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Abstract: The Cramer–Rao–Frechet inequality is reviewed and extended to track fitting. A diffused
opinion attributes to this inequality the limitation of the resolution of the track fits with the number N
of observations. It will be shown that this opinion is incorrect, the weighted least squares method is
not subjected to that N-limitation and the resolution can be improved beyond those limits. In previous
publications, simulations with realistic models and simple Gaussian models produced interesting
results: linear growths of the peaks of the distributions of the fitted parameters with the number
N of observations, much faster than the

√
N of the standard least-squares. These results could be

considered a violation of a well-known 1/N-rule for the variance of an unbiased estimator, frequently
reported as the Cramer–Rao–Frechet bound. To clarify this point beyond any doubt, a direct proof of
the consistency of those results with this inequality would be essential. Unfortunately, such proof is
lacking. Hence, the Cramer–Rao–Frechet developments are applied to prove the efficiency (optimality)
of the simple Gaussian model and the consistency of the linear growth. The inequality remains valid
even for irregular models supporting the similar improvement of resolution for the realistic models.
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1. Introduction

Track reconstruction is a fundamental tool in experimental particle physics, which justifies the
large efforts in hardware and software dedicated to its improvements. As part of these efforts,
we started to develop new fitting tools based on studies of the signal patterns released by minimum
ionizing particles (MIPs) in silicon detectors [1,2]. It is evident that any information acquired by a
detector is precious to improve the track reconstruction. To properly handle these pieces of information,
we developed a set of mathematical methods to calculate a probability density function (PDF) for each
hit. The non-Gaussian forms of the PDFs oblige the use of the maximum likelihood search for the
fits. This search on products of PDFs for the hits of each track gives very large improvements in the
resolution of all the track parameters and shows insensitivity to outliers. Among the new fitting results,
one looks particularly attractive [2], it shows a linear growth of the momentum distributions with
the number N of detecting layers. This linear growth is much faster than the growth of the standard
least-squares method that cannot increase faster than

√
N. This effect could not be discussed with the

due details in ref. [2], it contained too many different arguments to add other. Therefore, ref. [3] was
entirely dedicated to the description of the linear growth. A section of ref. [3] deals with a simplified
illustration of the mechanism of its production. For this, we developed a Gaussian toy-model able to
an easy reproduction of some our results. The simplicity of the toy-model allows the development
of analytical expressions (some pages of mathematics) that completely describe the model. Instead
of equations, we prefer to prepare an easy simulation to be contained in a few lines of MATLAB
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code. The results of this toy-model have a very effective visual impact for the unusual slenderness of
the parameter distributions (empirical PDFs) and their fast growth with N. Nothing to do with the
slow growth of the corresponding PDFs of the standard fit. Such evident differences could activate
reminiscences of mathematical statistics where the

√
N is a frequent result. In particular, the widely

reported form of the Cramer–Rao–Frechet (CRF) bound was used to raise doubts [4] on the generality
of these fast growths. To dissipate forever any possible doubt and to defend our growth (linear or
faster than linear) against any criticism, we are forced to recall the necessary details of the CRF method
to demonstrate the consistency of our results with the CRF-inequality. To illustrate better what spurred
us on this exploration of the CRF technologies, we report some results of the Gaussian toy-model,
with a few details of its construction. In principle, there is no need to know these details for the
following mathematical developments, they are completely self-contained. Instead, the results of the
toy-model are relevant to give a dimension to the practical effects of the versions of the CRF-inequality
that will be developed. Those practical effects are invisible in the very simple aspect of the inequalities.
At the same time, the mathematical results give an extended generality to the improvements of these
fitting methods.

The following Figure 1 illustrates (Monte Carlo) simulations of a simple tracker with N detecting
layers of identical technology (silicon microstrips) crossed at orthogonal incidence by a set of parallel
straight tracks of minimum ionizing particles (MIPs). The reported estimator is the track direction
(the tangent of a small angle). In this toy-model, the hit uncertainties are Gaussian distributions with
two type of hit quality. One of very good quality when the MIP crosses the detector near the borders
(20% of strip width), and the other of bad quality (80% of the strip width) around the strip center.
The standard deviations of the hit Gaussian distributions are σ1 = 0.18 and σ2 = 0.018 strip widths
(the strip width is 63 µm). (These models with non-identical variances are called heteroscedastic
in statistics.) The simulated orthogonal straight tracks (produced and organized as described in
Appendix B) are fitted with two different least-squares methods, one that uses only the hit positions
and the second that also uses the hit quality (weighted least-squares).

0 0.5 1 1.5 2

x 10
−3

0

1

2

3

4

5

6

x 10
4

Figure 1. Empirical PDFs of the fitted (straight) track direction for tracker models with N = 2 to N = 13
detecting layers. The PDFs for N = 2 are centered on zero, the others are shifted by N-2 steps of fixed
amplitude. The blue PDFs are the results of the standard least-squares. The red PDFs are obtained with
the weighted least-squares. (The reported dimensions are pure numbers).
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With standard least-squares, we define the usual least-squares where all the inserted observations
have identical variances (homoscedastic models). The standard least-squares, built for homoscedastic
models, when applied to heteroscedastic models gives results almost insensitive to the presence of
the good hits, the maximums of the empirical PDFs show a growth very near

√
N. The blue lines of

Figure 1. Instead, the weighted least-squares, in this heteroscedastic model, has an almost linear growth
of the maximums of the empirical PDFs. Translating these results on mean variances, the standard fit
shows a 1/N trend, instead, the weighted fit shows a trend of the mean variances as 1/N2. It is just
this trend 1/N2 that could be considered a violation of the CRF-bound as reported in many books
and documentations. However, the main part of ref. [3] deals with physical models with Cauchy-like
tails and (in theory) with infinite variance. Hence, any finite lower bound on the variance, given
by the CRF-inequality, is automatically satisfied by them. In any case, the evident similarity of the
PDFs of the physical models with those of the Gaussian toy-model could extend to their linear growth
doubts similar to those of the toy-model. Therefore, we must explore the CRF-inequality to prove the
inappropriate extension [4] of the rule 1/N outside its domain of validity. For this, we will extend
the CRF developments to heteroscedastic models and to the least squares method for track fitting
(for straight tracks and curved tracks) with a special attention to our Gaussian model. We did not find
the last two points in the literature. The interest in CRF-inequality moves in field very far from track
fitting as illustrated by ref. [5] and therein references. Even if the essential equations are very similar,
and our tracks are stochastic processes, it is better to develop our approach in direct connection to
our problem with a strict reference to the equations used in refs. [1–3]. If other authors did similar
developments we apologize for not citing them. In any case, the enormous statistical samples of
tracks (of the order of 1012 tracks per year) renders very important careful studies of any detail of their
fitting methods and the selection of the best. The use of the appropriate fitting tools in heteroscedastic
systems allows drastic improvements of the quality of the track reconstruction. The lucky model of
ref. [3] is a first order tool to account for the heteroscedasticity of the silicon trackers.

Section 2 recall the essential definitions and the demonstration of the simplest form of the
CRF-inequality in the case of the independent and identically distributed (i.i.d.) random variables.
Section 3 contains a first model of heteroscedasticity, the weighted mean and its efficiency (optimality)
compared to the standard (arithmetic) mean. In Section 4 we apply the CRF-inequality to the
least-squares for straight tracks with the corresponding estimator definitions, it is proved that in
heteroscedastic system the estimators of standard least-squares have greater variances compared
to the heteroscedastic ones. Section 5 deals with the momentum estimators in a simplified model
of high-momentum tracks. The conclusions are in Section 6. We added in Appendix A with a few
essential properties of the positive semi-definite matrices used in Sections 4 and 5. Appendix B contains
details about the Gaussian toy-model.

2. The Standard CRF-Inequality

The developments of this section follow as far as possible refs. [6,7]. As usual it is considered a
N-times repetition of random observations {x1, x2 . . . xN} described by an identical probability density
function (PDF) f (x, θ), where θ is a (scalar) parameter. The variables x = {x1, x2 . . . xN} are i.i.d.
random variables. We will not comment the absolute physical inconsistency of this assumption.
The probability of the set x of i.i.d. random variables (likelihood function) is:

L(x, θ) = f (x1, θ) f (x2, θ) . . . . . . f (xN , θ) . (1)

As usual f (x, θ) is positive, normalized, and supposed differentiable with respect to the
θ-parameter. Let us define the random variable U(x, θ):

U(x, θ) =
∂ ln L(x, θ)

∂θ
=

N

∑
i=1

∂ ln f (xi, θ)

∂θ
. (2)
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The following developments require differentiation of the integrals of f (x, θ) and invert the
order of integration and differentiation. The functions that allow these operations are called regular
models and they imply strict analytical conditions. A necessary condition of regular models is the
independence of the range of f (x, θ) from the θ-parameter. The normalization of the f (x, θ) is:∫

L(x, θ)dx =
∫

f (x1, θ) f (x2, θ) . . . . . . f (xN , θ)dx1dx2 . . . dxN = 1 . (3)

Differentiating Equation (3) with respect to θ and inverting the integral with the differentiation gives:

0 =
∫

∂L(x, θ)

∂θ
dx =

N

∑
i=1

∫
∂ f (xi, θ)

∂θ
dxi =

∫
∂ ln L(x, θ)

∂θ
L(x, θ)dx =

N

∑
i=1

∫
∂ ln f (xi, θ)

∂θ
f (xi, θ)dxi .

(4)

The second line of Equation (4) is given by a property of the logarithmic derivative and it implies
that the mean value of U(x, θ) is zero. Instead, its mean square is different from zero:

∫
U(x, θ)2dx =

N

∑
i=1

∫ (∂ ln f (xi, θ)

∂θ

)2 f (xi, θ)dxi = N
∫ (∂ ln f (x, θ)

∂θ

)2 f (x, θ)dx . (5)

The first term of Equation (5) is called Fisher information of the sample, the last integral is the
Fisher information contained in a single observation.

For i.i.d. random variables, the Fisher information is N-times the Fisher information of a
single observation.

This originates the 1/N factor in the CRF-bound. It will be evident that for non i.i.d. (heteroscedastic)
random variables this factorization disappears. We underline the i.i.d. assumption in Equation (5)
because often this condition is a standard assumption (as in ref. [6]), and it can only be recovered
with an accurate re-reading of the entire demonstration and doing another demonstration without the
i.i.d. assumption.

If f (x, θ) is twice differentiable with respect to θ, the last term of Equation (4) gives the
following identity:

0 =
∫ (∂ ln f (x, θ)

∂θ

)2 f (x, θ)dx +
∫

∂2 ln f (x, θ)

∂θ2 f (x, θ)dx . (6)

The Fisher information i(θ) for a single observation becomes:

i(θ) =
∫ (∂ ln f (x, θ)

∂θ

)2 f (x, θ)dx = −
∫

∂2 ln f (x, θ)

∂θ2 f (x, θ)dx . (7)

The last form of i(θ) is particularly effective for Gaussian PDF.

2.1. The CRF-Inequality

At this point it is easy to obtain the CRF-inequality for these i.i.d. random variables. Defining an
estimator T(X) = T(x1, x2 . . . xn) and its mean value:∫

T(x)L(x, θ)dx = τ(θ) , (8)



Instruments 2020, 4, 2 5 of 16

differentiating Equation (8) in θ we obtain:

τ(θ)′ =
∫

T(x)
∂ ln L(x, θ)

∂θ
L(x, θ)dx =

∫ [
T(x)− τ(θ)

]∂ ln L(x, θ)

∂θ
L(x, θ)dx =∫

T̂(x)
√

L(x, θ)
∂ ln L(x, θ)

∂θ

√
L(x, θ)dx T̂(x) = T(x)− τ(θ) .

(9)

The form of the last integral is allowed by the positivity of L(x, θ). Due to Equation (4),
the subtraction of τ(θ) from T(x) does not modify the integral in Equation (9). The Cauchy-Schwarz
inequality gives:

[τ(θ)′]2 ≤
∫

T̂(x)
2
L(x, θ)dx

∫ [∂ ln L(x, θ)

∂θ

]2L(x, θ)dx

[τ(θ)′]2 ≤ N i(θ)
∫

T̂(x)
2
L(x, θ)dx

(10)

or in its final form: ∫
T̂(x)

2
L(x, θ)dx ≥ [τ(θ)′]2

N i(θ)
. (11)

The variance of T(x) cannot be lower than the right side of Equation (11). This is the well-known
CRF-inequality that creates doubts to some of our readers. When the CRF-inequality becomes an
identity, the estimator is defined efficient.

2.2. Efficient Estimators

The Cauchy-Schwarz inequality becomes an equality if and only if T̂(x) and U(x, θ) are
linearly dependent:

T(x, θ)− τ(θ) = a(θ)U(x, θ) (12)

Hence, if an efficient estimator exists, it is a function of the model. The logarithmic functions
contained in U(x, θ) allow the discovery of estimators only in exponential models.

2.3. The Standard Mean with an i.i.d. Gaussian Model

In a Gaussian model, the PDF f (x, θ), the mean value τ(θ) and the Fisher information i(θ) are:

f (x, θ) =
exp[−(x− θ)2/2σ2]√

2πσ
τ(θ) =

∫
T(x)L(x, θ)dx = θ

i(θ) = −
∫

∂2 ln f (x, θ)

∂θ2 f (x, θ)dx =
1
σ2 .

(13)

The efficient estimator of this model (the arithmetic mean), as defined by Equation (12), is given by:

U(x, θ) =
1
σ2

N

∑
j=1

xj −
N
σ2 θ

1
Ni

U(x, θ) = Te(x)− θ Te(x) =
∑N

j=1 xj

N

Its unbiased form T̂e(x) = Te(x)− θ, inserted in Equation (11) gives the identity σ2/N = σ2/N.

3. CRF-Inequality for Heteroscedastic Models

It is well-known by long time that different observations have always non-identical PDF.
The universe would be very simple if the observations were i.i.d., in this case the precision of a measure
could be improved at any level by the simple repetition and averaging the results. Gauss knew very
well this problem and in his paper of 1823 extended his least-squares method to handle observations
of different PDF. For our misfortune, the standard books of mathematical statistics do not cover this
argument. However, to complete our confutation of critics moved to ref. [3], we must venture in this
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field. As in the previous section, we suppose a set of observations obtained by an array of different
detectors as in a tracker. Even if all the detectors are built with identical technology, differences are
always present. Each detector is anisotropic for its construction, optimized to the measure of positions.
The signal spreads in a different recognizable way for each hit point. Moreover, each observation
contains quantum mechanical interactions that add further complications. Nevertheless, a PDF for each
observation can be defined (ref. [1]) even if very different from the form required for the CRF-inequality.
Here, the likelihood of a set of heteroscedastic observations becomes:

L1,2,...,N(x, θ) = f1(x1, θ) f2(x2, θ) . . . . . . fN(xN , θ) (14)

The evident difference is an index attached to each PDF. Instead of the long PDFs of ref. [1,2], we will
use an easy model. The simple model of ref. [3] is a heteroscedastic Gaussian model (independent
non-identically distributed Gaussian random variables), hence, it has all the analytical properties
required for the CRF-inequality. Again U1,2,...,N(x, θ) is defined as:

U1,2,...,N(x, θ) =
∂ ln L1,2,...,N(x, θ)

∂θ
=

N

∑
i=1

∂ ln fi(xi, θ)

∂θ
(15)

Even the Fisher information acquires a set of indices,

∫
U1,2,...,N(x, θ)2L1,2,...,N(x, θ)dx =

N

∑
j=1

∫ (∂ ln f j(xj, θ)

∂θ

)2 f j(xj, θ)dxj =
N

∑
j=1

ij(θ) , (16)

now all the PDF of the observations are different as the Fisher information of each observation.
The factorization of Equation (5) disappears with its N factor and its supposed generality. All the other
equations are formally identical up to the first line of Equation (10) ( a part an additional index to the PDFs).
With the new Fisher information, the CRF-inequality for an unbiased estimator T̂1,2,...,N(x) becomes:

∫
T̂1,2,...,N(x)2L1,2,...,N(x, θ)dx ≥ [τ1,2,...,N(θ)

′]2

∑N
j=1 ij(θ)

(17)

Supposing a large set of possible PDFs ( as those of ref. [1] ) the estimator T1,2,...,N(x, θ) must keep
the track of the types and the order of the PDFs contained. It must be substituted with Tj1,j2,...jN (x, θ),
similarly for the likelihood function Lj1,j2,...jN (x, θ) and the Fisher information. In this extended form
the CRF-inequality becomes:

∫
T̂j1,j2,...jN (x)

2Lj1,j2,...jN (x, θ)dx ≥
[τj1,j2,...jN (θ)

′]2

ij1,j2,...jN (θ)
(18)

The efficient estimators have the variance identical to the CRF-bound. Again, the logarithmic
functions of Equation (15) limit the definition of efficient estimators to exponential PDFs.

3.1. The Weighted Mean in Heteroscedastic Gaussian Models

Let us consider the standard mean Ta
1,2,...N(x) = ∑N

i=1 xi/N as an estimator in heteroscedastic
Gaussian models. The PDFs f j(x, θ), the mean value τ1,2,...N(θ) and the Fisher information due to the
j-PDF ij(θ) are:

f j(x, θ) =
exp[−(x− θ)2/2σ2

j ]√
2πσj

τ1,2,...N(θ) =
∫

Ta
1,2,...N(x)L1,2,...N(x, θ)dx = θ

ij(θ) = −
∫ ∂2 ln f j(x, θ)

∂θ2 f j(x, θ)dx =
1
σ2

j

∫ [ N

∑
i=1

xi
N
− θ
]2 L1,2,...N(x, θ)dx =

∑N
J=1 σ2

j

N2

(19)



Instruments 2020, 4, 2 7 of 16

With the variance of Ta the CRF-inequality is:

∑N
J=1 σ2

j

N2 >
1

∑N
j=1

1
σ2

j

(20)

The equality is impossible for the assumption of the heteroscedasticity (the identity of the σj is
excluded). Let us extract from Equation (15) an efficient estimator defined (if it exists) as usual:

T1,2,...N(x)− τ1,2,...N(θ) = a(θ)U1,2,...,N(x, θ) (21)

With a(θ) = 1/[∑N
j=1 1/σ2

j ] and τ1,2,...N = θ it is:

a(θ)
N

∑
i=1

∂ ln fi(xi, θ)

∂θ
=

1

∑N
j=1 1/σ2

j

N

∑
i=1

xi

σ2
i
− θ ⇒ Te

1,2,...N(x) =
N

∑
i=1

xi

σ2
i

1

∑N
j=1

1
σ2

j

(22)

This estimator is proportional to ∂ ln L1,2,...,N(x, θ)/∂θ and transforms the Cauchy-Schwarz
inequality (18) in an identity. It is easy to verify, without the CRF-inequality, that the variance
of the standard mean is always greater than the variance of the weighted mean.

∑N
J=1 σ2

j

N2 >
1

∑N
j=1

1
σ2

j

N

∑
J=1

σ2
j

N

∑
j=1

1
σ2

j
> N2 (23)

The second equation is the Cauchy-Schwarz inequality for the two vectors {σj} and {1/σj}.
The equality is impossible because σ2 and 1/σ2 can never be proportional excluding the trivial case
of identical σj. Heteroscedasticity excludes this case. Thus, in heteroscedastic models, the weighted
average has always minor variance compared to the standard mean for regular and irregular models.

Hence, each combination of observations from our Gaussian model satisfies the CRF-inequality.
No 1/N factor is present in the equation due to a different Fisher information of each single observation.
The case of identity of all the observations is excluded a priori. Moreover, the mean of the standard
variances of a set of random sequences {j1, j2 . . . , jN}, not all identical, is higher than the mean of the
corresponding weighted averages. The absence of 1/N factors in the variance of the weighted average
allows fast decreases with N that is impossible to the variance of the standard mean.

3.2. The Weighted Mean in a Homoscedastic Model

To prove another aspect of the CRF-inequality, we use the weighted mean outside its definition
model (heteroscedasticity) and we use it in a homoscedastic model. In this case the standard mean is
the efficient estimator. The CRF-inequality states that the variance of the weighted mean is greater than
the variance of the standard mean. It is easy to illustrate this fact (the reverse of the last equations).

∫ (
Te

1,2...,N(x)− θ
)2 L(x, θ)dx = σ2 ∑j 1/σ4

j

(∑l 1/σ2
l )

2
>

σ2

N
⇒ N ∑

j

1
σ4

j
>
(

∑
l

1
σ2

l

)2
(24)

The last inequality is again a Cauchy-Schwarz inequality. The equality is excluded. Thus, an efficient
estimator in a model, outside its model, has always a greater variance compared to the efficient
estimator of the new model.

4. CRF-Bound for Heteroscedastic Least-Squares of Straight Tracks

The application of the CRF-inequality to heteroscedastic least-squares fit for straight tracks adds
other complications. Two parameters must be handled. The first parameter is the constant β, the impact
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point of the track in the reference plane. The second is γ yi, the angular shift of the track in the plane
distant yi from the reference plane. Also here, the heteroscedasticity eliminates any easy rule with the
increase of the number (N) of the observations for two different reasons. One is again the differences
of the σi; the new one is due to the constraint of the fixed length of the tracker. Each insertion of a
new detecting plane requires a repositioning of all the others. We will study our Gaussian model with
the condition ∑N

j=1 yj = 0, this introduces some simplification on standard least-squares equations.
The likelihood function is similar to that of Equation (14), but now, the order of the PDFs must be
conserved. The parameter yj orders the measuring planes:

L1,2,...,N(x, β, γ) = f1(x1, β, y1γ) f2(x2, β, y2γ) . . . . . . fN(xN , β, yNγ) (25)

f j(x, β, yjγ) =
exp[−(x− β− yjγ)

2/2σ2
j ]√

2πσj
τ

γ
1,2,...N(β, γ) =

∫
Tγ

1,2,...N(x)L1,2,...N(x, β, γ)dx = γ

τ
β
1,2,...N(β, γ) =

∫
Tβ

1,2,...N(x)L1,2,...N(x, β, γ)dx = β

(26)

The function U1,2,...,N(x, θ) is the 2x1 matrix U1,2,...,N(x, β, γ):

U1,2,...,N(x, β, γ) =


∂ ln L1,2,...,N(x, β, γ)

∂β
∂ ln L1,2,...,N(x, β, γ)

∂γ

 (27)

The Fisher information I1,2,...,N becomes the 2x2 matrix:

I1,2,...,N =
∫

dxL1,2,...,N(x, β, γ)

 −
∂2 ln L1,2,...,N(x, β, γ)

∂β2 −∂2 ln L1,2,...,N(x, β, γ)

∂β∂γ

−∂2 ln L1,2,...,N(x, β, γ)

∂γ∂β
−∂2 ln L1,2,...,N(x, β, γ)

∂γ2

 (28)

I1,2,...,N =


∑N

j=1
1

σ2
j

∑N
j=1

yj

σ2
j

∑N
j=1

yj

σ2
j

∑N
j=1

y2
j

σ2
j

 (29)

Its inverse is:

I−1
1,2,...,N =

1
Det {I1,2,...,N}


∑N

j=1
y2

j

σ2
j
−∑N

j=1
yj

σ2
j

−∑N
j=1

yj

σ2
j

∑N
j=1

1
σ2

j

 (30)

The CRF-inequality assumes the form of a matrix inequality, we limit to relations among variances:

Diag.

 Var(β, β) Cor(β, γ)

Cor(γ, β) Var(γ, γ)

 ≥ Diag. I−1
1,2,...,N (31)

where Var(β, β) and Var(γ, γ) are the variances of any estimators for β and γ:

Var(β, β) =
∫ [

Tβ
1,2,...N(x)− β

]2L1,2,...N(x, β, γ)dx ≥ ∑N
j=1 y2

j /σ2
j

∑N
j=1 y2

j /σ2
j ∑N

k=1 1/σ2
k−(∑

N
j=1 yj/σ2

j )
2 (32)
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and:

Var(γ, γ) =
∫ [

Tγ
1,2,...N(x)− γ

]2L1,2,...N(x, β, γ)dx ≥ ∑N
j=1 1/σ2

j

∑N
j=1 y2

j /σ2
j ∑N

k=1 1/σ2
k−(∑

N
j=1 yj/σ2

j )
2 (33)

The Gaussian model is efficient because its variances are equal to the diagonal of I−1 (here and in
the following the indications 1, 2, . . . , N of the used PDFs will be subtended). The unbiased efficient
estimators of β and γ for the model of Equation (25) are given by I−1U(x, β, γ) (similar to those for a
single parameter):

U(x, β, γ) =

(
T1(x)
T2(x)

)
− I

(
β

γ

)
I−1U(x, β, γ) = I−1

(
T1(x)
T2(x)

)
−
(

β

γ

)
(34)

The last equation allows the extraction of the formal expressions of the unbiased efficient
estimators for this model (and are identical to those reported everywhere, for example, in ref. [8]).
The mean values of products of logarithmic derivatives are obtained by the mean values of double
derivative of a single logarithmic function (as in Equation (6)), and due to Equation (28) gives:∫

U(x, β, γ) ·U′(x, β, γ) L(x, β, γ)dx = I∫
I−1U(x, β, γ) ·U′(x, β, γ)I−1 ′ L(x, β, γ)dx = I−1 .

(35)

The second equation uses the first equation giving the Fisher information and the symmetry
I−1 = I−1 ′. The diagonal terms are the variances of the efficient estimators for β and γ. It is evident
the privileged position of the Gaussian PDFs in the CRF-inequality.

4.1. The Standard Least-Squares Equations with Heteroscedastic Likelihood

We defined standard least-squares equations the estimators (for β and γ) obtained with a
homoscedastic model. It is easy to prove that the standard least-squares estimators are efficient
estimators for a Gaussian model with identical σs. The extension of Equations (13) to the case for two
parameters shows immediately this property. The condition ∑N

i=1 yi = 0 simplifies the forms of the
estimators. In the case of identical σs the CRF-inequality states that any other estimator has a greater
variance compared to the efficient estimators. It is evident that the efficiency of an estimator is strictly
bound to the likelihood model of its definition (in a given model the efficient estimator of a parameter is
unique). We could derive the forms of the standard least-squares estimators as the efficient estimators
for the Gaussian model with identical σj, but the usual derivation is faster. The estimators of β and γ

of the standard least squares are:

N

∑
i=1

(xi − β− γyi) = 0 T̂β
s (x, β, γ) =

∑N
i=1 xi

N
− β

N

∑
i=1

(xi − β− γyi) yi = 0 T̂γ
s (x, β, γ) =

∑N
i=1 xiyi

∑N
i=1 y2

i
− γ

(36)

For an easy check of the forms of the estimators, we report the least-squares equations that give
their expressions (after inserting ∑i yi = 0). The heteroscedastic likelihood L(x, β, γ) destroys their
efficiency (optimality) and the new variances are different from those in the homoscedastic model
(σ2/N and σ2/ ∑j y2

j ): ∫
T̂β

s (x, β, γ)2L(x, β, γ)dx =
∑N

i=1 σ2
i

N2∫
T̂γ

s (x, β, γ)2L(x, β, γ)dx =
∑N

i=1 σ2
i y2

i

(∑N
i=1 y2

i )
2

,
(37)
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and, due to the differences from the variances of the efficient estimators, the CRF inequalities of
Equations (32) and (33) impose to them to be grater. We will extensively prove this property as a
prototype of demonstration [9] that will be used even for the momentum variances.

First, it is required the joint variance-covariance matrix of T̂s
β,γ

with the efficient estimators
I−1U(x, β, γ). This matrix is positive semi-definite (symmetrical with the variances in the diagonal).

Let C be this matrix, T the column vector T = {T̂s
β
, Tγ

s } and with < > the average on the likelihood of
Equation (25). The matrix I−1 is the variance-covariance matrix of the efficient estimators (Equation (35))

C =

(
< T T′ > < T U′I−1 ′ >

< I−1U T′ > I−1

)
≥ 0 (38)

It is easy to show the following general property of the covariance of the unbiased estimator T̂β
s

with the efficient estimators. By definition, the mean value of an unbiased estimator is always zero as
any of its derivative:

∂

∂β

∫
(Tβ

s (x)− β)L(x, β, γ)dx = 0 = −1 +
∫
(Tβ

s (x)− β)
∂

∂β
L(x, β, γ)dx . (39)

The derivative of the likelihood is the first component of U(x, β, γ) of Equation (27), and this
correlation (the integral term) becomes equal to one. The derivative in γ of the mean value of T̂β

s has
no one and the sought correlation is zero. Similarly, for the other estimator T̂γ

s . Hence the matrix
< T U′ > is:

< T U′ >= I2 =

(
1 0
0 1

)
=< U T′ > ⇒ C =

(
< T T′ > I−1

I−1 I−1

)
≥ 0 (40)

The matrix I−1 is symmetric. The properties (positive semi-definite) of C-matrix are conserved
even with transformation A′ C A with A any real matrix of four lines and two columns (a few details
about the positive semi-definite matrices are reported in Appendix A):

(I2 − I2)C

(
I2

−I2

)
=< T T′ > −I−1 ≥ 0 ⇒

〈
T T′〉 > I−1 (41)

The last of Equation (41) is Equation (31) as a matrix relation. The equality is eliminated being
evidently impossible. For the definition of positive semi-definite matrices, it is straightforward to
extract the relations among the variances. The Equations (31)–(41) will be extended the estimators of
the momentum reconstructions.

Equations (41) were demonstrated with heteroscedastic Gaussian model; however, the variances
of T remain always greater also for heteroscedastic irregular models with equivalent set of {σj}.
The efficient estimators of heteroscedastic models continue to be efficient even for homoscedastic
models, converging to them when all the σj become identical.

This set of demonstrations for heteroscedastic model is addressed to each given chain of PDFs
with a defined order of σj. Their variances of Equations (32) and (33) are strongly modified by the
differences among the {σj} without any evident N limitation. Instead, the variances of the standard
least squares are weakly modified, and they save explicit N limitations. For example, the variances of
the β parameter has averages ≈ σ2

m/N. Figure 1 illustrates these limits for the γ estimator (the blue
distributions) also ∑j y2

j cannot grow faster than N for the fixed length of the tracker. The large
modifications of the variances of the chains of PDFs, render the track fitting strongly dependent from
other PDFs. For example, those that select the chains among the possible set of chains. These PDFs are
introduced by the properties of the measuring devices. As we said above, a binomial PDF suffices in
the disordered tracker detector for the models of refs. [2,3], just a mean disorder of half strip (≈30 µm)
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is enough for this. The use of standard least-squares method in heteroscedastic models has enormous
simplifications, because it does not need the knowledge of the σj for each observation. Unfortunately,
it amounts to a large loss of resolution. Our models of ref. [3] illustrate in evident way the amplitude
of this loss. In any case the lucky model of ref. [3] can be an economic way to introduce effective σj.

For our pleasure, in Figure 2, we invented a faster growth than that of the Gaussian model of
ref. [3]. The quality of the detectors increases with the number N of detecting layers, each inserted layer
is better than the previous one. The bleu straight line shows an evident deviation from a linear growth
with an almost parabolic growth (with the variances going down as 1/N4). The blue distributions are
practically insensible to these changes. With appropriate selection of the detector quality many types
of growth can be implemented.

0 0.5 1 1.5 2

x 10
−3

0

1

2

3

4

5

6

7

x 10
4

Figure 2. Another Gaussian model. A faster increase in the maximums compared to that of Figure 1.
The blue straight lines connect the maximum of the first distribution to that of the last red distribution.
The color cade is that of Figure 1.

4.2. Deviations from Optimality

Equations (41) prove the non-optimality of the standard least-squares in the case of its use with
a different (heteroscedastic) likelihood. The standard least squares is the efficient estimator for a
homoscedastic Gaussian model, the use outside this condition of efficiency (optimality) destroys its
optimality and produces an increase of variances with a degradation of the resolution, as illustrated
by the simulations of ref. [1–3]. Even our heteroscedastic model suffers of a similar optimality loss
outside its range of validity. We underlined that the orders and the values (whatever they are) of the
set of {σj}, in the likelihood, define the model. Each deviation from the values or the order (or both) of
the σj implies an increase of the variance of the new estimator compared to the variance of the optimal
(efficient) estimator. We used this property to prove the crucial correlation of the appropriate σj with
the hit j. If the ordered set of {σj} is randomized, destroying the correlation with the set of the hits,
the distributions of the estimators change drastically becoming worse than the standard least-squares.
Instead, the differences of the heteroscedastic efficient estimator minus suboptimal estimators, with the
elimination of some PDFs, rapidly converge toward zero when the suppressed PDFs are reduced.
This rapid convergence is not observed in the case of the standard least-squares.
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5. Inequality for Momentum Estimators

As anticipated above, the CRF-inequality will be extended to case of the momentum
reconstruction. It will be studied the case of a high-momentum charged particle moving in a tracker
with a homogeneous magnetic field and the path of the particle orthogonal to the field direction. Here,
the segment of the circular path can be approximated with a parabolic path (algorithms for circular
path are described in ref. [10]). As for the straight tracks, we will compare the estimators of standard
least squares with those of a heteroscedastic model. The estimators of the standard least-squares are
efficient (optimum) in the homoscedastic Gaussian model.

5.1. The Momentum Estimators in Homoscedastic Gaussian Model

We use this approach to define our expressions for the estimators. These forms will be used in
heteroscedastic models. Our equation will be expressed in compact way with matrices. The function
L(x, β, γ, η) is the likelihood for this case, β and γ are just defined, η is the curvature of the track,
proportional to 1/p with p the track momentum:

L(x, β, γ, η) = f1(x1, β, γ, η) f2(x2, β, γ, η) . . . fN(xN , β, γ, η)

f j(x, β, γ, η) =
exp[−(x− β− γyj − ηy2

j )
2/2σ2]

√
2πσ

(42)

The index j orders the PDFs f j as the tracker layers. The equivalent of Equation (27) is:

V(x, β, γ, η) =


∂ lnL(x, β, γ, η)

∂β
∂ lnL(x, β, γ, η)

∂γ
∂ lnL(x, β, γ, η)

∂η

 (43)

The unbiased estimators for β, γ, η are obtained from V(x, β, γ, η) :

V(x, β, γ, η) =

 Ta(x)
Tb(x)
Tc(x)

− R

 β

γ

η

 R−1V(x, β, γ, η) = R−1

 Ta(x)
Tb(x)
Tc(x)

−
 β

γ

η

 (44)

The vector R−1V(x, β, γ, η) contains the efficient estimators of this model, the matrix R is its
Fisher information (with the condition ∑j yj = 0 and j ={1,2,...,N}):

R =

 N 0 ∑j y2
j

0 ∑j y2
j ∑j y3

j

∑j y2
j ∑j y3

j ∑j y4
j

 1
σ2 . (45)

For Equation (35) extended to this case, it is:∫
V(x, β, γ, η) ·V′(x, β, γ, η)L(x, β, γ, η)dx = R∫
R−1V(x, β, γ, η) ·V′(x, β, γ, η)R−1 ′ L(x, β, γ, η)dx = R−1 .

(46)
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The matrices R and R−1 are symmetric and positive semi-definite. The second line of the last
equation is the variance-covariance matrix of the efficient estimators. The variance-covariance matrix
of a generic vector T of unbiased estimators of β, γ, η with the efficient estimators is:

K =

(
< T T′ > < T V′R−1 ′ >

< R−1V T′ > R−1

)
≥ 0 (47)

As defined, the symbol < > indicates an integral with the likelihood L. The cross correlations
< V T′ > follow the rules of Equation (39) giving now the 3x3 identity matrix I3 reducing the
off-diagonal elements of K to R−1. With a transformation of the type A′ K A with a 6x3 real matrix A
the fundamental inequality is obtained:

(I3 − I3)

(
< T T′ > R−1 ′

R−1 R−1

)(
I3

−I3

)
= 〈T T′〉 − R−1 ≥ 0 (48)

The equality is obtained only for the efficient estimators of this model. Therefore, any other set
of estimators have a greater variance in this model. Any heteroscedastic model has greater variance
than the efficient model. The reason is connected to the modification that the likelihood L introduces
in the variances. These modifications always increase the variances. In this model, the parameter σ

disappears in the expressions for the estimators. The form R of the Fisher information depends from
N, this limits the growth with the numbers of detecting layers as illustrated in ref. [2].

5.2. The Momentum Estimators in Heteroscedastic Gaussian Model

In its essence this model can be obtained from the corresponding homoscedastic model with a set
of formal differences.

L(x, β, γ, η) = f1(x1, β, γ, η) f2(x2, β, γ, η) . . . fN(xN , β, γ, η)

f j(x, β, γ, η) =
exp[−(x− β− γyj − ηy2

j )
2/2σ2

j ]√
2πσj

(49)

The index j orders the PDFs as the detecting layers and selects a different σj for this observation.
The other differences are in the definitions of the vector T1, T2, T3 that are different from the previous
Ta, Tb, Tc and the Fisher information I.

U(x, β, γ, η) =

 T1(x)
T2(x)
T3(x)

− I

 β

γ

η


 T1(x)

T2(x)
T3(x)

 =


∑j

xj

σ2
j

∑j
xj yj

σ2
j

∑j
xj y2

j

σ2
j

 (50)

The Fisher information becomes:

I =


∑j 1/σ2

j ∑j yj/σ2
j ∑j y2

j /σ2
j

∑j yj/σ2
j ∑j y2

j /σ2
j ∑j y3

j /σ2
j

∑j y2
j /σ2

j ∑j y3
j /σ2

j ∑j y4
j /σ2

j

 (51)

The efficient unbiased estimators for the likelihood L(x, β, γ, η) are contained in the vector
I−1U(x, β, γ, η). Even in this case the Fisher information has no obvious N-dependence. The variance-
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covariance matrix for any vector T (as T=(Ta , Tb , Tc)) with the unbiased estimators can be transformed
as described giving the inequality:

(I3 − I3)

(
< T T′ > I−1 ′

I−1 I−1

)(
I3

−I3

)
= 〈T T′〉 − I−1 ≥ 0 (52)

The symbol <> indicates an integral on x with the likelihood of this model L(x, β, γ, η).
The equality to zero is obtained only when the vector T is I−1U(x, β, γ, η). For any other unbiased
estimator, that difference is greater than zero (in the sense of the positive semi-definite matrices).

These last forms of demonstration easily extend the CRF-inequality to any number M of estimators.

6. Conclusions

The Cramer–Rao–Frechet inequality is applied to a set of heteroscedastic Gaussian model to
prove the absence of any limitation introduced by this fundamental inequality. Instead, the inequality
shows that in heteroscedastic models, the estimators of the standard least-squares have always greater
variances compared to that given by the weighted least-squares. The variances of the standard
least-squares conserve approximate 1/N form that imply limitations in the growth of the distributions
with the number N of detecting layers. No similar limitations are present in the weighted least-squares
that are dominated by the differences of the weights 1/σ2

j . For identical σj the estimators converge to
those of the standard least-squares. The inequality is calculated also for the momentum estimators.
Again the appropriate heteroscedastic estimators have a lower variance than those of the standard
least-squares. Given the loss of resolution implied by greater variances, it must be avoid the use of
standard least-squares with heteroscedastic data. The lucky model may be helpful in silicon detectors
to insert the approximate σj to each observation.
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The following abbreviations are used in this manuscript:

MIP Minimum Ionizing Particle
PDF Probability Density Function
CRF Cramer–Rao–Frechet
i.i.d. independent and identically distributed

Appendix A

Let us add a few details about variance-covariance matrix or about the cross-covariance matrix.
For their definitions these matrices are positive semi-definite. They are symmetric with the positive
variances in the principal diagonal, the off-diagonal elements are limited due to Cauchy-Schwarz
inequalities. If the symmetric matrix C is positive semi-definite, it must be z′Cz ≥ 0 for any real vector
z. From these definitions it follows that if A is a real matrix of m × n, with n < m, the matrix K given
by A′ C A is again a n × n positive semi-definite matrix. The diagonal elements of K are given by
z′Cz where each z is a column of A and the off-diagonal terms are symmetric. A m × m positive
semi-definite matrix implies an infinite number of inequalities (∞m), our interest is to find the minimal
one with useful dimensions. The Equations (41), (48) and (52) are addressed to this, the identity
matrices I2 and I3 select the useful blocks of other matrices. As an example, we can operate on the C
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matrix (4 × 4). In general, one can use a 4 × 2 matrix of the form (I2, aI2), with a any real constant,
and search the minimum in a:

(I2 aI2)C

(
I2

aI2

)
=< T T′ > +(2 a + a2)I−1 ≥ 0

∂

∂a

(
< T T′ > +(2 a + a2)I−1

)
= 0 ⇒ (2 + 2a) = 0 ⇒ B =< T T′ > −I−1 ≥ 0

(A1)

The solution a = −1 gives the last inequality. The inequality for each couple of variances is
obtained with z′B z where z is (1, 0) for the first two and (0, 1) for the second two. The form of
the matrix C allows extraction of the inequalities among variances without the use of the positive
semi-definite property of C, but directly from the Cauchy-Schwarz inequalities applied to the
cross-covariances. The cross-covariances are contained in the off-diagonal blocks of the C matrix.
In any case, the Cauchy-Schwarz inequalities of the off-diagonal elements are the key properties to
have C as a positive semi-defined matrix.

Appendix B

In this toy-model, the hit uncertainties are Gaussian distributions with two type of hit quality.
One of very good quality when the MIP crosses the detector near the borders (20% of strip width of
63 µm), and the other of bad quality (80% of the strip width) around the strip center. The standard
deviation of the hit Gaussian distributions are 0.018 and 0.18 strip widths, the tracker length is
7063.5 strip widths. A slight random mechanical misalignment was supposed with mean value around
a half strip (30 µm). Random misalignments much larger than this are always present in real trackers
and recovered by the alignment algorithms. The misalignment (rotations and translations) is simulated,
as usual, with a randomization of the hit position on the strips producing a binomial distribution of
the hit quality. A large number (150000 N) of Gaussian random numbers, with zero mean and unit
standard deviation, are generated (with the MATLAB [11] randn function), each one multiplied by one
of the two standard deviations (0.018, 0.18) with the given probability (20%, 80%) another file saves
this sequence of the hit standard deviations. The file of the data and that of the hit standard deviations
are randomized with an identical random permutation and assembled as two matrices with N lines.
The columns simulate a random sample of tracks with equation xi = β + γyi with β = 0 and γ = 0.
The translation invariance allows this representation of the set of parallel tracks. The collection of N
hits (a track) is fitted with two different least-squares method, one with the standard least-squares
(using only the matrix of the data) and the other with the weighted least-squares (using the matrix of
the data and that of the hit quality). The MATLAB code of this simulation is available on request.
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