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Abstract: The study of molecular nanoelectronic devices has recently gained significant interest,
especially their potential use as functional junctions of molecular wires. Aromatic systems with
π-conjugated bonds within their chemical backbones, such as catechol, have attracted particular
attention in this area. In this work, we focused on calculating and determining catechol’s electrical
and thermal transport properties using the theoretical method of Green’s functions renormalized
in a real space domain within a framework of tight-binding approximation to the first neighbors.
Thus, we studied two theoretical models of catechol as a function of its geometry, obtaining striking
variations in the profiles of electrical and thermal conductance, the Seebeck coefficient, and the figure
of merit. The analyses of the results suggest the potential application of catechol as a likely conductive
and thermoelectric molecule serving as a novel material to use in molecular electronic devices.

Keywords: molecular electronic; catechol; transmission probability; thermoelectrics

1. Introduction

During the last decades of the new millennium, electronic device miniaturization
reached the frontier in the nanoscale domain, an area most commonly known as nanoelec-
tronics. At this scale, researchers demonstrated that size matters in increasing efficiency and
high-throughput information processing, leading to large-scale consumption. Due to its
high abundance and great performance in such devices, silicon is used as a semiconductor
material; however, the high level of purity required for its application and overheating
make its industrial application non-sustainable due to its charge losses, toxic environmental
trail, and costs. For this reason, nanotechnology researchers are strengthening efforts to
generate novel materials as substituents of silicon in this area [1,2] and apply them in new
electronic devices, such as switches, diodes, rectifiers, solar cells, field effect transistors,
and quantum wires, among other applications [3–5], as well as in molecular electronics.

In searching for such devices, experimental and theoretical approaches have been
reported in the literature over the years. The seminal work of Mann and Kuhn in 1971 [6]
demonstrated the electrical properties of cadmium carboxylate salt derivatives of fatty
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acids through the measurement of conductivity in a monolayer array of this system. In
addition, Cooper et al. in 1971 found conductive behavior at low temperatures using a
molecular system of tetrathiofuvalene (TTF) [7,8], and in the late 1970s, Macdiarmid et al.
reported the conductive behavior of organic polymers [9,10], an effort recognized by the
Nobel Prize in Chemistry in 2000.

On the other hand, instrumental technical advances in the 1980s led to robust analyti-
cal techniques, such as scanning tunneling microscopy (STM) and atomic force microscopy
(AFM) [11], allowing measurements of electrical properties of several nanoscopic systems,
including molecules. However, some scenarios presented difficulties at the junctions of
molecules with the tip probe due to the intrinsic conditions of the techniques for such mal-
leable and soft systems. Fortunately, these issues were solved with the development of the
mechanically controllable break junction (MCBJ) [12], the scanning tunneling microscopic
break junction (STMBJ), the electromigrated break junction (EBJ), and the thermoelec-
tric atomic force microscope (ThAFM), thus enabling more precise data of electrical and
thermal conductance in a single-molecule junction, leading to the invention of nanoscale
organic thermoelectric devices [2,13]. Thus, in 2011, the conjugated polymer poly(3,4-
ethylenedioxythiophene) (PEDOT) was characterized as one of the first systems with
moderate thermal-to-electrical energy conversion efficiency [14]. Since then, researchers
have focused their efforts on increasing this conversion efficiency through the fabrication
of new organic thermoelectric materials [15]. 3,6-Disubstituted catechol has been used as
the base of highly functionalized molecular rods possessing interesting electrical transport
properties [16]. In another study, poly-substituted catechol was used as an end arm of a
long-carbon-chain hemiquinones (i.e., catechol covalently linked with ortho-benzoquinone),
and STM analysis showed that catechol acts mainly as the donor, whereas the ortho-quinone
serves as the charge acceptor [17].

Likewise, circular wires were built by a catechol bridge between highly conjugated
skeletons composed of aromatic rings and alkyne moieties covalently linked to two termi-
nals. The redox pair catechol/quinone served as a molecular switch in an STM assembly,
and thus, the researchers demonstrated that the electronic transport properties strongly
depend on the oxidation state, which can be tuned by the degree of electronic delocalization
and, therefore, the electronic conductance of the systems [18]. In this work, Nicolas Weibel
et al. set up the design and fabrication of potential advanced active polymeric materials,
such as catechol-based organic electrodes containing reversible redox sites, which could
be applied for economical and sustainable next-generation electrochemical energy stor-
age (EES) devices [19]. In addition, the 1,2-dihydroxybenzene scaffold is essential in a
wide variety of organic dyes, typically large organic molecules, for this optical behavior.
Therefore, despite the experimental evidence on how catechol plays a crucial role in the
intramolecular electronic properties of such large molecules, there is a scarce fundamental
understanding of its internal electronic structural features and how electronic transport
proceeds within such systems [20–22].

In terms of theoretical studies, the seminal work conducted by Aviram and Ratner in
1974 on electrical properties through organic molecules [23] demonstrated their potential to
act as possible rectifiers by studying the electrical and thermal transport processes in indi-
vidual molecules, evidencing the essential role of aromatic systems in the semiconducting
properties of these molecules [24,25]; however, such properties may vary depending on the
configuration in which they are held between the metal contact or tips (i.e., symmetric or
asymmetric). In addition, the electrical and magnetic properties can vary drastically [26,27],
taking to account (or not) external stimuli such as impurities, vacancies, electric or magnetic
fields, and temperature variations, among others.

Thus, we sought to study the electrical and thermal transport properties of catechol to
understand how these transport processes depend on several variables and to determine its
potential application in molecular conducting devices. To this end, we modeled catechol in
the middle of two electrodes in two configurations (Model I and Model II) and calculated
the electrical and thermal transport properties employing the Green’s function method



Condens. Matter 2023, 8, 60 3 of 19

through the use of the Dyson dynamic equation, based on a tight-binding Hamiltonian,
within the renormalization framework or the decimation of the real system to an effective
system. Then, we focused our interest on the variation in the position of the electrodes
and the electrode–molecule coupling bond (strong and weak regimes) to calculate the
properties of the transmission probability, the electric current, the electric conductance,
the thermal conductance, the Seebeck coefficient, and the ZT factor. Very interestingly,
we found significant differences between them, as described herein. The outline of this
work is as follows. In Section 2, we discuss the details of the analytical model used to
determine the transport properties of the molecular system. In Section 3, we describe the
method, followed by Section 4, where we present and describe the results of the transport
properties. Finally, in Section 5, we highlight the main conclusions of the work and provide
final remarks.

2. Model

1,2-Dihydroxybenzene is an organic molecule commonly known as catechol with
the molecular formula C6H6O2 (Figure 1). Due to its molecular and electronic structures,
researchers have focused their interest on using it as photosensitizer in photovoltaic devices
supported over anatase particles as a semiconducting substrate, which is normally used as
such in this research area [28].

Figure 1. Molecular structure of catechol.

Based on catechol’s versatility and physicochemical properties, particularly its thermo-
electric behavior, we sought to use it in an electronic device as a conducting molecular wire.
Thus, we modeled catechol’s structure (C: carbon atoms; OH: hydroxyl groups) between
two electrodes (L: left; R: right), where its linked sites have their respective electrochemical
potentials µL and µR in Models I and II (Figures 2a and 3a).

When an electrochemical potential difference is applied between the two electrodes
(µR − µL = −eV), one electrode turns into a source of electrons, and its counterpart acts
as an electron drain. This dynamic process occurs because, under an external stimulus,
the system is out of equilibrium, causing a current to flow through an electric circuit that
closes the system [29]. Thus, we describe the models shown in Figures 2a and 3a by the
nearest-neighbor tight-binding Hamiltonian [30–32]:

H = Hcat + HL + HI , (1)

where Hcat is the Hamiltonian of the catechol molecular system, described by

Hcat = ∑
i

ti(c†
i c(i+1) + c†

(i+1)ci) + ∑
i

Eic†
i ci , (2)

where ti is the coupling between the atomic sites of the system, represented in this model as
Ω for a single bond (σ-bond) between C-C atoms, Π for a double bond (π-bond) between
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C=C atoms, and Λ for a σ-bond between carbon and a hydroxyl group (C-OH). Ei represents
the energy of the atomic sites, denoted in this case as EC and EOH for the C and OH atomic
sites, respectively. And ci (c†

i ) is the creation (destruction) operator of the electron at atomic
site i.

Assume that HL is the Hamiltonian of the leads and HI is the Hamiltonian of interac-
tion between the leads and the molecule, which are given by

HL = ∑
kL

εkL d†
kL

dkL + ∑
kR

εkR d†
kR

dkR , (3)

and
HI = ∑

kL

ΓLd†
kL

c1 + ∑
kR

ΓRd†
kR

cN + h.c. (4)

where the creation (destruction) operators of an electron in state kL,R are given by dkL,R

(d†
kL,R

), with energy εkL,R . ΓL,R denotes the coupling between each electrode and the molecu-
lar system, and h.c. is the Hamiltonian’s complex conjugate.

Figure 2. Model I. (a) Catechol molecular system, (b) reduced geometric model, and (c) effective
linear chain.

Figure 3. Model II. (a) Catechol molecular system, (b) reduced geometric model, and (c) effective
linear chain.
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3. Method

The transmission probability (T(ε)) is calculated using the Green’s function of the
molecular system, where the catechol’s electrical and thermal transport properties are thus
determined. This Green’s function is derived by applying the Dyson equation within a
real-space renormalization or decimation scheme [25,29,33,34].

3.1. Transmission Probability

The transmission probability (T(ε)) is defined through the Fisher–Lee relationship,
expressed as:

T(ε) = Tr[ΓLGrΓRGa] , (5)

where Tr(A) denotes the trace of the matrix A, which depends of the retarded (Gr) and
advanced (Ga) Green’s functions of the system. The electrode couplings ΓL(R) are func-
tions of the spectral density matrix of the left (right) contacts, respectively, given by
ΓL(R) = i[ΣL(R) + ΣL(R)].

However, in this work, we calculate T(ε) for effective linear chains (Figures 2c and 3c);
thus, Equation (5) turns into the following:

T(ε) = ΓL
11ΓR

NN |G1N |2, (6)

where G1N is determined by:

G1N =
G0

1N
(1− G0

11ΣL)(1− G0
NNΣR)− G0

N1G0
1NΣRΣL

. (7)

Now, to calculate the Green’s functions G0
1N , G0

11, G0
N1, and G0

NN , it is necessary to
apply the renormalization process to each model; however, it is worth recalling that for the
models analyzed here, G0

1N = G0
N1 and G0

11 = G0
NN .

3.2. Renormalization Process

Green’s functions can be defined as the solutions of inhomogeneous differential equa-
tions of the type:

[z− H(r)]G(r, r′, z) = δ(r− r′), (8)

where r and r′ are subject to certain boundary conditions, with complex z given by
z = ε + iη, which depends on the energy of the electron (ε) when it enters the system,
and η is an infinitesimal term. H(r) is the Hamiltonian operator (hermitian), which is time-
independent, having a complete set of eigenfunctions φn(r) that satisfy the same boundary
conditions as G(r, r′, z) and can be considered orthonormal without loss of generality.

From Equation (5), the obtained Green’s functions are expressed in terms of H as
G = 1/(z− H), and taking into account some algebraic processes, a dynamic equation
known as the Dyson equation can be obtained. Thus, we take the latter as a starting
point for this work since it has previously been used for some one-dimensional and quasi-
dimensional models. The Dyson equation is defined as:

G = G0 + G0(ΣL + ΣR)G, (9)

where G0 is the Green’s function of an isolated system, and ΣL(R) is the self-energy of
the left (right) electrode. Thus, we make use of the Dyson equation in order to reduce
the catechol molecular system (Model I—Figure 2a), which has two degrees of freedom
due to its planar nature, to an effective linear system with one degree of freedom (Model
I—Figure 2c). However, to simplify the procedure, a geometrical scheme is formulated
(Figure 2b) with the proper label in each atomic site, thus having the respective numbering
in each Green’s function. After renormalizing each model to an effective linear chain, we
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obtain linear chains with two atomic sites with effective energies Ẽ and effective local
Green’s functions g̃ (see Appendix A). For Model I, g̃ is given by:

g̃ =
gc(−1 + g2

hΩ2)(−1 + g2
c Π2)

−g2
hΩ2 + α + g3

hghΠ4 + g2
c (−1 + g2

hΩ2)(Ω2 + Π2)
, (10)

where α = 1− gcghΠ2. In addition, the effective coupling between these effective sites is
also calculated and given by:

Ṽ12 =
ΠΩ[g2

hΠ + g2
c (Ω− g2

hΩ3 − ghΠ3)]

(−1 + g2
hΩ2)(−1 + g2

c Π2)
, (11)

As regards Model II, we obtain an effective linear chain with two effective atomic sites
with two distinct effective energies, Ẽ1 and Ẽ2, and two particular effective local Green’s
functions, g̃1 and g̃2, respectively (see Appendix A), given by:

g̃1 =
gc(−1 + gcghΠ2)(−1 + g2

c Ω2)

α + g4
c Ω4 + g3

c ghΠ2(Π2 + Ω2)− g2
c (Π

2 + 2Ω2)
, (12)

and

g̃2 =
gh(−1 + gcghΠ2)(−1 + g2

c Ω2)

1− 2gcghΠ2 − g2
hΩ2 + g3

c ghΠ2Ω2 + g2
c (−Ω2 + g2

hγ)
, (13)

where γ = (Π4 + Ω4). The effective coupling for Model II is calculated and given by:

Ṽ12 =
gcΠΩ(gcΠ + ghΩ− g2

c gh(Π
3 + Ω3))

(−1 + gcghΠ2)(−1 + g2
c Ω2)

, (14)

Once we calculate and determine the effective local Green’s functions with their
corresponding effective couplings for each model, we proceed to determine the Green’s
functions G1N and GNN , given by Equation (6) (see details in Appendix A), and calculate
their respective transmission probabilities T(ε).

3.3. Electrical and Thermal Transport Properties

To determine the quantum transport properties or the flow of charge carriers through
a system connected to two electrodes, we make use of the Landauer–Büttiker formalism,
where the electric current is calculated by the expression:

I =
2e
h̄

∫ ∞

−∞
( fL − fR)T(ε)dε, (15)

where e is the charge of the electron, h̄ is the reduced Plank’s constant, and fL(R) is the left
(right) Fermi function, given by:

fL(R)(ε) =
1

1 + exp
(

(ε−µL(R))

kBΘ

) , (16)

where µL(R) = εF ± eV/2, in which εF represents the Fermi energy, kB is Boltzmann’s
constant, and Θ is the equilibrium temperature.

Accordingly, we use the Landauer integrals (Equation (17)) to evaluate the electrical
conductance and thermal transport properties.

ζn = −
∫

T(ε)(ε− εF)
n
(

∂ f (ε)
∂ε

)
dε, (17)

Thus, the electrical conductance (G), thermal conductance (κ) (defined as the energy
transported through the system in the form of heat [35,36]), Seebeck coefficient (S), and
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efficiency of a thermoelectric material to convert thermal energy into electrical energy,
known as the figure of merit or ZT factor, are determined as follows:

G =
2e2

h
ζ0 . (18)

κ = − 2
hΘ

(
ζ2 −

ζ2
1

ζ0

)
, (19)

S = − 1
eΘ

ζ1

ζ0
, (20)

ZT =
GS2Θ

κ
=

1
ζ0ζ2
ζ2

1
− 1

, (21)

Summing up, Equations (18)–(21) show the dependence of the electrical and thermal
properties on the probability of transmission. Notably, the energy transport in the form
of heat (κ) depends on the sum of the electrical (κel) and phononic (κph) contributions.
However, for the molecular systems studied in this work, κel is much larger than κph;
therefore, the contributions of κph to thermo-electric transport are negligible [35,37].

4. Results

In order to understand the conducting behavior of Models I and II, we evaluated
the transmission probability (T(ε)) as a function of the energy injected into the molecular
system (Figure 4), in contrast to a simpler aromatic system without any functionality (i.e.,
benzene), for values of Γ = 0.2 eV, EC = 0.0 eV, EOH = 0.5 eV, Ω = 1.0 eV, Π = 1.0 eV, and
Λ = 1.0 eV. The resonant peaks occurring at weak coupling (i.e., Γ < Ω, Λ) are closer
to the eigenvalues of each molecular system, which are calculated by diagonalizing the
Hamiltonian matrix N × N (Equation (3)), where N corresponds to the number of atomic
sites N = 8 (6 carbon atoms and 2 atoms of the OH groups). Then, with the eigenvalues
given at 2.26 eV, −2.15 eV, 1.37 eV, 1.33 eV, −1.24 eV, −1.13 eV, 0.57 eV, and 0.0 eV (see
Appendix A), we validated the renormalization for this molecular system [27,38] for the
further determination of the electrical and thermal properties.

- 3 - 2 - 1 0 1 2 31 0 - 1 1

1 0 - 9

1 0 - 7

1 0 - 5

1 0 - 3

1 0 - 1

e  ( e V )

T(e
)

 M o d e l  I
 M o d e l  I I
 B e n z e n e  m o l e c u l e

Figure 4. Transmission probability as a function of the energy for Models I (orange line) and II (blue
line) from catechol and benzene (dashed brown line) molecular systems.
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The resonant peak of T(ε) around the Fermi level (ε = 0) for both models represents
the allowed electronic states at that level, thus clearing the path for the transport of charge
carriers due to an increase in the density of states. Therefore, the forbidden band between
the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO) tends to cancel out, pointing out that, under these conditions, catechol
acts as a conducting material. This result contrasts with the simpler aromatic system
of the benzene molecule, which behaves as a semiconducting material (Figure 4, brown
dashed line) with a gap around the Fermi level εF = 0 eV [24,25]. Since the OH groups
alter the hybridization of the aromatic ring’s orbitals of the molecular system, this clearly
enhances the density of states around the Fermi level, turning it from a semiconducting to
a conducting molecular skeleton.

When comparing the distinct behaviors of the two models, we can find evidence that
the manner in which catechol’s OH groups are anchored to the leads alters the resistance
of the conducting molecular system. Thus, the resonant peaks in Model I are broader
than those in Model II, although their eingenvalues are very close. This difference is
strongly related to the fact that in Model I, none of the OH groups are attached to the leads,
indicating a greater probability of the charge carriers diffusing along the molecular system,
whereas, with one OH group attached to a lead (Model II), we can observe a lower area
under the curve, indicating a more significant resistance to conductivity.

Because T(ε) strongly depends on the coupling potential of the molecule to the leads
(Γ), we screened it using different values, with frontier values of 0.0 eV to 3.0 eV (Figure 5),
recalling that strong- and weak-coupling regimes are where Γ > Ω, Λ and Γ < Ω, Λ,
respectively. Figure 5 depicts the behavior of T(ε) for different coupling values, highlighting
selected cases of weak coupling (Γ = 0.2 eV, green line) and strong coupling (Γ = 2.0 eV, red
line) regimes. Hence, the areas under the red line curves are broader than those under the
green lines, showing that in the strong-coupling regime, the resonant peaks are broadened
due to hybridization between the discrete states of the molecular system and the delocalized
states of the contacts, inducing an increment in conductivity. In addition, Model I presents
higher transmission than Model II due to the manner in which catechol is anchored to the
leads, as previously discussed.

- 3 - 2 - 1 0 1 2 3

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

( a ) M o d e l  I

e  ( e V )

T(e
)

G(e
V)

0 . 2

2

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

- 3 - 2 - 1 0 1 2 3

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

( b ) M o d e l  I I

T ( e )

G(e
V)

T(e
)

e  ( e V )
0 . 2

2

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

Figure 5. Transmission probability as a function of Γ and energy for Models (a) I and (b) II of the
catechol molecular system.

Once we defined the conducting behavior of the molecular device under weak- and
strong-coupling regimes, we studied the current passing through it depending on the
applied voltage between the leads (Figure 6). We observe lower currents with Γ = 0.2 eV
for both models, in agreement with its semiconductor behavior, than with Γ = 2.0 eV
when their conducting properties are enhanced. Notably, the current trend is similar
in both models, with a larger amplitude for Model I (i.e., larger area under the curve),
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with an interesting stepped shape owing to the resonance peaks previously shown for
the transmission probability (Figure 4). The inset of Figure 6 shows the electric current
within the voltage limits from −0.5 V to 0.5 V, showcasing the very similar behaviors of the
two models at weak coupling but differences at strong coupling, as well as a more linear
performance canceling out the stepped shape, which remains at weak coupling. This linear
behavior in both models is characteristic of conductive materials.

- 6 - 4 - 2 0 2 4 6
- 3

- 2

- 1

0

1

2

3

- 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4

- 0 . 1 0

- 0 . 0 5

0 . 0 0

0 . 0 5

0 . 1 0

V o l t a g e  ( V )

I/I 0

V o l t a g e  ( V )

I/I 0

G = 0 . 2  e V
 M o d e l  I
 M o d e l  I I

G = 2 . 0  e V
 M o d e l  I
 M o d e l  I I

Figure 6. Current as a function of voltage for Γ = 0.2 eV (solid curves) and Γ = 2.0 eV (dashed
curves) for both models (I and II), taking the temperature value Θ = 300 K.

For the analysis of the thermal properties of conduction in both models, we determined
the electrical conductance (G), thermal conductance (κ), Seebeck coefficient (S), and figure
of merit (ZT) as a function of the Fermi energy (Figure 7). Figure 7a shows that G, calculated
by Equation (18), agrees with the transmission (see above, Figure 5) according to Landauer’s
formalism, where the conductance is proportional to T(ε) at low temperature and in the
weak-coupling regime. Even though the conductance is pretty similar in both models,
remarkably, at 0.5 V, Model II presents almost null conductance owing to the manner in
which OH is anchored to the leads, suggesting the formation of an antiresonance state.
Likewise, in Figure 7b, we observe a similar trend in κ to that in G in both models, noticing
slight differences in thermal conductance, indicating a similar heat transfer capacity in both
models throughout the calculated energy range.

The performance of the thermopower or S as a function of the Fermi energy is very
intriguing (Figure 7c) since, around εF = 0 eV, a clear difference is observed for both models.
To explain this behavior, let us look back at Figure 7a, where G, and thus T(ε) (Figure 4),
becomes more asymmetric for Model II than for Model I around εF = 0 eV. This asymmetry
causes the high value of S, creating a strong dependence on it concerning the asymmetric
nature of the transmission or G. Consequently, the higher the S is, the larger the ZT will be
due to their proportionality (see Equation (21)). Therefore, to look for high thermoelectric
efficiency (i.e., large S value), we must seek high antisymmetrical transmission within the
system. Thus, analyzing Figure 7c, we observe that for energies far from εF = 0 eV, the
amplitude of S decreases, and the transmission becomes more symmetrical or coherent [39].
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Figure 7. (a) Electrical conductance (G), (b) thermal conductance (κ), (c) Seebeck coefficient (S), and
(d) figure of merit (ZT) as a function of the Fermi energy (εF) for Models I (orange line) and II (blue
line), taking values of temperature of Θ = 300 K and coupling Γ = 0.2 eV.

Finally, in Figure 7d, we depict the ZT factor with the same energy range as in the
previous graphics in Figure 7. The fundamental differences between the two models occur
for energies close to 0 eV. The maximum value reached for Model I is circa ZT = 10, while
for Model II, the maximum value obtained is roughly ZT = 15, in accordance with the S
profile, where Model II has a higher maximum S than Model I around these energies due
to its asymmetry.

Thus, in Figure 7a, we can observe marked differences between Models I and II
at the value of εF = 0.5 eV in the electrical conductance (G), thermal conductance (κ),
Seebeck coefficient (S), and figure of merit (ZT). This result strongly agrees with the
transmission probability (Figure 4) since its value evaluated at ε = 0.5 eV presents an-
tiresonance for Model II, where the transmission probability decreases considerably and
reaches almost zero, whereas Model I has non-zero transmission. In this sense, according to
Equations (18)–(21), the electrical and thermal properties depend on the transmission inte-
gral (ζn) evaluated on the Fermi energy; therefore, at εF = 0.5 eV, the largest differences
between the models are shown for each of these properties (Figure 7).

To evaluate the dependence of electrical conductance (G) on the Fermi energy (εF)
and the temperature (Θ), we studied its variation in defined intervals of interest within a
weak-coupling regime (Figure 8a,b). We observe that at low temperatures, the electrical
conductance is higher owing to the lower resistance for the passage of electrons through
the molecule due to less vibrational motion of the atoms within its chemical skeleton.
Thus, at higher temperatures, the resistance is higher and the electrical conductance de-
creases. This pattern is evident for both models, depicting similar behavior. On the other
hand, in Figure 8c,d, we present the maximum value of G as a function of temperature at
Γ = 0.2 eV and as a function of Γ at Θ = 300 K, respectively. For this analysis, we have
studied the variation in the Fermi energy within a window of (−0.5 eV < εF < 0.5 eV),
because the most important behavior is observed when the Fermi energy is fixed around
the inner edges of the allowed bands.
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Figure 8. (a) Electrical conductance (Model I) and (b) electrical conductance (Model II) as a function
of the temperature (Θ) and Fermi energy (εF). (c) Maximum electrical conductance as a function of
temperature (Θ) and (d) maximum electrical conductance as a function of coupling (Γ) around the
Fermi energy (−0.5 eV < εF < 0.5 eV) for Models I (orange line) and II (blue line).

These maximum values of G are within the same range for both models, and they
steeply decrease as the temperature increases (Figure 8c). This behavior is expected due
to power dissipation effects. Notably, the order of magnitude for the calculated electrical
conductance agrees with that reported by Kolivoska et al. [16], who studied electrical
transport through molecular rods functionalized with catechol and proposed that the low
conductance is attributed to molecules trapped in an energy gap.

In contrast, the maximum values of G increase as the coupling increases (Γ) due to
the hybridization of the discrete states of the molecule with the delocalized states of the
contacts. The difference between the two models is an average value of 1 × 10−5 A/V over
all Γ values, being higher for Model I (Figure 8d).

We evaluated the thermal conductance (κ) at several temperatures (Θ) and various
Fermi energy values (εF) to understand its dependence on these two factors (Figure 9a,b). In
accordance with expectations, we observe that κ increases with the increase in temperature,
reaching its maximum at 300 K with 246.2 pW/K and 275.9 pW/K for Models I and
II, respectively, at εF = −1.17 eV. Extracting the maximum values of κ with respect to
the temperature (Figure 9c) and to the coupling potential (Γ) at a constant temperature
(Figure 9d) within the range of Fermi energies (−0.5 eV < εF < 0.5 eV), we clearly defined
its dependence on these two factors. Looking at Figure 9c, Model I presents an evident
proportionality between κ and the temperature, whereas, for Model II, κ is indirectly
proportional to the temperature. This behavior is because the thermal conductance around
the Fermi energy εF = 0 eV for Model II is very small, and as the energy window around
this value increases, κ decreases slightly and is almost constant when the temperature
rises; then, within this energy range, the temperature has a minor influence on Model II’s
thermal conductance. When analyzing the dependence of the maximum conductance with
respect to Γ, we observe similar behavior for both models, increasing with higher potentials,
resembling what we observed in Figure 8d, where, in this case, κMax = 560 pW/K is reached
by Model I (see Figure 9d).
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Figure 9. (a) Thermal conductance (Model I) and (b) thermal conductance (Model II) as a function
of the temperature (Θ) and Fermi energy (εF). (c) Maximum thermal conductance as a function of
temperature (Θ) and (d) maximum thermal conductance as a function of coupling (Γ) around the
Fermi energy (−0.5 eV < εF < 0.5 eV) for Models I (orange line) and II (blue line).

Continuing with our analysis of the thermoelectrical properties for Models I and II, we
determined the Seebeck coefficient (S) as a function of Fermi energy (εF) and temperature
(Θ) (Figure 10a,b). As expected, as the temperature rises, S increases in both models, which is
seen more explicitly in Figure 10c, where we depict the maximum of the Seebeck coefficient as
a function of the temperature with Γ = 0.2 eV in an energy range of−0.5 eV < εF < 0.5 eV. The
increment in the Seebeck coefficient is more significant in Model II, reaching its maximum
at 391.5 µV/K versus 112.8 µV/K for Model I. This result is because as the temperature
increases around the Fermi level εF = 0 eV, the transmission probability becomes more
asymmetric for Model II, as we previously described. Additionally, when we evaluate the
variation in SMax with varying Γ coupling (Figure 10d), we find that it steeply decreases
for Model II, while it slightly decreases for Model I. This result is directly related to the
higher symmetry of the transmission probability around the Fermi energy in stronger
coupling regimes.

Finally, we determined the figure of merit (ZT) as a function of temperature (Θ) and
Fermi energy (Figure 11a,b). Additionally, for a more explicit analysis, we extracted their
maximum values as a function of Θ (Figure 11c) and Γ (Figure 11d). At first sight, we
observe a similar behavior to that obtained for S, as ZT is proportional to it. What is
interesting to note is that the ZTMax values for both models have the highest performance
in the low-coupling regime (Γ = 0.2 eV), 10 and 14.7 for Model I and Model II, respectively.
Conversely, in higher-coupling regimes, ZTMax decreases to a value of about 1.5 for both
models. This result is strongly related to the transmission probability values in strong-
coupling regimes, where it becomes more symmetrical, and electron transport is more
coherent. Therefore, we conclude that the maximum efficiency for the models evaluated,
in terms of energy conversion, occurs for the system at the highest evaluated temperature
(i.e., Θ = 300 K) and in a weak-coupling regime (Γ = 0.2 eV).
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Figure 10. (a) Seebeck coefficient (Model I) and (b) Seebeck coefficient (Model II) as a function of the
temperature (Θ) and Fermi energy (εF). (c) Maximum Seebeck coefficient as a function of temperature
(Θ) and (d) maximum Seebeck coefficient as a function of coupling (Γ) around the Fermi energy
(−0.5 eV < εF < 0.5 eV) for Models I (orange line) and II (blue line).
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Figure 11. (a) Figure of merit (ZT) (Model I) and (b) figure of merit (ZT) (Model II) as a function
of the temperature (Θ) and Fermi energy (εF). (c) Maximum figure of merit (ZT) as a function of
temperature (Θ) and (d) maximum figure of merit (ZT) as a function of coupling (Γ) around the
Fermi energy (−0.5 eV < εF < 0.5 eV) for Models I (orange line) and II (blue line).

5. Conclusions

We have theoretically determined the thermal and electrical properties of catechol
linked to two metal contacts in two models varying in the manner in which they are
anchored, herein defined as Models I and II. In order to mathematically define each config-
uration, we effectively used the Green’s function method in the framework of a real-space
renormalization process to a linear chain of effective atomic sites.

The results show remarkable differences in the conducting behavior of catechol when
comparing it with the single aromatic compound benzene as a reference. After the analysis
of the transmission probability, Model I is found to be the system with higher electrical
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and thermal conductance. As expected for molecular conducting systems, the electrical
conductance is observed to decrease at higher temperatures, whereas it increases when
the coupling potential between catechol and the electrodes rises. These results suggest
a potential application in diode-type devices since its functionality can be tuned with
the nature of this coupling (i.e., Γ). On the other hand, the thermal conductance differs
between the two models: higher conductance is obtained for Model I at higher temperatures,
whereas Model II slightly reduces its thermal conductivity when the temperature increases.

Finally, the variations observed in the Seebeck coefficient with the temperature Θ and
the parameter Γ can be very useful when it comes to applications in thermoelectric devices
or electric power generation, since such variations show, at the same time, the excellent
behavior of the figure of merit (ZT), generating a maximum value at the highest evaluated
temperature (i.e., 300 K) in Model II in a weak-coupling regime, under conditions suitable
for higher energy conversion efficiency for thermoelectric processes in such a device.

We expect that our results will open a new stage for future theoretical and experi-
mental work on improvements in molecular electronics using the conducting properties of
aromatic molecules.

Author Contributions: E.Y.S.-G. and J.A.G.-C.: Conceptualization, methodology, software, formal
analysis, investigation, writing; J.H.O.S. and D.G.: Formal analysis, investigation, supervision,
writing; A.L.M., C.A.D. and M.F.H.M.: Formal analysis. All authors have read and agreed to the
published version of the manuscript.

Funding: J.H.O.S. acknowledges the financial support from Universidad Pedagógica y Tecnológica
de Colombia. The authors are grateful to the following Colombian Agencies: CODI-Universidad de
Antioquia (Estrategia de Sostenibilidad de la Universidad de Antioquia and projects “Propiedades
magneto-ópticas y óptica no lineal en superredes de Grafeno”, “Estudio de propiedades ópticas en
sistemas semiconductores de dimensiones nanoscópicas”, “Propiedades de transporte, espintrónicas
y térmicas en el sistema molecular ZincPorfirina”, and “Complejos excitónicos y propiedades de
transporte en sistemas nanométricos de semiconductores con simetría axial”), and Facultad de
Ciencias Exactas y Naturales-Universidad de Antioquia (A.L.M. and C.A.D. exclusive dedication
projects 2022–2023). E.Y.S.-G. acknowledges the financial support from “Formación de capital humano
de alto nivel Universidad Pedagógica y Tecnológica de Colombia (uptc) nacional, identificado con
código bpin 2019000100041, en el marco de la convocatoria n°1 del plan bienal de minciencias del
programa de becas de excelencia doctoral del bicentenario. No. 01-2020”.

Data Availability Statement: No new data were created nor analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: J.H.O.S. Acknowledges to the Centro de Gestión de Investigación y Extensión
de la Facultad de Ciencias CIEC-UPTC-Tunja.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Decimation Process for Models I and II

The reduced geometric configuration that was used in the decimation process for
both models is presented in the Figure A1. We label the sites vertically as 1 and 2 and
horizontally as a, b, and c to reduce the two-dimensional system to a one-dimensional
molecular system. The system was normalized to a line chain of two effective sites, taking
all the information toward row a, as shown in Figure 2c (Model I) and Figure 3c (Model II).
Later, these effective sites were reduced to a single one, which contains all the information
of the original system.
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Figure A1. Reduced geometric configuration for Models I and II.

The decimation process was carried out through successive applications of the Dyson
equation given by Equation (9), which can be written specifically for a system without
electrodes as

Gij = gi + giVi,i−1Gj,i−1 + giVi,i+1Gj,i+1, (A1)

where gi represents the local Green’s functions for each atomic site, given by gi = 1/(ε− Ei);
therefore, i represents the atomic sites for C and OH, while Vi,i+1 represents the coupling
energy between first-neighbor atoms, which, for this molecular system, are labeled as Ω,
Π, and Λ, respectively.

Thus, in agreement with the atomic sites shown in the reduced geometric configuration
in Figures 2b, 3b and A1, the local Green’s functions for each atomic site of C and OH are

gC =
1

(ε− EC)
, (A2)

and

gOH =
1

(ε− EOH)
, (A3)

when the local Green’s functions depend of the atomic site energies EC and EOH and the
electron energy ε when it enters into the molecular system.

The first decimation process was carried out using Equation (A1) to reduce the atomic
sites C and OH to a single effective site, labeled as h; thus, we obtain:

G11 = gC + gCΛG12 , (A4)

and

G12 = gOHΛG11 , (A5)

where Λ is the coupling energy between the atomic sites C and OH.
Substituting Equation (A5) into Equation (A4), we have

G11 =
gC

(1− gCgOHΛ2)
= gh , (A6)
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where gh represents the effective Green’s functions when the information from the atomic
site OH is carried to the atomic site C. The reduced geometric configurations of these atomic
sites for the two models in this study are shown in the Figure A1.

Similarly, to reduce the geometric configuration shown in Figure A1 to a line chain of
two effective dots, carrying all the information toward row a, we employ Equation (A1) for
Model I, considering the following equations to bring all the information of the system to
dot Ga

11:

Ga
11 = gc + gcΠGb

11 + gcΩGc
11

Gb
11 = ghΠGa

11 + ghΩGb
12

Gc
11 = gcΩGa

11 + gcΠGc
12

Gb
12 = ghΠGa

12 + ghΩGb
11

Gc
12 = gcΩGa

12 + gcΠGc
11

(A7)

Solving the system of linearly independent equations given in Equation (A7) leads to
the effective Green’s function Ga

11 = g̃1I , given by

g̃1I =
gc(−1 + g2

hΩ2)(−1 + g2
c Π2)

−g2
hΩ2 + α + g3

hghΠ4 + g2
c (−1 + g2

hΩ2)(Ω2 + Π2)
, (A8)

where α = 1− gcghΠ2, and Ṽ12 is

Ṽ12 =
ΠΩ[g2

hΠ + g2
c (Ω− g2

hΩ3 − ghΠ3)]

(−1 + g2
hΩ2)(−1 + g2

c Π2)
. (A9)

In a similar way, we find g̃2I and Ṽ21, bringing all the system information to dot Ga
22.

The system of linearly independent equations for this case is

Ga
22 = gc + gcΠGb

22 + gcΩGc
22

Gb
22 = ghΠGa

22 + ghΩGb
21

Gc
22 = gcΩGa

22 + gcΠGc
21

Gb
21 = ghΠGa

21 + ghΩGb
22

Gc
21 = gcΩGa

21 + gcΠGc
22

(A10)

In this case, the effective Green’s functions generated from the combination of equa-
tions in (A10) are symmetric (same), where g̃1I = g̃2I = g̃ and also Ṽ12 = Ṽ21.

The decimation process for Model II was carried out in the same way as Model I.
Therefore, g̃1 and Ṽ12 were determined at an effective dot Ga

11 through

Ga
11 = gc + gcΩGb

11 + gcΠGc
11

Gb
11 = gcΠGa

11 + gcΩGb
12

Gc
11 = gcΩGa

11 + gcΠGc
12

Gb
12 = ghΩGa

12 + ghΩGb
11

Gc
12 = gcΩGa

12 + gcΠGc
11

(A11)

where the effective Green’s function Ga
11 = g1 is given by

g̃1 =
gc(−1 + gcghΠ2)(−1 + g2

c Ω2)

α + g4
c Ω4 + g3

c ghΠ2(Π2 + Ω2)− g2
c (Π

2 + 2Ω2)
, (A12)

and the effective coupling Ṽ12 is

Ṽ12 =
gcΠΩ(gcΠ + ghΩ− g2

c gh(Π
3 + Ω3))

(−1 + gcghΠ2)(−1 + g2
c Ω2)

. (A13)
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Then, in the same way, g̃2 and Ṽ12 are carried at an effective dot Ga
22:

Ga
22 = gh + ghΩGb

22 + ghΠGc
22

Gb
22 = ghΩGa

22 + ghΠGb
21

Gc
22 = gcΠGa

22 + gcΩGc
21

Gb
21 = gcΩGa

21 + gcΠGb
22

Gc
21 = gcΠGa

21 + gcΩGc
22

(A14)

Developing the system of equations given by Equation (A14), g̃2 = Ga
22 is obtained as

g̃2 =
gh(−1 + gcghΠ2)(−1 + g2

c Ω2)

1− 2gcghΠ2 − g2
hΩ2 + g3

c ghΠ2Ω2 + g2
c (−Ω2 + g2

hγ)
, (A15)

where γ = (Π4 + Ω4).
Now, applying Equation (A1) in the effective line chain for the first and second effective

dots of both models, we obtain:

Ga
11 = g̃ + g̃Ṽ12Ga

12 , (A16)

and
Ga

22 = g̃ + g̃Ṽ21Ga
12 . (A17)

Substituting Equations (A16) and (A17), we have

Ga
11 =

g̃
(1− g̃2Ṽ12Ṽ21)

, (A18)

and

Ga
12 =

g̃2Ṽ12

(1− g̃2Ṽ12Ṽ21)
. (A19)

In a similar way, for Model II, we obtain

Ga
11 = g̃1 + g̃1Ṽ12Ga

12 , (A20)

and
Ga

22 = g̃2 + g̃2Ṽ21Ga
12 . (A21)

Substituting Equations (A20) and (A21), we have

Ga
11 =

g̃1

(1− g̃1 g̃2Ṽ12Ṽ21)
, (A22)

and

Ga
12 =

g̃1 g̃2Ṽ12

(1− g̃1 g̃2Ṽ12Ṽ21)
. (A23)

Appendix A.2. Eigenvalues

The system of eigenvalues can be calculated by means of the Hamiltonian of the
contact-independent molecular system. Considering an interaction only with the first
neighbors, this Hamiltonian can be written cleanly as:

Hcat = ∑
i

ti,i+1|i〉〈i + 1|+ ti+1,i|i + 1〉〈i|+ ∑
i

Ei|i〉〈i| , (A24)

As previously mentioned, each tj represents the coupling between the first neighboring
atoms in the system. For this model, we have taken Ω as a simple bond (σ-bond) between
C-C atoms, Π as a double bond (π-bond) between C=C atoms, and Λ as a σ-bond in C-OH.
Also, Ei is the energy of the atomic sites, denoted in this case as EC and EOH for the C and
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OH atomic sites, respectively. In Equation (A24), each function |i〉 can take eight values,
corresponding to the atomic positions of the six carbon atoms and the two OH systems, as
shown in Figure 1. At this point, it is possible to easily calculate each of the matrix elements
of the Hamiltonian given in Equation (A24) and thus obtain its matrix representation as an
8 × 8 matrix,

Hcat =



Ec Ω 0 0 0 0 0 Π
Ω Ec 0 Π 0 0 0 0
0 0 Eoh Λ 0 0 0 0
0 Π Λ Ec Ω 0 0 0
0 0 0 Ω Ec Λ Π 0
0 0 0 0 Λ Eoh 0 0
0 0 0 0 Π 0 Ec 0
Π 0 0 0 0 0 Ω Ec


(A25)

This matrix can be diagonalized by any elementary method of linear algebra to obtain
the set of eigenvalues corresponding to the catechol molecular system. As already men-
tioned, in the development of this work, the values obtained through this procedure were
2.26 eV, −2.15 eV, 1.37 eV, 1.33 eV, −1.24 eV, −1.13 eV, 0.57 eV, and 0.0 eV.
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