
instruments

Article

Plasma Deflection Interrupter for Pulsed
Power Applications

Nathan Majernik, Walter Lynn, Yusuke Sakai and James Rosenzweig *

Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA;
NMajernik@g.ucla.edu (N.M.); walter.j.lynn@gmail.com (W.L.); yusuke@physics.ucla.edu (Y.S.)
* Correspondence: rosen@physics.ucla.edu; Tel.: +1-310-206-4541

Received: 1 June 2018; Accepted: 27 July 2018; Published: 29 July 2018
����������
�������

Abstract: A plasma-based opening switch, capable of handling kiloampere currents at kilovolt
potentials on the microsecond timescale, is described and characterized. The principle of operation is
the deflection of a laser-induced arc by an external magnetic field to a shunt circuit path. A first-order
model of operation is introduced. Finally, the merits of the device, particularly when applied to
high-repetition-rate dense plasma focus (DPF) systems, are discussed.
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1. Introduction

Opening switches for pulsed power applications, capable of holding off kilovolt potentials and
conducting kiloampere currents, tend to be: fast (� millisecond switching), simple and robust; or
inexpensive, but do not simultaneously possess all three traits. Common solutions for such applications
include spark gaps (including magnetic [1], mechanical [2], and gas quenched [3,4] variants), plasma
erosion opening switches (PEOS) [5,6], and semiconductor switches [7]. A summary of opening switch
technologies is shown in Figure 1. We presented a fast, simple, and inexpensive opening switch, based
on the deflection of an arc by an external magnetic field (Figure 2) intended to interrupt the current
flow to a load. The arc is initialized between the input and load by laser breakdown, before being
deflected by an applied magnetic field and then preferentially conducting a current through a shunt
path. Unlike quenched spark gaps which rely on relatively slow processes, such as mechanical motion,
gas flow, or heat transfer, this device operates on the microsecond timescale, due to its reliance on the
motion of a plasma, which is accelerated at rates in excess of 106 m/s2.
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Figure 1. Summary of pulsed power opening switches, adapted from [8]. This current work has been 

included. 

 

Figure 2. Schematic of switch operation. (a) Laser-induced breakdown of an arc between the supply 

and load occurs, (b) the external magnetic field increasingly deflects the arc, and (c) the arc begins 

preferentially conducting a current through the shunt. 
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and load occurs, (b) the external magnetic field increasingly deflects the arc, and (c) the arc begins
preferentially conducting a current through the shunt.
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2. Materials and Methods

The device was constructed from UHMW plastic, copper bus bars, brass screws, and neodymium
permanent magnets (Figure 3). The spacing between the load, shunt, and input electrodes were all
independently variable. An annotated cross section of the switch is shown in Figure 4. The permanent
magnets provided a 0.6-T magnetic field. The Nd:YAG triggered laser pulse had 500-mJ energy and
5-ns duration. The pulsed power supply was a 312-nF oil-filled capacitor, charged between 10 and 20
kV. The load circuit had a total resistance of 0.12 Ω and an inductance of 1440 nH. The shunt circuit
had a total resistance of 0.09 Ω and an inductance of 700 nH. The time derivative of the current dI

dt in
each circuit was monitored using custom B-dot probes.
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Figure 4. Cross section of a plasma switch.

3. Results

3.1. Basic Operation

Figure 5 shows the impact of varying the distance between the tip of the shunt electrode and
the centerline of the input and load electrodes. In the first frame, with the shunt at 14 mm from the
centerline, no current handoff occurred and the plasma switch operated like a typical laser triggered
spark gap, which was the same as the behavior exhibited when the magnets were removed. In the
second frame, the shunt electrode was moved in to 12 mm, and after about 20 µs (5 periods), handoff of
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current to the shunt path occurs. The apparent non-constant nature of dI
dt and the observed frequency

change were due to the lower impedance of the shunt path. By adjusting the shunt even closer in the
third frame, e.g., to 10 mm, handoff occurred in a shorter period, e.g., only after 15 µs. Finally, in the
last frame, the shunt was the preferred path from the beginning of conduction.
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mm, respectively.
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3.2. Analysis

Plasma switches have a rich history including theoretical models for their operation, as is
presented in e.g., Ref. [9]. However, the microscopic aspects of such models are beyond the scope
of this article, and we satisfied ourselves with a phenomenological and approximate approach to
characterize the behavior of this instrument, while omitting the details of the actual plasma dynamics.
This simplified approach is based on the magnetic force (per unit volume) |J× B|, and a decaying
sinusoidal current flow I(t) ∝ V e−t α sin(t ω), where V is the voltage, α is the decay constant, andω
is the RLC frequency. The simulated transverse positions of the arc are shown in Figure 6 for three
different voltages: Vgreen = 2Vblue, Vorange = 1.5Vblue. The linear approximations of the motion for
each case, where the slope is proportional to the voltage, are shown in Figure 6.
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approximation for each linear approximation is shown in black.

As long as the duration is longer than a few periods, a linear approximation is accurate. However,
the initial conditions must also be considered; in Figure 6, the arc position was assumed to start at zero.

A simulation of the electric field on the switch center plane using a custom electrostatic relaxation
solver is shown in Figure 7.
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A simplified model for the transverse position of the arc center point was employed:

y = y0(V) + κ |J× B|t2 (1)

where y0(V) is a function, which describes the initial position of the arc based on the voltage of the
electrodes, and κ is a normalization factor to convert the magnetic force to an acceleration. By using a
first-order approximation for the position function y0(V) ≈ y0 + y1V and approximating the magnetic
force as proportional to voltage, i.e., |J× B| ∝ V, Equation (1) was simplified as:

y = y0 + y1V + κ V t2 (2)

The first-order approximation has three free variables to fit: y0, y1, κ. Figure 8 shows the best-fit
result. Note the deviation from this behavior for the smallest shunt spacing. In this case, the fit
was poor and has been omitted. For such a small spacing, the handoff takes place in only a few
microseconds: less than two full periods. In such a scenario, the approximation of a constant force
is not valid; instead, the more relevant metric is the phase within the RLC ringing, leading to this
flattening of the slope.
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4. Discussion

We have demonstrated a new type of plasma opening switch, capable of switching on and off
kiloamp currents at kilovolt potentials on microsecond timescales. We envisaged two parallel routes
forward. First, our immediate interest in this device is it could be used as a way to reduce the thermal
load on a small, high-repetition-rate, dense plasma focus (DPF) [10]. By redirecting the flow of current
after the first period, the DPF dynamics—important application metrics, such as neutron and X-ray
production—were unaffected, but the thermal load on the device was reduced by up to 90%. Secondly,
we also intended to further probe the inner workings of this device by using ultrafast laser and framing
camera diagnostics [10]. This will require replacing the neodymium magnets with pulsed coils, as
illustrated in Figure 9.
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