the vibration of the auxiliary supporting structure for providing preloads, and should
not be counted in the system dynamics of the stage. By adjusting the damping coefficient in the
associated stage dynamics and performing curve fitting, the damping coefficient C that can be obtained
is about 800 N·s/m, the damping ratio is 1.5, and the stage should be overdamped.
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2.4. Controller Design

The actuator contains a power amplifier and a voice coil motor. The bandwidth of the amplifier
(200 Hz) is much smaller than that of the actuator itself (i.e., 2000 Hz). Using system dynamics, the
power amplifier and the voice coil motor can be modeled as a first-order system. On the other hand, the
elastomeric bearing stage is a fourth-order system by Equations (4) and (7). Therefore, the entire plant
is a fifth-order system. However, this full model is too complicated; thus, the model is simplified to be
a third-order model in which is contained a first-order actuator model and a second-order stage model
(which is a normal vibration model with a constant stiffness) as a reference model for controller design.
Although the controller design in this paper is based on simplified dynamics, the original fifth-order
model can still provide important information. That is, it provides a reasonable measurement to model
the stiffness uncertainty, which is critical for the determination of control parameters in sliding mode
controller (SMC) design. In addition, the full fifth-order model will be used to design the controller in
the near future.

2.4.1. Proportional–Integral–Derivative (PID) Controller

A traditional PID controller is designed under a 10 kHz loop rate in this paper for the initial
evaluation of system performance, and as a basis for the comparison of the effectiveness of more
advanced controllers. The transfer function of the PID controller [18] may be expressed as:

Gc(s) = Kp(1 +
Ti
s
+ Tds), (9)

where Kp, Ti, and Td are the gains for proportional, integration, and derivative gains, respectively.
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2.4.2. Integral Sliding Mode Controller

Sliding Mode Control [19] is a nonlinear control design and has a robust control effect on the
system parameter uncertainty. Integral Sliding Mode Control (ISMC) [20] is based on SMC, where an
error integral term is added to the sliding function s(x) (as shown in Equation (10)) to increase the
convergence of errors. When the system state is on the sliding surface,

.
s = 0 is applied to derive the

controlled input, as in Equations (11) to (15). The switching input un is designed to have a compensation
term ∆f included to represent the parameter uncertainty. The time- and frequency-varying stiffness
is regarded as the parameter uncertainty of the stage, as in Equation (15). The design of the stiffness
uncertainty ∆k is based on the stress relaxation experiment in Section 2.3.2.

s(x, t) =
(

d
dt

+ λ

)n−1
(x(t)− xd(t)) + β

w t

0
(x(t)− xd(t)) (10)

.
s(x, t) =

..
x̃ + λ

.
x̃ + βx̃ =

..
x− ..

xd + λ
.
x̃ + βx̃ = f + u− ..

xd + λ
.
x̃ + βx̃ (11)

u = ueq + un (12)

ueq = − f +
..
xd − λ

.
x− βx̃ (13)

un = −(|4 f |+ η)sat(s, φ), (14)

where
4 f =

4k
M

x̃. (15)

Based on the Lyapunov stability theorem, V(s) is chosen as the Lyapunov function, as shown in
Equation (16). According to the derivation shown in Equation (17), the constant η must be positive:

V(s) =
1
2

s2 (16)

.
V(s) < 0→ 1

2
d
dt s2 = s

.
s

= s( f + u− ..
xd + λ

.
x̃ + βx̃)

= s( f + ueq + un −
..
xd + λ

.
x̃ + βx̃)

= s(− |4 f |+ η)sat(s, φ) = −(|4 f |+ η) < 0.

(17)

3. Results

3.1. Step Response

Typical control results are shown in Figure 9 for a 25.4 µm step command. It can be seen that the
open-loop response, although it rises fast initially, cannot reach the destination in a reasonable time.
Notice that it finally reaches the destination after 10 s by creeping due to the time-dependent stiffness.
On the other hand, the feedback control response shows a significant improvement. The PID controller
with a gain set of Kp = 15, Ti = 0.0033, and Td = 0.00093 achieves a rise time and a settling time of 9 and
20 ms, respectively. The ISMC controller with parameter settings of β = 12,000, ϕ = 0.0305, λ = 12,000,
and η = 30 achieves a rise time and a settling time of 6 ms and 29 ms, respectively. The parameters
for the PID controller are first determined by the Zeigler–Nichols (ZN) method and after performing
a series of parametric studies. On the other hand, the final parameters for the ISMC controller are
chosen by performing a Matlab simulation and on-line adjustment based on the initial model reference
design approach.
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Figure 9. Step responses of the system under different control schemes.

3.2. Sinusoidal Motion Tracking

The sinusoidal tests are performed, and a typical response with 10 Hz actuation is shown in
Figure 10. It can be seen that the system response is also significantly improved under PID and ISMC
control. Finally, the Bode plot can be obtained with systematic sinusoidal tests, and is shown in
Figure 11. The bandwidths of the closed-loop system are approximately 27 and 350 Hz under PID and
ISMC controls, respectively.
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3.3. Robustness Test

To understand the system robustness, a step response experiment with different loadings was
performed. The results in Figure 12 show that there is no obvious change in the system response under
different loadings. Therefore, this shows that the system is sufficiently robust to changes in mass.
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4. Discussion

In this paper, the design, analysis, and control of an elastomeric-bearing precision positioning
stage is presented for possible application in positioning and vibration control for measurement
and inspection applications. The system contains an elastomeric bearing stage and is actuated by
a voice coil motor. A capacitance probe is used to measure the motion and provide feedback. Finally,
a FPGA-based digital controller was designed to perform the motion control.

Due to their viscoelastic nature, the elastomeric bearings were modeled as a generalized Maxwell
fluid using the relaxation test data, and the entire stage was modeled as a single-degree-of-freedom
system with time- and frequency-varying stiffness. Meanwhile, the actuator was modeled as
a first-order system, based on results from associated dynamic tests. The PID and ISMC controllers
were designed according to the plant dynamics. The experimental results indicated that the system can
achieve bandwidths of 27 Hz and 350 Hz and steady state errors less than 13 nm and 203 nm under PID
and ISMC controls, respectively. Table 2 briefly summarizes the performance of the designed system.
Notice that in Table 2, the settling time is defined as the time when the tracking error is reduced to
be in the range within ±2% of the set-point. Compared with PID control, the system with ISMC has
faster positioning speed but worse positioning resolution. The robustness test shows the system has
good robustness to changes in the mass. The high damping of the elastomeric bearing system may be
the reason for the good system robustness.

Table 2. System performance under PID and ISMC controls.

Performance PID ISMC

Steady State Error (nm) 13 203
Overshoot (%) 1.9 2.01
Rise Time (ms) 9 6

Settling Time (ms) 20 29
Bandwidth (Hz) 27 350

Compared to our previous work using compliant mechanisms [4], the size of the elastomeric
bearing stage (30 × 33 × 33 mm3) is smaller than that of the compliant stage (130 × 40 × 15 mm3).
This is a major advantage of incorporating elastomeric bearing design. Such a smaller size represents a
major advantage in systems requiring a more compact design. The stroke of the elastomeric bearing
stage (139 µm) is larger than that of the compliant stage (101 µm). The bandwidth of the current design
(350 Hz) is also better than that of the previous one (29 Hz). It is expected that, thanks to this work,
elastomeric bearing stages can be applied in applications such as automatic inspection machines and
precision metrology.

5. Conclusions

In previous works [5,6], researchers used linear elastic models to model the mechanical
behavior of elastomers. In this paper, the viscoelastic properties were considered and applied in
the system modeling. A stress relaxation test was performed to observe and model the time- and
frequency-varying stiffness. Based on the stage model with viscoelastic stiffness, ISMC was designed
and realized. The results of the positioning experiment show that this is an effective method for
modeling and controlling the elastomeric bearing systems of precision machines.

The full properties of elastomeric bearings are too complicated to be fully modelled. Thus, some
properties were not considered in this paper. The compression stress has an effect on the shear stiffness.
Considering the relationship between the compression stress and shear stiffness of elastomeric bearings
can improve the bearing stiffness design. In addition, the controller design is based on a simplified
system model. The performance of the system may improve if the controller design were to be based
on the full fifth-order system model.
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