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Abstract: In this study, a novel system was designed to enhance the efficiency of data acquisition in a
portable and compact instrument dedicated to the spectral analysis of various surfaces, including
plant leaves, and materials requiring characterization within the 410 to 915 nm range. The proposed
system incorporates two nine-band detectors positioned on the top and bottom of the target sur-
face, each equipped with a digitally controllable LED. The detectors are capable of measuring both
reflection and transmission properties, depending on the LED configuration. Specifically, when
the upper LED is activated, the lower detector operates without its LED, enabling the precise mea-
surement of light transmitted through the sample. The process is reversed in subsequent iterations,
facilitating an accurate assessment of reflection and transmission for each side of the target surface.
For reliability, the error estimation utilizes a color checker, followed by a multi-layer perceptron
(MLP) implementation integrated into the microcontroller unit (MCU) using TinyML technology
for real-time refined data acquisition. The system is constructed with 3D-printed components and
cost-effective electronics. It also supports USB or Bluetooth communication for data transmission.
This innovative detector marks a significant advancement in spectral analysis, particularly for plant
research, offering the potential for disease detection and nutritional deficiency assessment.

Keywords: low-cost fabrication; multichannel detector; multilayer perceptron (MLP); plant leaves;
spectral analysis

1. Introduction

Optical spectrometers that operate in the visible and infrared regions have become
indispensable tools in our daily lives, fundamentally transforming our comprehension
and interaction with a wide range of materials and substances, regardless of their physical
state. This technology is extensively employed in several areas, including agriculture,
energy, chemistry, materials science, and food production [1–9]. The operating principle of
visible–short-wave near-infrared (VIS-NIR-SWIR) spectroscopy is the transfer of energy
between light and matter. This fundamental principle allows for the identification and study
of different compounds by examining their distinct spectral properties. In fact, the spectral
characteristics within the VIS-NIR-SWIR range are intricately linked to the vibrational
modes of the functional groups found in the target substance [2,10]. Indeed, the vibrational
modes serve as a distinctive mark, resembling a fingerprint, which enables scientists and
researchers to obtain valuable information about the composition and characteristics of the
substances being studied. Moreover, the non-invasive, high-resolution, and non-destructive
aspects of Vis-SWNIR spectroscopy are very beneficial in plant studies [3,11,12]. It enables
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quick assessments without causing damage to the samples, making it ideal for the real-time
monitoring of plant health and nutrient levels.

Several studies used spectral analysis to investigate plants in the past [12–20]. For
example, Ge et al. explored the utility of VIS-NIR-SWIR as a high-throughput instrument
for measuring six leaf parameters of maize plants: chlorophyll content (CHL), leaf water
content (LWC), specific leaf area (SLA), nitrogen (N), phosphorus (P), and potassium
(K) [12]. To estimate leaf attributes from hyperspectral data, two multivariate modeling
techniques, namely, partial least-squares regression (PLSR) and support vector regression
(SVR), were used to calculate several vegetation indices. The results show that the proposed
methodologies can be used to predict CHL levels but not the other leaf metrics. In 2020,
Xiong et al. used Vis-SWNIR spectroscopy and chemometric techniques to investigate
the potassium concentration in fresh lettuce [21]. The authors demonstrated how PLS
and SVR can be used to assess potassium concentrations in these plants. The results
show that the PLS model outperformed the SVR model in terms of prediction. In 2021,
Mahajan and collaborators characterized the foliar nutrient status of mango through the
development of spectral indices, multivariate calculus, chemometrics, and machine learning
(ML) models [15]. Recently, Wang et al. created an inexpensive spectrometer for assessing
the quality attributes of tea tree leaves [13]. The device utilizes the random forest method to
accurately predict the quantities of nitrogen, chlorophyll, and free amino acids. However,
the predictions for moisture, polyphenol, and sugar exhibit some inconsistency, which
impacts the overall accuracy.

Conventional high-performance spectrometers have historically depended on robust
and costly setups that integrate bulky dispersive elements, long optical paths, and com-
plex mechanical processes. Additionally, expert personnel are required to carry out the
tests in some cases. However, the demand for versatile spectroscopy tools tailored to
specific applications has driven innovation in the form of more compact, cost-effective
designs and user-friendly systems. These modern spectrometers prioritize portability,
affordability, durability, and energy efficiency, making them suitable for a diverse range
of scenarios [4,9,22–26]. The rising demand for mini- and micro-spectrometers across
different industries has resulted in a projected market value of almost USD 900 million,
showing a significant surge in interest in this technology [27]. Coronel-Reyes et al. created
an inexpensive NIR spectrometer to evaluate the duration of egg storage [7]. Consequently,
the eggs were subjected to spectral analysis by utilizing reflectance measurements rang-
ing from 740 to 1070 nm. In addition, appropriate predictive models were constructed
using PLS and artificial neural network (ANN) regression approaches, which aided in
determining the freshness of eggs. In 2020, Laganovska and her colleagues presented a
cost-effective, self-contained portable spectrophotometer [24]. In addition, this device offers
exceptional performance and achieves a resolution of 15 nm. In 2021, Botero-Valencia et
al. introduced a cost-effective and wireless IoT multispectral acquisition device aimed at im-
proving the availability of spectrum data for diverse applications [23]. This device utilizes
the functionalities of small-scale spectrometers and Internet of things (IoT) technologies,
hence creating possibilities for more extensive spectrum investigations in various domains.
Another low-cost spectrometer was developed for biochemical assays [28], measuring
the milk quality [4], and the testing of citrus cultivars [1]. These devices typically utilize
artificial intelligence approaches to overcome the restrictions imposed by the detectors
and other inexpensive components. Nevertheless, these algorithms necessitate substantial
computational resources, resulting in increased energy consumption. Consequently, these
devices are unsuitable for integration into Internet of things (IoT) networks. Due to this
argument, there has been a significant inclination toward adopting a range of TinyML
techniques, which is a specialized area within machine learning that aims to facilitate the
integration of ML applications into small, energy-efficient, cost-effective devices [29–31].
Likewise, TinyML allows for the analysis and interpretation of data directly on devices,
enabling immediate decision-making and action. Furthermore, several of these systems
do not account for the measurement of multispectral data on both sides of the leaf. This
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is crucial considering the varied manifestations of diseases and the need to assess their
transmittance simultaneously.

In this work, we present a cutting-edge device that effortlessly integrates all of the
aforementioned unique characteristics. The design features two AS7341 detectors strategi-
cally placed at the sample’s upper and lower interfaces. Each detector has an independently
programmable light-emitting diode (LED) system that allows for the fine control of the
incident light spectrum. Importantly, depending on the precise LED activation sequence,
these detectors can concurrently evaluate the reflectance and transmittance characteristics
of the sample under test. In the proposed device, when the upper LED module is turned
on, the lower detector goes into a passive state, allowing for the evaluation of light trans-
mission properties across the sample. Likewise, the detecting mechanism’s reliability was
validated. An in-depth error approximation strategy was used for this purpose, employing
the standard color checker technique. The system was then subjected to data alignment
using a multilayer perceptron (MLP) algorithm, ensuring the best possible correlation of
the acquired data with predetermined reference standards.

This calibration process in particular is fully integrated with the dedicated microcon-
troller unit (MCU) via cutting-edge TinyML technology, enabling accurate and reliable
real-time acquiring of spectral data. Furthermore, the use of TinyML allows for the pro-
posed spectrometer to consume less power than other previously presented options. Finally,
all of these components are assembled in a 3D-printed chassis that is meticulously con-
structed, which reduces the cost of the proposed device.

2. Materials and Methods
2.1. Multispectral Sensor

The AS7341 sensor (Adafruit, New York, NY, USA) is a versatile and high-performance
11-channel multispectral sensor designed for accurate color detection and extensive spectral
analysis applications [32]. It effectively spans a broad spectral range from 350 nm to 1000
nm, encompassing the visible spectrum, near-infrared (NIR), and clear light. With eight
optical channels dedicated to the visible spectrum, one for NIR light, and an additional
one for clear light, it also includes a specialized channel for detecting 50 Hz or 60 Hz
ambient light flicker. Employing nano-optic deposited interference filter technology, this
sensor seamlessly integrates filters into standard CMOS silicon, enabling a streamlined and
cost-effective sensor design. Equipped with a built-in aperture, it efficiently regulates the
influx of light into the sensor array, with control accessible through a serial I²C interface. It
is available in an ultra-low-profile package, featuring dimensions of 3.1 mm × 2 mm × 1
mm, making it an optimal choice for space-constrained engineering applications. In the
case described in this study, two AS7341 sensors were employed to evaluate the reflection
of each side of the plant leaf while simultaneously assessing the transmission. Each sensor
is paired with a digitally controllable LED, namely, the EAHC2835WD6, which further
streamlines the acquisition process. Figure 1b shows the relative luminous intensity for
the EAHC2835WD6 LED, which was taken with an OHSP-350C (Ocean Optics, Orlando,
FL, USA). The spectrum depicted illustrates the LED’s effectiveness across the wavelength
range of 400 to 750 nm. Figure 1a illustrates an approximation of the spectral distribution
of the bands (relative sensitivity) in the multispectral sensor. The bandwidths (BWs) of the
channels range from approximately 26 to 90 nm. The datasheet does not specify the BW
of the 910 nm channel. The AS7341 is a versatile sensor that allows both the gain and the
integration time to be configured via software, which allows the sensitivity of the sensor to
be adjusted within the program. In the case of the data used in this work, a gain of 32 was
used.
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Figure 1. Relative sensitivity and luminous in AS7341 integrated board. (a) Relative sensitivity of the
AS7341. (b) Relative luminous intensity profile of the EAHC2835WD6 LED.

2.2. Mechanical Design

The entire structure of the proposed spectrometer was 3D-printed using polylactic acid
(PLA) material. The first components, namely, MCU_cover and MCU_support (parts 1 and
2), were specifically designed to encase the microcontroller and battery, with MCU_support
featuring an aperture for the microcontroller display. An additional component, namely,
MUX_support (part 3), is used to hold and cover the multiplexer and for toggling the
activation between the two spectrometers. Inside the device, two AS734 multispectral
sensors are employed and are positioned opposite each other to evaluate the transmittance
and reflectance of the leaf specimen placed between them. The first sensor is shielded by
components 4 and 5, denoted as top_base and top_cover, respectively, while the second
sensor is protected by components 6 and 7, named bottom_cover and bottom_base. This
design allows the system to be opened and closed, thereby enabling the adjustment of the
separation between the spectrometers for non-invasive leaf measurements. Finally, com-
ponents 8 and 9, identified as top_hinge and bottom_hinge, function as pivotal elements,
facilitating the system’s open-and-close movements. Figure 2 illustrates the configuration
of the proposed spectrometer, together with a detailed inventory of the components com-
prising the proposed design. Additionally, the table includes a hyperlink to the online
repository, where the files are accessible in STL format for printing and utilization by
interested users.

2.3. Electronic Design

Figure 3 shows the electronic wiring diagram of the components used in the presented
system. To accommodate the requirement of utilizing two AS7341 sensors, which only
support I²C communication and cannot be modified, it became imperative to employ the
DFR0576 digital 1-to-8 I²C multiplexer. We utilized two of its outputs for this purpose. This
is connected to the I²C bus of the microcontroller, namely, the LILYGO-T-HMI-ESP32-S3.
Furthermore, the system is equipped with a 450 mAh lithium battery, enabling it to function
independently in the field.

2.4. Color Checker

Calibration is an essential stage in the development of a low-cost spectrometer. Cur-
rently, there are various approaches available for this purpose, depending on the specific
application. In our particular scenario, a color checker, as stated in reference [33] was
used. A color checker is a tool used in spectroscopy and photometry to standardize and
assess the precision of a spectrum [33–35]. The color checker seen in Figure 4 consists
of a sequence of color patches that possess predetermined and standardized reflectance
values. As a result, these patches exhibit distinct and consistent colors that are precisely
determined in terms of their wavelength and reflectance intensity. To provide a visual
representation, we overlapped each spectrum in the box with the corresponding color patch.
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This demonstrates how the spectrum was modified based on the studied color. Figure
4 depicts a color checker with 24 unique colors [33], which was referenced as a “patch”
during the analysis. Within each patch, and simply as a representation, the x-axis indicates
the wavelength between 400 and 980 nm, and the y-axis shows the normalized reflectivity.
The suggested spectrometer operates in the visible and near-infrared (NIR) wavelength
range. The color checker then indicates each color’s reflectance across a wavelength range
of 400 nm to 1000 nm. The color checker for black showed a reflectance value of 0.0125, as
expected, whereas the color checker for white showed a reflectance value of 0.8812.

Name Link to file
01_MCU_cover.STL https://osf.io/3dbnm
02_MCU_support.STL https://osf.io/b6fsm
03_MUX_support.STL https://osf.io/k6bs3
04_Top_base.STL https://osf.io/7bpfj
05_Top_cover.STL https://osf.io/wxgsq
06_Bottom_cover.STL https://osf.io/f2639
07_Bottom_base.STL https://osf.io/x3zsw
08_Top_hinge.STL https://osf.io/7crwd
09_Bottom_hinge.STL https://osf.io/6u2n3

Figure 2. Assembly and list of mechanical parts.

Figure 3. Electronic connection diagram.
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Figure 4. Color checker and reflectivity curves [33]. In the figure, the distribution of the rows and
columns corresponds to the original Color checker, and within each patch the reflectance curve is
shown as a reference.

2.5. Machine Learning Algorithm

The data provided by the AS7341 sensor is in a raw format expressed in counts. To
calibrate these values to a standardized reflectivity measure, the color checker mentioned
in Section 2.4 was employed to capture the values with each sensor. Subsequently, these
values were adjusted using a supervised machine learning method, specifically, a multilayer
perceptron (MLP) [36]. The MLP method was selected due to its ability to describe intricate
interactions between inputs and outputs, making it particularly advantageous in spectral
analysis cases where the relationships may exhibit nonlinear behavior. Furthermore, the
MLP approach possesses the capacity to extrapolate from a restricted amount of training
data [37–39]. In this particular instance, the MLP model comprises nine neurons in the
input layer, two hidden layers, and nine neurons in the output layer, as can be seen in
Figure 5. Every neuron in the input layer receives reflectance data that are measured at
nine distinct wavelengths: 415, 445, 480, 515, 555, 590, 630, 680, and 910 nm. These same
wavelengths correspond to the expected outputs of the model. The neurons in each layer
are completely interconnected with the neurons in the subsequent layer, facilitating the
unidirectional flow of information. The network architecture is specifically built to enable
the mapping of input data, which represents the spectrum reflectance measurements, to the
matching output data, which are the reflectance values at specified wavelengths. The MLP
model, which is designed for feedforward operation, adeptly captures intricate connections
between the input and output data, facilitating accurate spectrum analysis and predictions.
On the other hand, the weights of these connections are modified during the training
process. Each neuron’s output is multiplied by the connection weight, then undergoes a
rectified linear unit (ReLU) activation function and is summed with the outputs of other
linked neurons. In this case, a ReLU function was selected because of its reduced training
time and straightforward integration into embedded devices.

Tiny machine learning (TinyML) is a revolutionary branch of artificial intelligence that
enables the execution of ML models on low-power devices, like MCUs. This breakthrough
technology empowers the implementation of machine learning models for sensor data anal-
ysis directly on the device, resulting in lower power consumption and feasible deployment
on battery-powered devices. The benefits of TinyML are manifold: local data processing
minimizes the latency, enhancing the efficiency and expediting decision-making without
the need for information transfer to a server. Moreover, reduced power consumption is
critical for battery-constrained devices, while local data storage heightens the security by
mitigating risks associated with information transfer. The implementation process typically
commences with training the model on a higher-power computer using TensorFlow, fol-
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lowed by optimization with TensorFlow Lite to reduce the size and complexity. The model
is then adapted to the MCU’s capabilities, and necessary code is written to load and run
the model on the device, undergoing tests and performance adjustments as needed.

In this work, the perceptron training process was carried out using the TensorFlow
library. The main objective of this implementation was the subsequent integration of the
model in an embedded system to have the data adjusted in real-time. This optimization
process is achieved through the adaptation of the model to the tiny machine learning frame-
work, which allows for its efficient implementation on an MCU with limited resources.

Figure 5. Architecture of the proposed MLP.

2.6. Measurement of Reflectance Using an Optical Spectrum Analyzer (OSA)

The experimental setup illustrated in Figure 6 was employed to obtain the reflectance
spectrum of colored paper sheets with different colors. This setup employed a laser-
controlled plasma-type white light source (Energetiq EQ-99-FC, Wilmington, MA, USA)
that emitted between 190 and 2500 nm, and an optical spectrum analyzer (OSA) (Yoko-
gawa, AQ6373, Tokyo, Japan). Both instruments in this scenario were connected using
a fiber optic probe (Ocean Optics, QR200-7-UV-VIS), which enabled the measurement
of the reflectance of the sample being analyzed. As depicted in Figure 6, the probe was
strategically positioned at a 45◦ angle to mitigate the impact of undesirable reflections that
might compromise the measurement accuracy. This orientation served the dual purpose of
not only minimizing unwanted reflections but also preventing incident light from reflecting
directly back toward the light source. To ensure that the measurement was always taken in
the same position, i.e., at the same distance between the probe and the sample, a holder
was employed. This holder was allowed for securing the position of the probe with a screw.

The OSA measurements were conducted using a linear scale with a precision of 5
nm, covering a wavelength range of 350 nm to 980 nm with increments of 0.31 nm. The
initial phase of the experiment entailed capturing diffuse reflectance spectra spanning
from 350 nm to 980 nm. This was achieved by utilizing a certified reflectance standard,
specifically the USRS-99-010 model from Labsphere (Hewlett Packard, Palo Alto, CA, USA).
This accessory helped to calibrate the white color, thereby guaranteeing the consistency and
accuracy of measurements. Its function was to emulate an ideal target with nearly perfect
reflectance, facilitating precise and reliable data collection throughout the experiment.
Through spectral analysis of this reference sample, we established a standard against which
the reflectance characteristics of other materials could be evaluated. This comparison was
crucial to ensure precise and uniform measurements across all samples. By employing a
reference sample, we could compensate for variations in the measurement configuration,
such as fluctuations in the light intensity or sensor sensitivity, ensuring the successful
normalization of the collected data. Subsequently, a series of colored paper sheet samples,
with each one displaying a distinct color, were subjected to experimentation utilizing the
aforementioned setup to acquire the reflectance spectrum for each colored paper sample.
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The selected colors were red (C01), orange (C02), yellow (C03), fuchsia (C04), violet (C05),
dark blue (C06), light blue (C07), dark green (C08), and light green (C09).

Figure 6. Experimental setup used to measure the reflectance with different colors using an OSA.

3. Results and Discussions
3.1. Assembly and Manufacturing

First, each element of the suggested affordable spectrometer was constructed utilizing
the 3D-printing technique, specifically employing the Creality Ender 5 printer. Although
polylactic acid (PLA) is a suitable material for this purpose, acrylonitrile styrene acrylate
(ASA) is advised due to its superior mechanical strength and ability to protect against
UV radiation. Subsequently, the assembly of all components was executed following the
instructions outlined in Section 2.2, following the assembly of the mechanical components.
M3 screws and safety nuts were utilized to ensure secure assembly and prevent misalign-
ment during operation. Additionally, two 30 mm watch glasses can be used to hide the
sensors for added protection against dust ingress and facilitate cleaning. The mechanical
design has space to accommodate them. The electronic system described in Section 2.3 was
implemented in a manner that ensured optimal sensor placement to prevent any errors.
An essential aspect was to ensure that each component was properly fixed to prevent any
movement, as this could lead to measurement inaccuracies. Therefore, it was crucial to
align the size of the mechanical components with the specific shape of each electronic
element. Conversely, the software responsible for acquiring, storing, and processing data
was installed in the MCU. As stated in Section 2.5, this software incorporates a TinyML
model.

Figure 7a shows a picture of the entire view of the proposed spectrometer, and each
component was sequentially labeled according to the diagram presented in Figure 2 to
facilitate their identification. Figure 7b displays an image depicting the specific region of the
device where the samples to be analyzed are positioned. The construction and integration
of an affordable spectrometer was accomplished, demonstrating its user-friendly nature
and suitability for use in external laboratory settings.

3.2. Model Selection and Training Error

As previously stated, the calibration dataset was drawn from the data acquired using
the color checker [33], which consisted of 24 patches with known reflectance curves, and
the raw data taken from each of the sensors, considering the potential variances that may
exist between them. Table 1 presents a summary of the training for the upper sensor. A
total of 16 different MLPs were trained, varying the number of layers and the number
of neurons in each of the hidden layers. Given the limited amount of data, each neural
network was trained five times, and the error was averaged to ensure stability. The metrics
used were the mean absolute error (MAE) and total P. The total P refers to the total number
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of parameters in the model, in this case, the parameters were the weights and biases used
to connect the neurons. The number of parameters is important as it affects the size and
complexity of the model. A model with many parameters can be more accurate but may
also be more challenging to train and might require more training data. In our case, it
would also imply more complexity in deploying it on the embedded system. According
to the findings presented in Table 1, the model that utilized two hidden layers with 64
neurons in each layer was chosen since the inclusion of a third layer did not result in a
substantial enhancement in performance. Conversely, the inclusion of a third hidden layer
resulted in an almost double increase in the value of the total P metric compared with
the scenario when only two hidden layers were employed. Therefore, the model would
become more complex and robust, thereby increasing the difficulty of its integration into
the embedded system. Furthermore, it is evident that the inclusion of a fourth hidden layer
negatively impacted the outcomes, which was a phenomenon that might be attributed to
limited available data.

(a)
(b)

Figure 7. Photograph of the constructed spectrometer. (a) View of the entire device. (b) Detailed view
of the area where the samples were located. The numbers in the figure correspond to the identification
in the Figure 2.

All the conducted training sessions involved a rigorous execution process spanning
1000 epochs, each with a modest batch size of 3, while ensuring data diversity through the
strategic utilization of the "shuffle" option. In the neural network architecture, only the bias
was implemented in the initial layer, while the loss function was carefully designated as the
mean absolute error (MAE), indicating a robust approach to error measurement. Notably,
these intensive training operations were seamlessly orchestrated within the user-friendly
Google Colab platform and were consistently completed within a highly efficient time
frame, with no instance surpassing the 200 s mark. Both tools used have an open-source
license that allows users to utilize, modify, and redistribute the software without any
restrictions.

A comparison analysis was conducted to assess the performance of the suggested
spectrometer and the implemented ML model. In the initial scenario, the measurements
were compared by utilizing the color checker specified in [33] as the reference technique.
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There, the authors report the reflectance curves of 24 different patches. All these reference
patches were then experimentally characterized using the proposed low-cost spectrometer.
Figure 8 shows only six of them for clarity (patch 01, patch 04, patch 10, patch 14, patch
15, and patch 19). A comparison of the reference reflectance (MEA), raw reflectance (SEN),
and adjusted reflectance (ADJ) is shown in each scenario. The ideal MLP configuration (64
neurons in each of the two hidden layers) was used to obtain the ADJ findings.

Table 1. Training error analysis of the ML model used. The MAE and total P metrics were analyzed
as functions of the hidden layers and the number of neurons per layer. The best results have been
highlighted in the table to facilitate their identification.

Neurons per Layer
Hidden Layers Metric

8 16 32 64

MAE 0.1315 0.0929 0.0721 0.0645
1

Total P 152 304 608 1216
MAE 0.1203 0.0874 0.0562 0.03982 Total P 216 560 1632 5312
MAE 0.1469 0.0639 0.0581 0.0356

3
Total P 280 816 2656 9408

MAE 0.0862 0.0538 0.0521 0.0515
4

Total P 344 1072 3680 13504

Based on the obtained results, it is evident that there was a strong correlation between
the MEA and SEN measurements, particularly at shorter wavelengths. Additionally, there
were slight discrepancies observed at longer wavelengths. However, these disparities were
rectified when employing the ideal machine learning model, hence significantly improving
the accuracy of the obtained results. In fact, the methodology utilized successfully achieved
a strong correlation between the ADJ results and the reference reflectance values across the
whole research range (400 to 980 nm).

On the other hand, a quantitative study of the training error was conducted on the 24
instances. The findings are succinctly presented in Table 2. This table displays the training
error analysis, where SEN represents the absolute error against the raw measurement
and ADJ denotes the error with respect to the adjusted values. To conduct a thorough
investigation, the MAE analysis was computed for each patch and each channel. The
obtained results corroborate that the error was significantly reduced in all cases, even at
a wavelength of 910 nm, which was the channel that first exhibited the highest level of
inaccuracy. Finally, the overall MAE was calculated. The implemented MLP successfully
reduced the obtained overall MAE from 0.2979 to 0.0398. In other words, the proposed
model reduced the training error by a factor of at least three.
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Instruments 2024, 8, 24 11 of 18

4
1

5

4
4

5

4
8

0

5
1

5

5
5

5

5
9

0

6
3

0

6
8

0

9
1

0

0

0.2

0.4

0.6

0.8

1

MEA

SEN

ADJ

(c) Patch 10.

4
1

5

4
4

5

4
8

0

5
1

5

5
5

5

5
9

0

6
3

0

6
8

0

9
1

0

0

0.2

0.4

0.6

0.8

1

MEA

SEN

ADJ

(d) Patch 14.

4
1

5

4
4

5

4
8

0

5
1

5

5
5

5

5
9

0

6
3

0

6
8

0

9
1

0

0

0.2

0.4

0.6

0.8

1

MEA

SEN

ADJ

(e) Patch 15.
4

1
5

4
4

5

4
8

0

5
1

5

5
5

5

5
9

0

6
3

0

6
8

0

9
1

0

0

0.2

0.4

0.6

0.8

1

MEA

SEN

ADJ

(f) Patch 19.

Figure 8. Comparison of the fits of multiple patches. MEA is the color checker reference reflectance.
SEN is the raw reflectance, while ADJ is the best MLP setup-adjusted reflectance.

Table 2. Comparative training error while employing the proposed spectrometer for characterizing
the patches reported in [33].

Patch 415 445 480 515 555 590 630 680 910 MAE

P01 [SEN] 0.1012 0.0118 0.2234 0.0368 0.1864 0.0130 0.0884 0.1934 1.0643 0.2132

P01 [ADJ] 0.0279 0.0385 0.0290 0.0551 0.0401 0.0770 0.0589 0.0614 0.1156 0.0559

P02 [SEN] 0.3808 0.1078 0.0103 0.1876 0.1047 0.0943 0.0738 0.7812 1.7260 0.3852

P02 [ADJ] 0.0313 0.0029 0.0150 0.0357 0.0036 0.0210 0.0463 0.0104 0.0646 0.0257

P03 [SEN] 0.6498 0.2385 0.0053 0.0768 0.1175 0.0029 0.1751 0.0848 0.4497 0.2000

P03 [ADJ] 0.0403 0.0250 0.0161 0.0721 0.0065 0.0913 0.0531 0.0571 0.0225 0.0427

P03 [SEN] 0.0429 0.0284 0.2440 0.0331 0.1150 0.0263 0.1560 0.0562 0.2717 0.1082

P04 [ADJ] 0.0449 0.0554 0.0190 0.0431 0.0510 0.0801 0.0747 0.0808 0.0567 0.0562

P04 [SEN] 0.9657 0.3412 0.0406 0.1565 0.0973 0.0891 0.0339 0.4455 1.8225 0.4436

P05 [ADJ] 0.0342 0.0177 0.0080 0.0426 0.0296 0.0665 0.0592 0.0616 0.0724 0.0435

P05 [SEN] 0.7042 0.2666 0.2109 0.3292 0.1404 0.1496 0.1012 0.1640 1.7104 0.4196

P06 [ADJ] 0.0497 0.0378 0.0101 0.0236 0.0211 0.1040 0.0426 0.0310 0.0197 0.0377

P07 [SEN] 0.0105 0.0773 0.2417 0.0857 0.2464 0.1702 0.1416 0.6489 1.5542 0.3529

P07 [ADJ] 0.0050 0.0303 0.0031 0.0267 0.0228 0.0100 0.0364 0.0184 0.0912 0.0271

P08 [SEN] 0.5888 0.1922 0.0655 0.0156 0.2270 0.0996 0.2344 0.1208 1.3312 0.3195

P08 [ADJ] 0.0204 0.0534 0.0349 0.0416 0.0097 0.0933 0.0382 0.0942 0.0209 0.0452

P09 [SEN] 0.2375 0.0238 0.2259 0.0750 0.2776 0.1239 0.0531 0.5936 1.0351 0.2939

P09 [ADJ] 0.0256 0.0132 0.0354 0.0044 0.0226 0.0151 0.0561 0.0554 0.0406 0.0298

P10 [SEN] 0.3255 0.0625 0.2291 0.0849 0.2573 0.0887 0.2812 0.0069 1.3823 0.3021

P10 [ADJ] 0.0263 0.0351 0.0439 0.0497 0.0188 0.0606 0.0419 0.0087 0.0832 0.0409
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Table 2. Cont.

Patch 415 445 480 515 555 590 630 680 910 MAE

P11 [SEN] 0.0169 0.0674 0.2801 0.0546 0.0208 0.1054 0.1356 0.2398 1.3895 0.2567

P11 [ADJ] 0.0119 0.0022 0.0069 0.0271 0.0058 0.0449 0.0694 0.0259 0.0369 0.0257

P12 [SEN] 0.0000 0.1064 0.2430 0.1812 0.0394 0.2092 0.1318 0.7150 1.2315 0.3175

P12 [ADJ] 0.0238 0.0170 0.0311 0.0092 0.0269 0.0396 0.0538 0.0048 0.0462 0.0280

P13 [SEN] 0.3315 0.0997 0.1245 0.1055 0.2678 0.1416 0.2724 0.1534 1.1325 0.2921

P13 [ADJ] 0.0025 0.0553 0.0270 0.0426 0.0185 0.0575 0.0544 0.0562 0.1125 0.0474

P14 [SEN] 0.0158 0.0537 0.2410 0.0965 0.0725 0.0297 0.2062 0.0123 1.4320 0.2400

P14 [ADJ] 0.0307 0.0325 0.0007 0.0576 0.0269 0.0461 0.0894 0.1021 0.0494 0.0484

P15 [SEN] 0.0098 0.0846 0.2627 0.0875 0.2666 0.1928 0.2773 0.8341 1.3656 0.3757

P15 [ADJ] 0.0169 0.0103 0.0251 0.0116 0.0156 0.0189 0.0771 0.0095 0.0184 0.0226

P16 [SEN] 0.0557 0.1246 0.3437 0.0742 0.0513 0.1108 0.0020 0.5942 1.3167 0.2970

P16 [ADJ] 0.0057 0.0023 0.0045 0.0040 0.0098 0.0355 0.0323 0.0089 0.1889 0.0324

P17 [SEN] 0.7284 0.2087 0.1461 0.0436 0.2874 0.1565 0.1141 0.8319 1.7266 0.4715

P17 [ADJ] 0.0184 0.0290 0.0576 0.0576 0.0087 0.0505 0.0622 0.0544 0.0079 0.0385

P18 [SEN] 0.4446 0.1416 0.0936 0.1539 0.1740 0.1279 0.2828 0.1200 0.7277 0.2518

P18 [ADJ] 0.0471 0.0310 0.0173 0.0716 0.0111 0.1187 0.0802 0.1067 0.0570 0.0601

P19 [SEN] 1.4357 0.5724 0.3193 0.2977 0.0149 0.1225 0.0530 0.7924 1.6289 0.5819

P19 [ADJ] 0.0611 0.0254 0.0440 0.0154 0.0083 0.0174 0.0234 0.0012 0.2344 0.0478

P20 [SEN] 1.1232 0.4129 0.1501 0.2183 0.0188 0.1730 0.0699 0.5621 0.9140 0.4047

P20 [ADJ] 0.1143 0.0207 0.0133 0.0011 0.0197 0.0025 0.0375 0.0301 0.1775 0.0463

P21 [SEN] 0.7640 0.2806 0.0368 0.1537 0.0237 0.1206 0.0007 0.3400 0.4858 0.2451

P21 [ADJ] 0.0419 0.0096 0.0003 0.0010 0.0198 0.0264 0.0475 0.0143 0.0400 0.0223

P22 [SEN] 0.4042 0.1519 0.0880 0.0614 0.0959 0.0415 0.0905 0.1240 0.1185 0.1307

P22 [ADJ] 0.0077 0.0453 0.0262 0.0447 0.0356 0.0908 0.0660 0.0655 0.0887 0.0523

P23 [SEN] 0.1137 0.0146 0.2116 0.0432 0.1964 0.0685 0.1903 0.0288 0.0338 0.1001

P23 [ADJ] 0.0116 0.0417 0.0096 0.0541 0.0080 0.0639 0.0822 0.1089 0.1339 0.0571

P24 [SEN] 0.0241 0.0847 0.2855 0.0995 0.2447 0.1177 0.2359 0.1029 0.1286 0.1471

P24 [ADJ] 0.0042 0.0117 0.0029 0.0355 0.0096 0.0398 0.0370 0.0378 0.0165 0.0217
MAE [SEN] 0.3948 0.1564 0.1801 0.1147 0.1477 0.1073 0.1417 0.3561 1.0825 0.2979
MAE [ADJ] 0.0293 0.0268 0.0200 0.0345 0.0188 0.0530 0.0550 0.0461 0.0748 0.0398

3.3. Validation Error

A second test was carried out to validate the proposed device. For this particular
instance, a total of nine colored paper sheets, each of a distinct color, were examined.
The reference method employed was the setup outlined in Section 2.6, wherein measure-
ments were conducted with the Yokogawa AQ6373 optical spectrum analyzer, which is a
sophisticated instrument known for its high resolution.

Figure 9 demonstrates the outcomes achieved by utilizing only six out of the nine
colored paper sheets, specifically the red, yellow, light-blue, light-green, violet, and dark-
green sheets. As in the previous case study, MEA refers to the reference reflectance obtained
with the OSA. The raw reflectance is denoted as SEN, and ADJ represents the adjusted
reflectance obtained using the best MLP setup.

As in the prior case, the spectrometer provided the correct results, especially at shorter
wavelengths. Furthermore, the proposed correction model greatly improved the findings
by lowering the difference between the reference reflectance and the obtained reflectance.
The results show that the MLP-based model was well-suited for these circumstances, as
it allowed for adjustments even when dealing with highly nonlinear reflectance behavior,
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which is fundamentally complex. For example, while evaluating the red paper sheet (see
Figure 9a), reflectance values of more than 0.8 were found for wavelengths greater than
630 nm. Similarly, when inspecting the violet paper sheet, there was a fall in reflectance
between 445 nm and 630 nm (see Figure 9c), indicating substantial absorption within this
range, which is consistent with prior studies.
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Figure 9. Validation with a reference method based on the use of a Yokogawa AQ6373 optical
spectrum analyzer. MEA is the OSA reference reflectance. SEN is the raw reflectance, while ADJ is
the best MLP setup-adjusted reflectance.

Table 3 shows the detailed error for each band and each color analyzed with the OSA.
Once again, SEN refers to the raw sensor data, and ADJ refers to the data adjusted with
the selected MLP. It can be observed that the MAE in this case decreased from 0.1137 to
0.03901 and that the error after adjustment remained close to that of validation, indicating
that there was no significant overfitting during the training. Again, it can be observed that
the error before adjustment (SEN) was higher in the 910 nm band, but afterward, the error
significantly decreased, and the highest error in the adjusted values (ADJ) was observed in
the 415 nm band. It can also be seen that the highest error of the adjusted data was found
in C07, corresponding to light blue, with an MAE value of 0.0829.
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Table 3. Comparative validation error while employing the proposed spectrometer for characterizing
colored paper sheets. The reference method employed in this instance was the Yokogawa AQ6373
optical spectrum analyzer.

Color 415 445 480 515 555 590 630 680 910 MAE

C01 [SEN] 0.0610 0.0084 0.0698 0.0605 0.0579 0.0015 0.0461 0.2506 0.5129 0.1187

C01 [ADJ] 0.0443 0.0062 0.0168 0.0093 0.0400 0.0193 0.0494 0.0084 0.0297 0.0248

C02 [SEN] 0.0386 0.0210 0.0976 0.0704 0.0651 0.0066 0.0053 0.1931 0.4643 0.1069

C02 [ADJ] 0.0043 0.0430 0.0008 0.0740 0.0079 0.0773 0.0232 0.0728 0.0281 0.0368

C03 [SEN] 0.0022 0.0108 0.0864 0.0128 0.0430 0.0152 0.0230 0.2283 0.4864 0.1009

C03 [ADJ] 0.0226 0.0041 0.0202 0.0002 0.0280 0.0624 0.0062 0.0008 0.0297 0.0193

C04 [SEN] 0.1804 0.0722 0.0006 0.0054 0.0486 0.0056 0.0561 0.2513 0.5210 0.1268

C04 [ADJ] 0.0447 0.0042 0.0589 0.0106 0.0303 0.0014 0.1478 0.0316 0.0305 0.0400

C05 [SEN] 0.4016 0.1510 0.0793 0.0342 0.0219 0.0321 0.0118 0.1860 0.5104 0.1587

C05 [ADJ] 0.1216 0.0437 0.0233 0.0605 0.0137 0.0207 0.0036 0.0792 0.0300 0.0440

C06 [SEN] 0.1365 0.0200 0.0457 0.0268 0.0792 0.0604 0.0654 0.0024 0.4364 0.0970

C06 [ADJ] 0.0119 0.0717 0.0308 0.0321 0.0207 0.0362 0.0151 0.0251 0.0247 0.0298

C07 [SEN] 0.3073 0.0869 0.0080 0.0454 0.0432 0.0265 0.0418 0.0438 0.4413 0.1160

C07 [ADJ] 0.1468 0.1245 0.1129 0.0800 0.1455 0.0035 0.0385 0.0684 0.0258 0.0829

C08 [SEN] 0.0315 0.0702 0.1317 0.0139 0.0925 0.0664 0.0964 0.0536 0.5008 0.1174

C08 [ADJ] 0.0531 0.0515 0.0791 0.0369 0.0658 0.0343 0.0075 0.0201 0.0279 0.0418

C09 [SEN] 0.0045 0.0501 0.0204 0.0599 0.0164 0.0038 0.0347 0.0731 0.4641 0.0808

C09 [ADJ] 0.0249 0.0494 0.0210 0.0250 0.0728 0.0224 0.0104 0.0353 0.0275 0.0321
MAE [SEN] 0.1293 0.0545 0.0599 0.0366 0.0520 0.0242 0.0423 0.1425 0.4820 0.1137
MAE [ADJ] 0.0527 0.0442 0.0404 0.0365 0.0472 0.0308 0.0335 0.0380 0.0282 0.0391

Finally, the proposed spectrometer was employed to analyze and evaluate the optical
properties of a plant leaf. Through this practical application, we were able to verify
the efficiency of the system in real-life situations, showcasing its value in the spectral
analysis of plants, encompassing both reflectance and transmittance. Figure 10a displays
the measured transmittance (TRA) and reflectance (REF) of the sun-exposed side of a leaf,
while Figure 10b illustrates the same parameters for the shaded side of the leaf, as obtained
using the suggested affordable spectrometer. As expected, the reflectance of the sun-
exposed side was reduced compared with the shaded side of the leaf. This reduction was
attributable to the leaf’s optimization for absorbing sunlight efficiently, thereby enhancing
its photosynthetic activity. In addition, the drop in the reflectance spectrum curve at 555 nm
of a leaf could be attributed to the absorption characteristics of chlorophyll. Chlorophyll,
which is the pigment responsible for photosynthesis in plants, absorbs light most efficiently
in the blue (427–476 nm) and red (618–780 nm) regions of the electromagnetic spectrum,
with minimal absorption in the green region. This phenomenon is known as the “green gap”
or “chlorophyll absorption dip”. On the other hand, a considerable increase in reflectance
in the infrared band was also expected since plant leaves absorb infrared radiation less
efficiently. Infrared radiation is related to heat, and an increase in the reflectance in this
region aids in preventing the leaf from overheating.
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(a) Sun-exposed side.
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Figure 10. Measurements of transmittance and reflectance on a vegetable leaf.

4. Conclusions

First, a cost-effective and user-friendly optical spectrometer was designed, fabricated,
and experimentally validated. This spectrometer employs a training technique based on
a comparison with a color checker, which greatly enhances its accuracy and applicability.
The training results demonstrated that the machine learning model utilizing a MLP model
effectively decreased the training error, even when working with a limited amount of
data. Furthermore, the efficacy of the suggested spectrometer in precisely assessing the
spectrum of materials exhibiting different colors in the visible and NIR regions was verified
by a comparative technique utilizing a high-resolution optical spectrum analyzer. The
validation findings indicate that the proposed spectrometer accurately characterized the
spectrum properties, and the MAE could be minimized using ML models.

In addition, the integration of a tiny machine learning model within the MCU allowed
for real-time data processing and reduced power consumption, enhancing the efficiency
and usability of the device. This innovation opens up possibilities for further developments
in the field of portable spectroscopy. On the other hand, the proposed device’s capabilities
enabled its use in leaf characterization, showcasing its proficiency in analyzing the spectral
attributes of leaves in both reflection and transmission. This is particularly advantageous,
as certain plants have distinct characteristics or colors on each side of their leaves.

Finally, our research demonstrated the feasibility of creating an optical spectrometer
that is not only cost-effective and precise but also user-friendly, with the flexibility to be
tailored for diverse applications. The novel training and machine learning techniques we
introduced, coupled with the incorporation of real-time learning models, present exciting
opportunities for further exploration and advancement in this field. This innovation
represents a valuable asset that can be seamlessly integrated into agricultural practices,
particularly for the ongoing monitoring of plant health.
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Abbreviations
The following abbreviations are used in this manuscript:

LED Light-emitting diode
MLP Multilayer perceptron
MCU Microcontroller unit
VIS-NIR-SWIR Visible–short-wave near-infrared
LWC Leaf water content
SLA Specific leaf area
CHL Chlorophyll content
PLSR Partial least-squares regression
SVR Support vector regression
ML Machine learning
ANN Artificial neural network
IoT Internet of things
NIR Near-infrared
CMOS Complementary metal-oxide semiconductor
BW Bandwidths
ReLU Rectified linear unit
OSA Optical spectrum analyzer
PLA Polylactic acid
ASA Acrylonitrile styrene acrylate
UV Ultraviolet
MAE Mean absolute error
MEA Reference reflectance
SEN Raw reflectance
ADJ Adjusted reflectance
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