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Abstract: In this work, we present an attempt to estimate the reaction excitation function based on
the measurements of thick target yield. We fit a function to experimental data points and then use
three fitting parameters to calculate the cross-section. We applied our approach to 43Ca(p,n)43Sc,
44Ca(p,n)44gSc, 44Ca(p,n)44mSc, 48Ca(p,2n)47Sc and 48Ca(p,n)48Sc reactions. A general agreement was
observed between the reconstructions and the available cross-section data. The algorithm described
here can be used to roughly estimate cross-section values, but it requires improvements.

Keywords: medical Sc radioisotopes; radioisotope production; thick target yield measurements;
cross-section reconstruction; numerical analysis

1. Introduction

The interest in three scandium radioisotopes, 43Sc, 44g/mSc and 47Sc, in nuclear medicine has
already been acknowledged and discussed in [1–19] (the selected properties of these radioisotopes
are summarized in Table 1). Both positron emitters 43Sc and 44gSc are promising PET radioisotopes
that can compete with the commonly used 68Ga [1–5], while 44gSc offers unique possibilities in the
three-photon PET technique [6–8]. Additionally, 44mSc can be used as a 44mSc/44gSc long-lived in-vivo
generator as it decays mainly by a low energy transition to the ground state [9–12]. Meanwhile, 47Sc is
a β-emitter suitable for both therapeutic purposes and SPECT imaging [13], which is emphasized also
within the IAEA Coordinated Research Project [14,15]. As mentioned in [16,17], this radioisotope is a
matched pair for diagnostic 43Sc and 44gSc radioisotopes.

In our recent papers [19,20], we have reported on the production routes of medical scandium
radioisotopes as well as extending this data with scandium formed in natural and enriched thick
CaCO3 targets (from around 50 up to 1000 mg/cm2) irradiated with α particles up to 30 MeV, deuterons
up to 8 MeV and protons up to 30 MeV. The thick targets were used because we found that it was not
feasible to prepare thinner (in the order of 1 mg/cm2) self-supporting CaCO3 as a homogeneously thick
target for our experimental set-up. The significant stopping-power of our targets allowed us to obtain
experimental thick target yield (TTY) values for scandium production.
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Table 1. Nuclear data [18] of medically interesting scandium radioisotopes (43Sc, 44g/mSc, 47Sc). 48Sc,
as a radioactive impurity, is also listed here with reference to the analysis in this paper.

Radio-Nuclide T1/2 Eaverage β- or β+ Branching or Transition Main γ-Lines [keV] and
Intensities

43Sc 3.89 h β+ 476 keV β+ 88% 373 (22.5%)
44gSc 3.97 h β+ 632 keV β+ 95% 1157 (99.9%)
44mSc 58.61 h N/A IT 99% 271 (86.7%), 1002 (1.2%),

1126 (1.2%), 1157 (1.2%)
47Sc 3.35 d β- 162 keV β- 100% 159 (68.3%)
48Sc 43.67 h β- 220 keV β- 100% 175 (7.5%), 984 (100%), 1038

(97.6%), 1213 (2.4%), 1312 (100%)

In this work, we want to complement our research by evaluating the 43Ca(p,n)43Sc, 44Ca(p,n)44gSc,
44Ca(p,n)44mSc, 48Ca(p,2n)47Sc and 48Ca(p,n)48Sc cross-sections based on reported TTY measurements
(the latter is not medically relevant, but 48Sc production is important as it is a radioactive impurity).
A similar attempt has already been proposed in [21] for the study of 34mCl production. In this work,
we verify this approach for above-mentioned reactions while employing a different, straight-forward
numerical algorithm (our Python code is submitted in the Supplementary Materials to this paper).

2. Materials and Methods

In our recent work [20], we reported TTY for 43Ca(p,n)43Sc on 43CaCO3 (90% 43Ca) targets,
44Ca(p,n)44gSc and 44Ca(p,n)44mSc on 44CaCO3 (94.8% 44Ca) as well as 48Ca(p,2n)47Sc and 48Ca(p,n)48Sc
on 48CaCO3 (97.1% 48Ca). Those TTY values are directly related to cross-sections by the following
formula [22,23]:

TTY(E) =
H NA

Z e m τ

Emax∫
Emin

σ(E)
dE/dx(E)

dE

where H is target enrichment, NA is Avogadro’s number, τ is the mean lifetime of a radioisotope,
Z is the ionization number of the projectile, e is the elementary charge, m is the atomic mass of the
target, Emax and Emin are the maximal and minimal energy of the projectile penetrating the target (in
case of TTY, Emin <= reaction threshold), respectively, σ is the cross-section for the nuclear reaction,
and dE/dx is the stopping-power of the projectile according to the aerial density of the target. Here,
we describe the attempt to obtain the energy dependence of the cross-section (the excitation function)
based on the experimental TTYexp(E) [MBq/µAh] values for different projectile energies E. These data
are supplemented by an assumption TTYexp(Ethr) = 0, where Ethr denotes the energy threshold for
this reaction.

The crucial factor is the choice of the function used to describe the TTY energy dependence.
The number of parameters of the function used to fit the data should be restricted, as the number of
the experimental data points is usually limited. Therefore, we propose a simple shape,

TTY f it(E) = d +
ac
2

√π (b− Ethr) er f
{

E− b
a

}
− a exp

−(E− b)2

a2




which fulfils several important criteria. This function is monotonically increasing, as TTY(E) should be.
Most importantly, its derivative is a modified q-Weibull distribution [24],

dTTY f it

dE

[
MBq
µAh

]
= MAX

0; c (E− Ethr) exp

−(E− b)2

a2


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which reflects the global shape of the (p,n) and (p,2n) excitation functions, commonly used in the field
of the production of medical radioisotopes. The request TTYexp(Ethr) = 0 provides the condition

d =
a2c
2

exp

−(b− Ethr)
2

a2


and limits the number of TTYfit parameters to 3: a, b and c. Once those parameters are obtained, the
cross-section values can be estimated as

σ(E)[mb] =
τ[h]Ze[C]m[u]

NAH
·
dTTY f it

dE

[
MBq
µAh

]
·
dE
dx

[
MeV

mg/cm2

]
·1042

In our case, TTY measurements were obtained on CaCO3 targets instead of metallic Ca. Therefore,
we used dE/dx(E) values corresponding to the energy loss in calcium carbonate (provided by SRIM
software [25]), m = 100 u to address the mass of CaCO3, and H as the level of enrichment of employed
material. We have also calculated the 95% confidence band for TTYfit(E) fit and reconstructed the
cross-section. Details of our calculations are shown and explained in the Python code attached to
this paper.

Alternatively, in [21], the cross-section was reconstructed after fitting the TTY curve by calculating
target yields (TY) for thicknesses corresponding to 0.1 MeV projectile energy loss each 1 MeV and
multiplied by projectile range. This method assumes the constant stopping-power in each layer. In our
approach, this simplification was not necessary.

3. Results and Discussion

In Figures 1–5, we show the TTY data and the reconstructed cross-sections for 43Ca(p,n)43Sc,
44Ca(p,n)44gSc, 44Ca(p,n)44mSc, 48Ca(p,2n)47Sc and 48Ca(p,n)48Sc reactions (the fit parameters are
shown in Table 2 while the reconstructed cross-section values are listed in Table 3). We compare them
with the experimental cross-section in [26–35], with the recommended values from [36], with the
predictions of the EMPIRE [37] evaporation code (version 3.2.2 Malta) and with the TENDL-2017
cross-section library [38]. All reconstructions exhibit a similar shape to the model predictions and
measured cross-section values, indicating the validity of modified q-Weibull distribution in estimating
the global shape of the (p,n) and (p,2n) excitation functions.

We have also checked our reconstruction method by implementing the approach in [20].
We obtained similar values (marked on the plots) with a visible correction near the threshold in
the 44mSc case (Figure 3) but also with the discontinuity fragments due to the numerical approach.
Since the mentioned paper does not provide the recommended TTYfit function, we adopted ours.

Table 2. Parameters of the TTYfit (for Figures 1–5) obtained with least square method for different
nuclear reactions and the χ2/dof values for each fit. Parameter d is calculated from a, b, c and Ethr.

Parameter 43Ca(p,n)43Sc 44Ca(p,n)44gSc 44Ca(p,n)44mSc 48Ca(p,2n)47Sc 48Ca(p,n)48Sc

Ethr [MeV] 3.07 4.54 4.81 8.93 theory: 0.51
adopted: 3.0

a [MeV] 10(2) 8.8(6) 13.7(7) 14.7(9) 8.0(8)
b [MeV] 4.5(6) 4.8(1.0) 7.0(1) 9.05(14) 4.2(7)

c [MBq(µAh)−1 (MeV)−2] 7.1(9) 24.5(1.2) 0.075(3) 1.57(6) 2.5(2)
d [MBq/µAh] 348 952 6.82 169 79.4

χ2/dof 1.30 0.57 6.11 1.05 1.79

In the case of 43Sc data (Figure 1), the recent experimental results [34] are significantly lower than
other measurements (by a factor of 2 around 10 MeV proton energy). The experimental results for TTY
are quite linear in the measured proton energy range and do not reach the expected saturation, so the
resulting excitation function is relatively flat and does not reproduce any of the previous measurements.
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This reaction might require further validation, as with the extension of TTY measurements up to
30 MeV proton energy.

A general agreement is observed for 44gSc (Figure 2), both with the theoretical models
and experimental results, although again the data by [34] are lower than the measurements.
More discrepancies are observed in the case of 44mSc (Figure 3). The excitation function obtained
from TTY measurements does not show the peak seen in the experiments and in model calculations
and overestimates the values near the reaction threshold. We suspect that the problem with this
reconstruction might be related to the offset of TTY data, as only in case of 44mSc are the TTY values
below model predictions at low energies and above them at higher energies, which causes the
reconstructed excitation function to be flatter.

For 47Sc (Figure 4), the shape of the reconstruction reflects the shape predicted by both model
calculations. While our results provide about 10% lower values compared to the models, recent
measurements [35] indicate similar values at low energies but about 20% higher values at maximum.

Finally, we decided to adopt the arbitrary value of Ethr = 3.0 MeV as a parameter for 48Sc fit
(Figure 5) to satisfy the visible and significant TTY build-up at this energy rather than the actual
threshold (0.51 MeV). This might be explained by the fact that the shape of the function used for the fit
does not adequately describe the behavior of the cross-section at energies much below the Coulomb
barrier. Since the cross-section values far below the Coulomb barrier are very small, they do not
contribute significantly to the TTY values. The extracted cross-section values are in line with the data
in [30] at lower energies and in [35] at higher energies.
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points are taken from [26–28,30,35]. The results from [27,28,30] are averaged.
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Table 3. Cross-section values for different nuclear reactions deduced from the thick target yield data
from [20].

E [MeV]
σ [mb]

43Ca(p,n)43Sc 44Ca(p,n)44gSc 44Ca(p,n)44mSc 48Ca(p,2n)47Sc 48Ca(p,n)48Sc

5 145(20) 115(6) 2.11(8) 0 552(48)
6 187(26) 314(13) 11.7(5) 0 692(66)
7 214(29) 450(20) 19.2(8) 0 761(77)
8 228(28) 534(26) 25.1(1.1) 0 744(78)
9 231(24) 572(31) 29.6(1.3) 14.2(6) 740(71)
10 225(18) 572(32) 32.9(1.4) 199(7) 674(58)
11 211(12) 543(30) 35.0(1.4) 353(14) 586(43)
12 193(10) 493(25) 36.2(1.3) 478(18) 490(29)
13 172(15) 431(19) 36.4(1.2) 576(20) 393(20)
14 148(21) 363(15) 35.9(1.0) 647(20) 304(18)
15 125(26) 297(14) 34.7(8) 698(20) 228(21)
16 104(29) 235(15) 33.1(7) 729(19) 164(22)
17 84(30) 180(16) 31.0(7) 739(18) 115(21)
18 66(30) 134(16) 28.7(8) 734(18) 78(19)
19 97(16) 26.1(1.0) 716(21) 51(15)
20 68(14) 23.4(1.1) 684(26) 32(12)
21 47(12) 20.8(1.3) 647(31) 20(9)
22 31(10) 18.2(1.4) 600(35) 12(6)
23 20(7) 15.7(1.4) 550(40) 7(4)
24 13(6) 13.5(1.4) 499(43) 4(3)
25 8(4) 11.3(1.4) 445(46) 2.0(1.6)
26 5(3) 9.5(1.4) 393(47) 1.0(9)
27 2.7(1.8) 7.8(1.3) 343(48) 0.5(5)
28 1.5(1.1) 6.4(1.2) 297(47) 0.3(3)
29 0.8(7) 5.1(1.1) 253(45) 0.12(16)
30 0.4(4) 4.0(9) 213(43) 0.05(8)

4. Conclusions and Summary

We have presented an attempted numerical method for cross-section evaluation based on the thick
target yield (TTY) measurements obtained from the irradiation of thick targets (in which the energy
of a projectile is reduced to the reaction threshold). This method is based on fitting a function with
three free parameters to TTY data points and using its analytical derivative to obtain the cross-section.
The fitting requires the knowledge of the reaction threshold and a sufficient number of experimental
points to represent the shape of the TTY curve, including the saturation region.

Using this approach, we were able to obtain a useful estimation of cross-sections for the production
of medically important 43Sc, 44gSc, 44mSc, 47Sc, and 48Sc radioisotopes via (p,n) and (p,2n) reactions on
Ca. The results were compared to the already measured cross-sections and to the model predictions.
General agreement is observed; however, not all experimental results confirm our reconstructions,
particularly those near the reaction threshold. In conclusion, our algorithm can provide good insights
for the (p,xn) excitation function, but improvements are necessary.
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Author Contributions: M.S.: formal analysis, software, methodology, writing—original draft, writing—review &
editing; J.J.: conceptualization; F.H.: supervision, writing—review & editing; T.M.: conceptualization, methodology,
supervision, writing—review & editing; K.S.: supervision, writing—review & editing; W.Z.: conceptualization,
supervision, writing—review & editing.

Funding: Part of this work was performed within the framework of the EU Horizon 2020 project RIA-ENSAR2
(654 002). This research was also partly supported by the Polish Funding Agency NCBiR grant No.
DZP/PBS3/2319/2014 and by a grant from the French National Agency for Research called “Investissements
d’Avenir”, Equipex Arronax-Plus noANR-11-EQPX-0004, Labex IRON noANR-11-LABX-18-01, and ISITE NEXT
no. ANR-16-IDEX-0007.

http://www.mdpi.com/2410-390X/3/2/29/s1


Instruments 2019, 3, 29 8 of 10

Acknowledgments: The authors sincerely thank Anna Stolarz and Agnieszka Trzcińska (from Heavy Ion
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