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Abstract: At a critical angle of incidence, Fresnel reflectance at an interface between a front
transparent and a rear lossy medium exhibits sensitive dependencies on the complex refractive
index of the latter. This effect facilitates the design of optical sensors exploiting single (or multiple)
reflections inside a prism (or a parallel plate). We determine an empirical framework that captures
performance specifications of this sensing scheme, including sensitivity, detection limit, range of
linearity and—what we define here as—angular acceptance bandwidth. Subsequently, we develop
an optimization protocol that accounts for all relevant optical or geometrical variables and that can
be utilized in any application.

Keywords: optical sensors; biological and chemical sensing; refractometry; total internal reflection

1. Introduction

Refractive index sensors are intensely investigated for numerous biomedical [1–3], chemical [4,5]
and industrial [6,7] applications. An indicative yet far from exhaustive list of sensing mechanisms
relies on plasmonic [8–11], photonic crystal [12–15], micro-cavity [16–19], optical fiber [20–23] and
wave-guide [24–27] configurations. Associated with Fresnel reflectance properties at planar interfaces,
differential refractometry offers an alternative path to sensing refractive index changes, by exploitation
of interference [28], deflection [29] or (more relevant to the present work) critical-angle [30–35] effects.
Today, differential refractometry is not only a standard analytical tool that operates routinely in many
laboratories, but also infiltrates emerging optofluidic and lab-on-chip technologies [36–38].

In critical-angle differential refractometry (CADR), a front transparent medium (commonly,
a prism) is interfaced with a sample which, typically, is also assumed to be lossless. The underlying
principle of operation is simple: provided that the front medium is optically denser than the
sample, there exists a sharp transition from total internal reflection (TIR) to partial internal reflection,
taking place at a critical angle which corresponds to the location of an abrupt discontinuity in the
derivative of reflectance with respect to incidence angle. Operating the sensing interface at the
transition point leads to the generation of an intensity readout signal, as soon as the TIR condition is
disturbed by refractive index fluctuations.

With non-transparent samples, CADR interpretation is less straightforward. To begin with,
the refractive index of the rear medium becomes a complex quantity, the imaginary part of which
incorporates absorption or scattering effects. Furthermore, reflectance never reaches unity (except
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for the limiting case of incidence at 90◦ with respect to the surface normal) and the transition from
“attenuated” total internal reflection (ATIR) to partial internal reflection is gradual. As a result,
the reflectance derivative with respect to incidence angle, now peaking to a finite value, is no longer
the proper quantity to conceptualize the sensing principle; this purpose is better served by reflectance
derivatives with respect to the real and imaginary index of the sample. These are negative quantities
exhibiting local extrema at the vicinity of the transition from ATIR to partial internal reflection, albeit at
slightly different “critical” angles. In general, these extrema are stronger for p- than for s-polarization,
an observation that indicates the preferential wave orientation for CADR sensing.

In this work, we attempt a theoretical study of CADR with lossy media, accounting for (i) the
standard prism configuration, (ii) an alternative geometry that exploits multiple reflections inside a
parallel plate. Both schemes are, in principle, compatible with optofluidic technologies and static or
real-time monitoring applications. We untangle the perplex dependencies of the sensor’s specifications
on various optical and geometrical parameters, revealing among other facts the dominant role of the
sample’s loss. In doing so, we introduce the concept of the “angular acceptance bandwidth” which
trades-off with sensor’s sensitivity and helps clarify several complexities in terms of light coupling and
detection. Our results provide a universal roadmap for rapid performance evaluation and optimization
of CADR devices, which might be essential for pushing the technique’s detection limit from the current
standard (∼ 100 µRIU) down to the current state-of-the-art (∼ 1 µRIU for CADR [31], as well as for all
noninterferometric methods), or even lower.

2. Theoretical Background

The isosceles triangular prism and parallelogram plate configurations under investigation are
depicted in Figure 1. The sample is interfaced with the base of the prism, or equivalently, the top side
of the plate, the bottom of which is high-reflection-coated. Coming from air, light hits the input facet
at an external angle of incidence θ and reaches the output facet at an angle φ, after N = 1 (or N > 1)
reflections at the sensing interface of the prism (plate), respectively; each one of these reflections is
at a constant angle θ1. The input and output coupling geometries are determined by the cut angle α,
which in Figure 1 is taken α < π/2; however, the upcoming formalism remains valid also for α ≥ π/2.
Then, θ, φ and θ1 (which are trivially defined with respect to the corresponding normal), as well as
plate’s length L and thickness d (which is assumed to be much larger than the light wavelength, so as
to avoid interference effects), relate via:

θ1 = α− φ, φ = arcsin
[

nair
no
· sinθ

]
, L ≈ 2d · N · tan(θ1) (1)

where nair(≈ 1) and no are the real indices of air and the transparent prism (or plate), respectively.

Figure 1. Prism (left) and parallel plate (right) configurations, the latter shown N = 2 reflections at the
sensing interface.

Light transfer in the proposed layouts can be accurately simulated via standard Fresnel theory.
Let us begin by assuming that a reference medium with a complex refractive index (n = nr − ini) is
first put to the test. The “reference” prim/plate transmittance Tp, defined as the ratio of the output
light intensity Ire f over incident light intensity Iin, is:
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Tp(θ) =
Ire f

Iin
=
[
1− R1/2(θ)

]
·
[
R2/3(θ1)

]N ·
[
1− R2/1(φ)

]
(2)

where Rk/j is the reflectance at the interface between medium k and medium j (k, j = 1, 2, 3 with
1 = air, 2 = prism/plate, 3 = sample); Reflectance at the metal-coated surface of the plate is taken as
unity; Equation (2) is valid for the prism, as well as the plate, by proper substitution of the respective
N value. In turn, Rk/j is the squared modulus of the corresponding Fresnel amplitude coefficient,
which—for the preferred p-polarization—reads:

rk/j( 6 ) =
cos( 6 ) · (nj/nk)

2 −
√
(nj/nk)2 − sin2( 6 )

cos( 6 ) · (nj/nk)2 +
√
(nj/nk)2 − sin2( 6 )

(3)

where 6 = θ, θ1, φ for (k/j = 1/2, 2/3, 2/1) and nk, nj are the refractive indices of the
respective media.

Then, suppose that the reference medium is replaced by a corrupted sample, which exhibits a
complex index

n
′
= (nr + δnr)− i · (ni + δni) = n + (δnr − i · δni) (4)

that is, equal to the refractive index n of the reference medium, with an added perturbation term that
comprises a real (δnr) and an imaginary (δni) component. At this point, we may appropriately define a
total index perturbation parameter δ via:

δ = δnr + δni. (5)

This index perturbation term shifts the plate transmittance (and output intensity) to new values
T (and I) that can be straightforwardly calculated by substituting n

′
for n in Equation (2). Assuming

that the incident light intensity Iin remains constant, the relative intensity change ∆I/I between
measurements of the corrupted and reference sample is:

∆I
I

=
I − Ire f

I
=

T − Tp

T
(6)

Figure 2 depicts the reference transmittance Tp, along with the relative intensity change ∆I/I,
versus external angle of incidence θ; specifics on parameters used for calculations are given in the
figure’s label. (Note that the assumption of unit reflectance at the metal-coated surface may lead to
somewhat overestimated Tp values, but does not affect the relative intensity change.) Apparently,
∆I/I exhibits local extremum at a critical external angle θ = θc, which shifts only slightly, when a
perturbation in the real index alone (δ = δnr) is replaced by an equal-sized perturbation in the
imaginary index (δ = δni). Interestingly, these two cases are distinguishable by the asymmetric
shape of the relative intensity change curve; indeed, when δ = δnr (δ = δni), ∆I/I decays faster
towards smaller (larger) incidence angles, respectively. These observations reflect similar properties
of the reflectance derivatives with respect to nr, ni and may be relevant for applications requiring
sensor’s selectivity.
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Figure 2. Transmittance Tp (solid line) and relative intensity change ∆I/I for δ = δnr = 1 µRIU (dashed
line) and δ = δni = 1 µRIU (dotted line), versus incidence angle θ. Calculations assume nr/n0 = 0.75,
ni/n0 = 10−5, N = 12, α = 76.1◦, no = 2.16, nair = 1.

3. Signal, Sensitivity and Acceptance Bandwidth

From a practical standpoint, the most important features of the relative intensity change curve are

(i) its extreme value at the critical angle
[
∆I/I

]
c
, thereon understood as the sensor’s output signal,

(ii) its angular bandwidth ABW , defined as the full-width-at-half-maximum and thereon understood
as the sensor’s acceptance bandwidth. Due to the entangled dependencies on multiple variables,
attempting to evaluate the sensor’s signal and acceptance bandwidth by generating successive plots
like those presented in Figure 2, is an elaborate, time-demanding and somewhat confusing task.
Fortunately, we found out that it is possible to produce a set of empirical equations that can handily

trace both
[
∆I/I

]
c

and ABW (more details on the heuristic model-building process are given in

Appendix A). These equations are: [∆I
I

]
c
= S · δ (7)

S ≈ −F
(
nr/no

)
·
(

ni
no

)−ao

·
(

N
no

)
· δ1, (8)

ABW ≈ 105 ·
[

dθ1

dθ

∣∣∣∣
θ=θc

]−1

· G
(
nr/no

)
·
(

ni
no

)
· δ2, (9)

where S is sensor’s sensitivity, ABW is given in degrees and:

δ1 = 1− 1
2

δnr

δ
+

1
2

(
δnr

δ

)2

, δ2 = 1− δnr

δ
+

(
δnr

δ

)2

(10)

are factors acquiring a maximum value of 1 when δ = δnr + δni = δnr or δ = δnr + δni = δni, and a
minimum value when δnr = δni = δ/2,

F
(
nr/no

)
= a1 · exp

[
a2

(
nr

no

)−1]
+ a3

[
1− a4

(
nr

no

)]−1

, (11)

G
(
nr/no

)
= a5 + a6 ·

[
1− a7

(
nr

no

)]−1/2

, (12)

and
dθ1

dθ

∣∣∣∣
θ=θc

= cosθc ·
[(

nair
no

)−2

− sin2θc

]−1/2

, (13)

with: ao = 0.49458, a1 = 1.84, a2 = 0.695658, a3 = 0.267344, a4 = 0.990367, a5 = 0.000717133,
a6 = 0.00259023, a7 = 1.00072.
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Equations (7)–(9) reproduce the sensor’s signal, sensitivity and acceptance bandwidth with
a typical accuracy of second significant digit, which is sufficient for evaluation and optimization
purposes, as long as the respective variables remain within the following ranges:

δ < ni, N < 50, 0.5 <
nr

no
< 1, 10−2 <

ni
no

< 10−8, (14)

The information contained in these empirical equations is graphically exposed in Figure 3. Therein,

it is clear that
[
∆I/I

]
c

depends explicitly on δ, δnr/δ, N/no, nr/no and ni/no. These dependencies

are linear with respect to δ and N/no, but nonlinear with respect to the remaining three variables,
such that the signal maximizes when: δnr/δ = 0 or 1, nr/no → 1 and, more rapidly, as ni/no reduces.
It is noted that sensitivity S is by definition a direct measure of the output signal—after normalization
by the input stimuli δ—and thus, it behaves likewise.

Comparatively, ABW exhibits nonlinear dependencies on δnr/δ, nr/no and scales linearly with

ni/no; however, it is not affected by δ or N. Contrary to
[
∆I/I

]
c
, which is geometry-independent,

ABW varies also with the critical angle θc. This nonlinear dependence emerges from the derivative
dθ1/dθ

∣∣
θ=θc

, which translates the internal angular bandwidth (in terms of θ1) into an external one
(in terms of θ). Note that the critical angle θc is tunable by means of the plate’s angle α, as is indicated
by Equation (1). Derivative dθ1/dθ

∣∣
θ=θc

introduces also a relatively weak dependence on nair/no,
which can be neglected at first instance and, thus, is not included in Figure 3. To sum up, angular
acceptance bandwidth maximizes when: δnr/δ = 0 or 1, nr/no → 1, θc → 90◦ and, more rapidly,
as ni/no increases.

Remarkably, the main regulator of the sensor’s sensitivity (or equivalently, signal) and acceptance
bandwidth is the sample’s imaginary index, which introduces a trade-off between these quantities.
Indeed, at the limit of transparency (ni = 0) Equations (8) and (9) return an infinite S and a null ABW ;
this result conforms with the standard CARD interpretation, conveying features of the reflectance
derivative with respect to incidence angle, at the point of discontinuity. Inversely, as loss increases,
sensitivity tends to zero and acceptance bandwidth grows larger.

The only means available for simultaneous increase in S and ABW , which is an obvious-seeming
operational advantage, is to stretch parameters {nr/no, N, θc} close to their limiting values
{1, � 1, 90◦}. Although appealing in principle, these limits should be avoided in practise, because
they diminish the overall prism/plate transmittance, an effect that intensifies with increasing loss
and complicates output light detection. There exists two more reasons to avoid N � 1. First, large
N values deteriorate sensor’s performance if the plate is not perfectly parallel, a repercussion that is
otherwise minor, considering the sub-µrad tolerances that are nowadays available with state-of-the-art
plane-parallel optics. Second, N � 1 corresponds to large plate lengths, compromising the device’s
compactness and increasing sample volume demands.
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Figure 3. Output signal
[
∆I/I

]
c and angular acceptance bandwidth ABW , as a function of relevant

variables. Open circles correspond to exact values derived from signal-versus-incidence-angle plots,
by use of Equations (2) and (6); solid lines are estimates from the empirical Equations (7) and (9).
Throughout, values of parameters other than x-axis variables are: nair = 1, nr/no = 0.75, ni/no = 10−5,
N/no = 1/0.18. Specifics on the index perturbation values δ, δnr and δni are provided in each
individual plot. ABW calculations assumed no = 2.16; the angle α was properly varied to maintain a
constant θc = 15◦ in (g), (h,i), but a properly scalable θc in (j). Respective values for

[
∆I/I

]
c calculations

are irrelevant, since they do not affect the results, but are reported for the sake of completeness: no = 1.8
and α = 81◦.
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4. Detection Limit Considerations

The trade-off between sensitivity and angular acceptance bandwidth raises some interesting
questions; does an optimal value for ni and by extension, a preferred wavelength of operation, exist?
If so, how can it be determined? The compromise solution to these problems emerges via detection
limit (DL) considerations.

The detection limit, i.e., the minimum index perturbation that can be reliably sensed, is an
instrument, and application-specific quantity that can be estimated, provided that significant sources
of noise are distinguishable. For example, let us assume that non-negligible noise contributions
originate from (i) the detection stage (σdet), (ii) power fluctuations of the laser source (σlaser),
(iii) random fluctuations in the real index of the sample, caused by temperature instabilities ∆T and
the nonzero spectral bandwidth ∆λ of the laser source, which introduce noise variance components
σT = S · [dnr/dT] · ∆T and σλ = S · [dnr/dλ] · ∆λ, respectively. These assumptions are reasonable,
as long as the thermooptic and dispersion coefficients for the real index of the sample (i.e., dnr/dT and
dnr/dλ) are much larger than the respective coefficients for ni, no, and nair.

Then, we may adopt standard convention DL = 3σ/S, where σ ≈
√

σ2
laser + σ2

T + σ2
λ + σ2

det is the
total noise variance, so as to deduce the following useful approximation:

DL ≈ 3

√
σ2

laser +
[
S

dnr

dT
∆T
]2

+
[
S

dnr

dλ
∆λ
]2

+ σ2
det

/
S. (15)

It is appropriate at this point to parenthetically note that Equation (15) combined with the “rule of
the thumb” articulated in Equation (14), specify the range of sensor’s linear response, which is the last
remaining major specification that depends also on sample’s loss:

Linear range : DL < δ < ni. (16)

Under the assumptions validating Equation (15), the detection limit decreases monotonically with
increasing sensitivity, reaching its minimum theoretical value DLmin at the transparency limit (that is,
where S→ ∞):

DLmin = lim
S→∞

DL = 3

√[dnr

dT
∆T
]2

+
[dnr

dλ
∆λ
]2

(17)

However, reduction in the detection limit by means of sensitivity increase is meaningful only up
to the point that S = Sopt, where

Sopt =

√√√√√ σ2
laser + σ2

det[(
dnr/dT

)
∆T
]2

+
[(

dnr/dλ
)

∆λ
]2 . (18)

Indeed, when S = Sopt, the detection limit reaches its “optimum” value DLopt that is equal to:

DLopt =
√

2 DLmin = 3
√

2

√[dnr

dT
∆T
]2

+
[dnr

dλ
∆λ
]2

. (19)

Further increase in sensitivity towards infinity (by decreasing ni towards the transparency limit)
has a negligible effect on DL, while drastically reducing the acceptance bandwidth. Besides, higher
sensitivities also compromise sensor’s range of linearity, as may be seen by inspection of Equation (15).
Therefore, operating the sensing interface with S > Sopt is not only unnecessary but also detrimental.
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5. Spatially-Unresolved vs. Spatially-Resolved Detection

Setting S = Sopt by choosing the proper value for ni automatically locks angular acceptance
bandwidth to its own respective value, which is easily determinable, as well as decisive for the
design of the detection stage. The latter can be based either on a spatially-unresolved, or on a
spatially-resolved, scheme.

Accurate spatially-unresolved detection (SUD) by use of a standard photodiode is the most
straightforward option; it requires that the input light is stably coupled into the prism/plate at the
critical angle θc, with its entire optical power contained within an angular spread that does not exceed
ABW . Assuming an input beam with high pointing-stability, waist radius wo and quality factor M2,
the full-angle divergence θd at the diffraction-limit is:

θd =
2M2λ

πwo
(20)

and the implied condition for SUD detection reads:

SUD condition :
ABW

θd
≥ 1. (21)

As ABW becomes narrower (i.e., Sopt increases), the SUD condition necessitates beams with large
waists. When Equation (21) is not fulfilled, the signal hides inside a fraction of the beam profile and,
hence, spatially-resolved detection (SRD) by use of a diode array should be opted. Accurate SRD
requires that the “active area” of the output beam profile (i.e., the fraction containing the sensing
information) should be larger than the surface of at least one pixel of the diode array, that is:

SRD condition :
dpixel

2w
<

ABW
θd

, (22)

where dpixel is the pixel’s diameter and w is the beam radius at the detector.
When either of these conditions is fulfilled, detection noise may become negligible and thus, it is

eliminated from Equation (15) and (18). Indeed, removing measurement complications associated
with the finite acceptance bandwidth can reduce σdet down to levels that relate only to fundamental
noise mechanism, such as thermal and quantum noise. Then, we may reasonably assume that (i) the
noise-equivalent-power at the photodiode will be in the sub-nW range, (ii) output light power reaching
the detector will far exceed∼ 1 µW. These assumptions confirm the estimate that σdet � 10−3, which is
indeed well-below the power noise σlaser of common laser sources.

6. Optimization Protocol

Following the preceding analysis, it is now possible to formulate a simple optimization
process that can be always adopted, as long as the optical constants of the reference sample
(i.e., nr, ni, dnr/dT, dnr/dλ) and their wavelength dependence are known. For the sake of simplicity,
we may select δ1 = δ2 = 1, since in most practical cases an extraneous stimulus will affect
primarily either the real or the imaginary index of the sample. The proposed protocol comprises
the following steps:

Step 1: Impose strict temperature regulation and narrow-band laser emission (or spectral filtering),
so as to reduce ∆T and ∆λ; for any given sample, these are the only free variables affecting the detection
limit, which can be calculated by use of Equation (19).

Step 2: Compute the optimum sensitivity Sopt via Equation (18); it is at this stage that laser power
noise σlaser becomes relevant, while as previously explained, detection noise σdet can be considered
practically negligible.

Step 3: Select a transparent solid with known index no > nr that can be shaped into a prism.
Initially, avoid close-matching between the refractive indices of the front medium and the sample, so as
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to ensure substantial total transmittance. For the same reason, the number of reflections is initially set
to N = 1.

Step 4: Given the light extinction spectrum of the sample, identify the laser wavelength that
corresponds to the value of ni which, when substituted to Equation (8), allows sensitivity to reach its
optimal value Sopt.

Step 5: With all involved variables being determined, calculate the respective angular acceptance
bandwidth ABW using Equation (9); to sustain high total transmittance, select initially the external
critical angle θc for grazing incidence.

Step 6: By use of the criteria shown in Equations (21) and (22), evaluate the feasibility of
spatially-unresolved and spatially-resolved detection geometries. If found practical, the optimization
process is complete and the setup fully drawn accordingly. Otherwise, go on to the next step:

Step 7: Repeat the process so as to increase ABW , by selecting an optically denser transparent
medium, a parallel plate with multiple reflections instead of a prism, and oblique incidence, in order to
approach the operational limits {nr/no, N, θc} → {1, � 1, 90◦}. Ensure that the total transmittance
is high enough to empower output light detection and the resulting plate length is small enough to
comply with application’s needs.

7. Further Discussion and Concluding Remarks

To demonstrate the susceptibility of the sensor’s specifications to the various parameters involved,
Table 1 presents results from the application of the proposed protocol to three hypothetical scenarios.
Chosen values of variables remain within realistic ranges, being very tolerant in Case 1 and becoming
more and more rigid as we move to Cases 2 and 3. Top rows in Table 1 group together noise-related
parameters ∆T, ∆λ and σlaser (σdet is considered negligible). The second set accounts for sample’s optical
properties, namely nr, ni, dnr/dT, dnr/dλ, while the third set incorporates information regarding the
transparent medium and the prism/plate geometry, that is no, N and θc. Based on these values,
acceptance bandwidth ABW and ratios ABW/θd are then evaluated. At the bottom of Table 1,
corresponding values for the sensitivity S, optimal sensitivity Sopt and detection limit DL are given.
In accordance with the protocol’s guidelines, the sample’s imaginary index ni is always chosen such
that sensitivity S, quantified via Equation (8), equals its optimal value Sopt which, in its own turn,
is determined via Equation (18).

Several points of interests emerge from data in Table 1. Depending on the magnitude of ∆T and
∆λ, the detection limit varies from 600 µRIU down 30 µRIU and sub-µRIU levels, as we move on
from Case 1 via Case 2 to Case 3; DL reduction is accompanied by (i) increase in Sopt from 71 to 710
and 7100, (ii) decrease in ni from 3× 10−3 to 1.3× 10−4 and 1× 10−5, (iii) narrowing of ABW from
1.82◦ to 0.12◦ and 0.03◦, respectively. Corresponding ABW/θd values indicate that spatially-unresolved
detection is possible with beam waists wo ≥ 0.02 mm, 0.37 mm and 1.25 mm, respectively, assuming
for the sake of argument an operational wavelength in the 1 µm range. To meet these specifications,
parameters {nr/no, N, θc} changed from initial values {0.75, 1, 15◦} in Case 1, to {0.83, 2, 45◦} in Case 2
and {0.89, 4, 75◦} in Case 3; corresponding values for the prism/plate cut angle are α = 55.95◦, 79.57◦

and 106.77◦. As a final check, these changes cause no severe cutback to the overall plate transmittance,
which always exceeds 50%, requiring, however, plate lengths as large as L ≈ 3 cm in Case 2 and L ≈
11 cm in Case 3, for an assumed plate thickness d = 0.5 cm.

If such plate lengths are inappropriate, parameters {nr/no, N, θc} can be kept constant to their
initial values (i.e., {0.75, 1, 15◦}). The detection limit would then be unaffected, but acceptance
bandwidth would be reduced in Cases 2 and 3, such that spatially-unresolved detection would require
beam waists wo ≥ 2.5 mm and 250 mm, respectively. Therefore, spatially-resolved detection would
become a reasonable option in Case 2 and an inevitable choice in Case 3 for which, a maximum pixel
diameter of 16 µm is specified, when plugging into the SRD criterion indicative values wo ≈ 1 mm and
w ≈ 2 mm.
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Table 1. Results from the application of the optimization protocol to three hypothetical scenarios.
Calculations assume δ1 = δ2 = 1, M2 = 1.2 and σdet = 0. Units: T in ◦C; λ in µ m; ABW in degrees; wo

in mm; DL in µRIU. Other quantities are dimensionless. Sensor’s linear range can be deduced from
available data by use of Equation (16). Minimum useful signal (i.e., relative intensity change) at the
detector amounts to S · DL ≈ 4%, 2% and 0.4%, for Cases 1, 2 and 3, respectively.

Parameters Case 1 Case 2 Case 3

∆T 1 0.1 0.01
∆λ 10−3 10−4 10−5

σlaser 1% 0.5% 0.1%

nr 1.5 1.5 1.5
ni 3× 10−3 1.3× 10−4 1.0× 10−5

dnr/dT 10−4 5× 10−5 10−5

dnr/dλ 0.1 0.05 0.01

no 2 1.8 1.6
N 1 2 4
θc 15 45 75

ABW 1.82 0.12 0.03
ABW /θd 41.5 · wo/λ 2.7 · wo/λ 0.8 · wo/λ

S = Sopt 71 710 7100
DL 600 30 0.6

As a further practical demonstration on the relevance of our analysis to real-life applications,
Figure 4 depicts the wavelength scaling of S and ABW for two interfaces comprising water as rare
medium and (i) calcium fluoride, (ii) standard SF10 glass, as front media. Water is chosen as an
exemplary test medium since it is the main constituent of biofluids/tissues and a highly relevant
medium for environmental sensing and quality control purposes. Calculations adopt values for
the required optical constants (that is, the wavelength-dependent complex index of water and the
wavelength-dependent real indices of CaF2 and SF10, which can be considered transparent throughout
the spectral range of interest) from references [39–41]. Within the near-infrared band 0.9 µm–1.6 µm,
S and ABW can be tuned by approximately two and three orders of magnitude, respectively, for the
SF10/water interface and indicative values of N = 1, θc = 15◦. This behavior reflects primarily the
absorption profile of water, which exhibits a minimum at 0.9 µm (ni ≈ 4.5× 10−7) and a maximum
at 1.46 µm (ni ≈ 3.2 × 10−4). Further tuning is possible by increasing the values of N, θc and
simultaneously using CaF2 as front medium, whose index matches better the real index of water,
thus corresponding to larger values of nr/no. Figure 4 reveals the heavy impact of laser wavelength
on the sensor’s specifications, an effect that does not apply only to water, but practically extends to
all non-black, liquid or solid media that exhibit absorption profiles containing nearly-transparent
regions, along with absorption peaks. Therefore, multipurpose critical angle refractometers, which are
nowadays commercially available and typically equipped with just one or few single-wavelength
lasers, would benefit significantly from exploiting tunable sources of coherent radiation, such as
continuous-wave optical parametric oscillators [42].

Figure 4. Sensitivity (left) and acceptance bandwidth (right), as a function of wavelength, for two
indicative interfaces: CaF2/H2O (solid lines/open cicles) and SF10/H2O (dotted lines/black circles).
Arrows indicate direction of increase in value of N(= 1, 4, 16) and θc (=15 deg, 75 deg), respectively.
Open circles correspond to exact values derived from signal-versus-incidence-angle plots, by use of
Equations (2) and (6); solid lines are estimates from the empirical Equations (8) and (9).
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To conclude, in this technical note we thoroughly examined the sensing properties of
transparent/lossy interfaces. An empirical framework was developed to describe performance
specifications of corresponding sensing geometries that exploit either a single reflection inside a
prism, or multiple reflections inside a parallel plate. The dominant role of sample’s loss was revealed
and quantified through a trade-off between sensitivity on one hand and angular acceptance bandwidth
on the other. These observations enabled the establishment of a generically applicable optimization’s
protocol that is based on two main realizations. First, a noise-dependent optimal value Sopt does
exist, so that the quest for ever-increasing sensitivities is not just pointless, but also undesirable.
Second, operating the sensing interface with S = Sopt directly locks acceptance bandwidth ABW
to a calculable value, which then imposes definable conditions for the spatially-unresolved—or
spatially-resolved—detection of the signal. The exemplary application of the proposed optimization
protocol to three hypothetical scenarios revealed the critical dependence of sensor’s specifications
on the relevant optical and geometrical variables; this fact was further supported by calculations of
the—widely varying—sensitivity S and acceptance bandwidth ABW , as a function of wavelength,
in the representative cases of the CaF2/water and SF10/water interfaces. In this sense, the present
note clarifies several design issues in the area of optical refractometry, relating to the pump source
(e.g., choice of wavelength), the mounting medium (e.g., choice of prism material and geometry),
as well as the detection stage (that is, spatially unresolved versus spatially resolved approach). We thus
anticipate that our study will serve as a valuable tool for the realization of optimized CADR setups,
which will push the limit of detection towards the sub-µRIU regime.
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and D.T.; writing–review and editing, K.M., D.T., P.G. and S.K.
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Appendix A. On the derivation of the empirical Equations (8) and (9)

Model building with data fitting was the basis for deriving the empirical Equations (8)—equivalently,
(7)—and (9), which reproduce the sensitivity—or signal—and the angular acceptance bandwidth,
respectively. The heuristic process involved the following steps:

(i). First, we attempted to identify the independent variables of the problem, out of a total number
of nine initial variables, namely: {no, nr, ni, nair, δnr, δni, N, θc, α}. To do so, we generated
a large set of relative-intensity-change versus external-angle-of-incidence plots; from these plots,

we were able to calculate “exact” values of S =
[
∆I/I

]
c
/δ and ABW for various values of the nine

starting variables. Close inspection of data revealed that S is practically independent on {nair, θc, α},
while ABW is practically independent on {N, α}. Inspired by the fact that the refractive indices
of different media always enter in ratios in Fresnel equations, we were also able to establish that
variables {no, nr, ni, nair, N} are not independent, but can be reduced to a set of four variables,
namely {nr/no, ni/no, nair/no, N/no}. This realization was simply based on the observation that
any changes in the values of {no, nr, ni, nair, N} do not affect S and ABW , provided that the ratios
{nr/no, ni/no, nair/no, N/no} remain constant. Similarly, we noticed that variables {δnr, δni}
can be reduced to only one independent variable, which is {δnr/(δnr + δni)}–or equivalently,
{δnr/δ}. We thus concluded that independent variables are: {nr/no, ni/no, N/no, δnr/δ} for S;
{nr/no, ni/no, nair/no, δnr/δ, θc} for ABW .

(ii). Then, we attempted to capture the dependence of S and ABW on each one of the independent
variables, through least-square fitting of generated data. The employed functional forms (namely,
exponentials, polynomials and rational functions, as shown in Equations (10)–(12)) are largely arbitrary,
in the sense that they were chosen from a large set of different models, according to their simplicity
and capability to best-agree with the generated data, rather than as a consequence of an underlying



Instruments 2019, 3, 36 12 of 14

physical law. The only exception to this fully-empirical process accounts for the dependence of
ABW on {nair/no, θc}. In this case, we realized that the angular acceptance bandwidth physically
originates from reflections at the interface between the prism (or plate) and the sample, and thus
relates fundamentally with the internal angle θ1. Throughout the main text, we use the external angle
θ instead of θ1 to define relevant quantities, since this is the actual angle of interest for the end-user.
Therefore, we made the reasonable assumption that the derivative [dθ1/dθ]−1 should also be included
as a term in the empirical equation for ABW , in order to “translate” the internal angular bandwidth
(in terms of θ1) into an external one (in terms of θ). It is indeed this derivative that introduces the
dependencies of ABW on variables {nair/no, θc} (see Equation (13)).

(iii). Finally, we generated additional data of S and ABW (other than those used for fitting
purposes), in order to establish the quality of the proposed empirical equations—Figure 3 is an
exemplary demonstration of this test. We found out that the empirical model reproduces synthetic
data with a typical accuracy of two significant digits which, as also claimed in the main text, is more
than sufficient for evaluation purposes.
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