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Abstract: The aim of this paper is to present a model for the rheological behavior of simple liquids
as a function of the amplitude of the imposed shear stress or strain. The elastic mode theory is
first generalized to take into account the fact that, during a flow experiment, mechanical energy is
injected in a system initially at thermodynamic equilibrium. This generalized theory can be seen as a
particular aspect of the general problem of perturbation by the measurement, associated with that of
the coupling between fluctuation and dissipation. This generalization leads to a “finitary” character
of the model. It is then combined with the inertial mode theory. The formalism thus obtained allows
us to model the rheological behavior of liquids over a wide range of velocity gradients, including the
intermediate narrow range corresponding to the Newtonian regime. As experimental tests, viscosity
measurements with two kinds of moving rotor rheometers were performed. Only data obtained with
liquid water at room temperature are presented and quantitatively analyzed here. It is also shown
that liquid n-octane exhibits the same qualitative behaviors as those of liquid water. In the appendices,
connection of this theory with quantum mechanics and turbulence phenomena are discussed, and
the notion of viscous mass is introduced.

Keywords: shear-thinning; shear-thickening; viscosity; liquid; dynamic phase transition; water;
steam; action; correlation length; perturbation by measurement; finitary model; transition criterion to
turbulence; uncertainty principle; viscous mass

1. Introduction

The knowledge of rheological properties of fluids is fundamental for understanding
their physical structure and for the development of a large number of technical and indus-
trial applications. Among the recent applications where these properties are useful for their
optimization, we can mention, for example, the development of microelectromechanical
systems (MEMS) using liquids (e.g., see ref. [1]) and especially those based on adiabatic
logic (e.g., see ref. [2,3]).

The rheological properties of fluid media are generally interpreted through the concept
of dynamic viscosity. The viscosity is defined by Newton’s postulate such that the shear
stress σ is proportional to the velocity gradient∇v f , or shear rate, where the proportionality
factor is, by definition, the viscosity η, i.e., σ = η ∇v f . A particular class of behavior is
the so-called Newtonian fluid where the viscosity is independent of the velocity gradient.
However, experiments show that for all fluid media, the viscosity is a function of the velocity
gradient except for a more or less extended range called the Newtonian plateau. For the
vast majority of fluid media, at low velocity gradients (i.e., lower than those corresponding
to the Newtonian plateau), the viscosity decreases when the velocity gradient increases
(e.g., see chap. 2 of ref. [4]). This behavior is called “shear-thinning”. On the other hand,
when the values become higher than those defining the Newtonian plateau, the viscosity
generally increases with the increase of the velocity gradient (e.g., see chap. 2 of ref. [4]).
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This behavior is called “shear-thickening” (or “dilatancy”). The interest in understanding
these different rheological behaviors was written by Heyes (Ref. [5]) in the following terms:

“we believe that all liquids exhibit similar non-Newtonian behaviour [ . . . ] and
therefore it has a fundamental physical and theoretical significance”.

These deviations from the Newtonian behavior for simple liquids such as liquid argon,
nitrogen, chlorine and water are generally interpreted from a microscopic point of view
in terms of molecular rearrangements and structuring of the medium on large scales in
front of the molecular scale, but the mechanisms in terms of molecular dynamics are poorly
understood and unsatisfactory (e.g., Refs. [5,6]).

In this paper, we will analyze these different viscosity behaviors as a function of the
velocity gradient using the elastic mode theory developed in ref. [7] in association with the
inertial mode theory developed in ref. [8]. However, to do so, the elastic mode theory of
ref. [7] must be generalized when mechanical energy introduced in the system to produce
the flow is no longer negligible in front of the shear elastic energy associated with the
medium at thermodynamic equilibrium.

We then apply this modeling to analyze viscosity data of liquid water, for which all
the parameters of the theory have been determined in Refs. [7,8]. It will be shown that this
generalized theory is numerically equivalent to the restricted theory developed in ref. [7]
for analyzing the usual viscometry experiments corresponding to the Newtonian plateau.
In other words, in the vast majority of usual viscosity measurements on simple liquids, it
can be said that the influence of the perturbation by the measurement can be neglected.
We then analyze the data we obtained using two kinds of experiments with moving
rotor rheometers where the velocity gradient can be varied in a broad range, including
the Newtonian plateau. An important advantage of these devices is that the velocity
gradients can be easily determined in the whole volume, contrarily to the usual viscometry
devices. The experiments with liquid water at atmospheric pressure and room temperature
successively show shear-thinning, Newtonian plateau and then shear-thickening behavior.
We then show that the generalized theory allows us to account quantitatively for these
various behaviors in a consistent way (e.g., see Figure 14d). The interpretation that emerges
is that the shear-thinning behavior is the consequence of the solid–liquid dynamic phase
transition of the liquid associated with a variation of the correlation length, while the shear-
thickening behavior is the consequence of the increase of the influence of the mechanical
energy injected in the system, which leads to the reduction of the amplitude of the thermal
fluctuations. Classical mechanics is recovered for very large gradients since, in this case,
the effective amplitude of the thermal fluctuations tends to zero.

In the appendices, we explore three consequences of the theory. In the first one, a
theoretical expression whose form is reminiscent of the uncertainty principle of quantum
mechanics is discussed. In the second one, a general criterion for the transition to turbulence
is given using a number whose value is equal to unity at the transition, unlike the Reynolds
number. In the third one, we introduce and discuss the notion of viscous mass, which is a
fundamental quantity of the theory.

2. Influence of External Actions in the Elastic Mode Theory

When a system is at thermodynamic equilibrium, the excess elastic energy is due to
random displacements of objects from their equilibrium position. Now, when a system
is put out of equilibrium by an external action, the energy introduced into the system by
this action must be added to the excess elastic energy. Therefore, in this section, we will
first describe in a general way how this external energy must be taken into account in the
elastic energy functional and then we will particularize the modeling in the case where
the external energy is associated with translational macroscopic motions corresponding to
fluid flows.
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2.1. Generalized Expression of the Elastic Energy Functional

Elastic mode theory has been described in detail in ref. [7], so we refer the reader to
this article for more details. In this section, only those elements that are modified by the
introduction of external actions will be described.

Let
→
a
(→

r
)

be a random variable of components
(
ax, ay, az

)
, which describes the fluc-

tuation on a lattice of a basic unit (i.e., a set of nB molecules or atoms) property due to the
non-zero temperature of the system at equilibrium. The random variable

→
a can optionally

represent the instantaneous position
→
u or the orientation

→
Ω of the local director of a basic

unit. The starting point of this model is the assumption that
→
a
(→

r
)

can be developed into a
Fourier series (whose coefficients are referred to as elastic modes) on the lattice. Therefore,
for component ax of

→
a , one has:

ax

(→
r
)
= ∑

→
q

ax

(→
q
)

ei
→
q ·→r = ∑

→
q

axqei
→
q ·→r (1)

where the amplitudes axq are new statistically independent random variables. Each mode

is characterized by its wave-vector
→
q and its polarization.

As in ref. [7], the isotropy of reciprocal space is always considered in such a way that
the wave-vector moduli q are limited at short length scales by a cut-off wave-vector qc, and
towards long length scales by a wave-vector qc/N, where N/qc represents the fluctuative
distance (i.e., the coherence length) compatible with the sample size.

From the energetic point of view, the fluctuation of
→
a around its equilibrium position

is to increase the energy of the sample compared to the perfectly ordered state at zero
Kelvin. As in ref. [7], this excess energy due to thermal fluctuations can be described by an
elastic energy functional Feq such that:

Feq =
1
2

∫
Ka

[→
∇

α→
a
] 2

dV (2)

where
→
∇

α

stands for the fractional gradient operator (that is the derivative of order α with
respect to

→
r ), and where the coefficient Ka is an elastic constant.

Now, when an external action puts the system out of equilibrium, it is postulated that
the functional elastic energy is written as:

F = Feq + Eext (3)

where Feq is given by Equation (2) and Eext =
1
2

∫
fEdV, fE being the energy per unit volume,

which describes the coupling between random microscopic motions and deterministic
macroscopic motions.

In all that follows, it will be assumed that the external energy term can always be
written in the following form:

Eext =
1
2

f
a
E

∫
→
a

2
dV (4)

where f
a
E represents an average value associated with the external energy per unit volume

but whose dimensionality depends on the nature of
→
a .

In addition, the fractional exponent α will be considered in the following to be such
that α = 1 + v/2. By developing the components of

→
a in a spatial Fourier series and by

using the orthogonality of complex exponential functions, it is deduced that the functional
F is written in the following quadratic form:

F =
1
2

V ∑
q

(
Kaq2

(
q
qc

)v
+ f

a
E

)∣∣∣a2
q

∣∣∣ (5)
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where
∣∣∣a2

q

∣∣∣ = ∣∣∣a2
kq

∣∣∣, ∀k = x, y, z corresponding to an isotropic property. By combining
Equation (5) with the assumption of the equipartition of thermal energy, namely that
the average energy per mode is kBT/2, where kB is the Boltzmann constant and T is the
absolute temperature, and integrating over all q modes, the following result is obtained for
the expression of the fluctuation’s full mean square <

∣∣a2
∣∣ > due to transverse modes only:

<
∣∣∣a2
∣∣∣ >=

kBTqc

π2Ka
HN
(
v, λ
)

(6)

with

HN
(
v, λ
)
=

1∫
1/N

x2dx
x2+v + λ

(7)

and where λ = f
a
E/
(
Ka q2

c
)

is a non-dimensional quantity. Equation (7) shows that as
soon as the parameter λ is non-zero (i.e., as soon as an action disturbs the system), the
denominator of the integrand never becomes zero, and, therefore, the integral converges
systematically, whatever the value of N (finite or infinite). Since, in real experiments, the
studied system is, strictly speaking, always out of equilibrium because it is necessary to
exchange energy with it to obtain any information, it follows that the present modeling
implies that “infinities” do not exist in experimental physics. In this sense, we can say that
this model is “finitary”.

When λ = 0, the function HN(v) introduced in ref. [7] is recovered such that:

HN
(
v, λ = 0

)
= HN(v) =

Nv−1 − 1
v− 1

(8)

Now, it is observed that any value of λ > 0 implies that HN
(
v, λ
)

will have a smaller
value than HN(v) for the same value of v and N. The immediate consequence is that any
external action leads to a reduction in the fluctuations of <

∣∣a2
∣∣ > compared to what they

would be in the absence of external action. In the extreme limit where λ→ ∞ , it is deduced
by making a series development of the integrand in Equation (7), such that:

HN
(
v > −2, λ→ ∞

)
≈ 1

3λ

(
1− 1

N3

)
→
∀N

0 (9)

The approximated expression in Equation (9) shows when λ >> 1 and N tends
towards infinity, HN

(
v, λ
)

tends towards a finite value
(
3λ
)−1

, whereas, previously, with
Equation (8), the limit was such that lim

N→∞
HN(v > 1)→ ∞ .

It is instructive to study the behavior of the function HN
(
v, λ
)

in intermediate cases
where λ is neither null nor infinitely large. By construction, λ is independent of q and
therefore an analytical expression of Equation (7) can be deduced, such as:

HN
(
v > −2, λ

)
=

Nv−1
2F1

(
1, v−1

v+2 ; 2v+1
v+2 ;−λN2+v

)
− 2F1

(
1, v−1

v+2 ; 2v+1
v+2 ;−λ

)
v− 1

(10)

where 2F1(a, b; c; z) =
∞
∑

k=0

(a)k(b)k
(c)k

zk

k! is the hypergeometric function such that (•)k represents

the Pochhammer symbol. Despite the appearance of the hypergeometric functions, a
great similarity between Equations (8) and (10) can be noticed. It is easy to check that the
hypergeometric functions involved in Equation (10) are such that they tend towards the
value of 1 for all v > −2 when λ tends towards 0; in other words, Equation (8) is recovered
at the limit λ = 0.
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Given that N is generally a large number in front of 1, it is deduced from Equation (10)
that HN

(
v, λ
)

will be little different from HN(v) (i.e., HN
(
v, λ
) ∼= HN(v)) when:

λ <<
1

N2+v (11)

In the particular case where λ is a parameter independent of v, Figure 1 shows the
evolution of Equations (8) and (10) for a fixed value of v. Different values of v do not
qualitatively change, in this case, the shape of the surfaces. It can be observed that the
functions HN

(
v, λ
)

and HN(v) are almost indistinguishable regardless of the value of λ
as soon as N is less than 10. Now, when N increases, it follows that the approximation
HN
(
v, λ
) ∼= HN(v) is obtained for lower and lower values of λ as indicated by Equation

(11). On the other hand, for λ >> 1, HN
(
v, λ
)

tends towards zero whatever the value of N
is according to Equation (9).
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λ
)

threshold = N−(2+v) as given by Equation (11).

In the particular case of Figure 1, Equation (9) shows that, for λ sufficiently large,
HN
(
v, λ
)

becomes independent of N and v, which means that the thermal phase transition
aspect is completely deleted by the “intensity” of the external action. This can also be
understood as follows: the effect of the external action λ can be assigned to the quantity N
in such a way that from Equations (8) and (10) it is possible to define an effective N that can
be written as:

Neff =

(
1 + Nv−1

2F1

(
1,

v− 1
v + 2

;
2v + 1
v + 2

;−λN2+v
)
− 2F1

(
1,

v− 1
v + 2

;
2v + 1
v + 2

;−λ

)) 1
v−1

(12)

Figure 2 shows that when λ is large enough, whatever the value of N, one finds a Neff
that tends towards the value 1, and it is then clear that the very notion of phase transition
for a sample formed of independent particles makes no sense. Moreover, Equation (8)
implies that HNeff(v) tends to zero, so <

∣∣a2
∣∣ > tends also to zero, when Neff tends to 1. In

other words, when the particles have been made independent of each other by a sufficiently
intense external action, the size of the thermal cloud is zero and the particle behaves similar
to a classical object of the material point mechanics.
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The previous analytical relationships are valid as long as v > −2. In the case where v is
smaller than −2, then the calculation of HN

(
v, λ
)

defined by Equation (7) must be done in
numerical form.

2.2. Application to Translational Macroscopic Motion

In this section, the developments of Section 2.1 are applied to the case of fluid flows,
i.e., when the external energy is associated with translational macroscopic motions. Thus, in
the above equations, the vector

→
a must be identified with the displacement vector

→
u and the

constant Ka with the shear elastic constant K defined in ref. [7]. The fluid phases correspond

to the disordered phase, where the exponent v is given by the relation v− 1 =
(

1− Tt
T

) 1
4 ,

Tt being a temperature associated with the glass transition that occurs when Tt = T. In this
case, it is assumed that λ is written in the following form:

λ = λ1+v; v ≥ 1 (13)

where λ is a new parameter independent of v. Equation (13) implies that the importance of
the external action depends on the distance at which the phase transition is located: for
λ < 1, the reduction of fluctuations on <

∣∣u2
∣∣ > is a decreasing value of v, and, for λ >> 1,

<
∣∣u2
∣∣ > becomes practically independent of v. Figure 3 shows that this allows greater

latitude on the values of parameter λ for which one has HN(v, λ) ≈ HN(v) in accordance
with Equation (11) now being written as:

λ <<
1

N
2+v
1+v

(14)

Equation (13) and the expression of the parameter λ will be justified in Section 3 when
analyzing the experimental data. Indeed, the parameter λ is related to the external action
(i.e., it is zero for a system at equilibrium). However, the macroscopic motions associated
with the flow are characterized by a linear velocity gradient field related to the rate of
viscous dissipation. From Equation (4), it is expected that λ is a function of the average
velocity gradient

(
∇v f

)
av

, where v f represents the velocity of a fluid particle as defined in
ref. [8]. The parameter λ, being a non-dimensional number just as the Reynolds number
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Re, it is then interesting as an example to express Re in term of the parameters of the model
with the approximation

(
v f

)
av
∼=
(
∇v f

)
av

d where d is the dissipative distance. Moreover,
in liquid phase, according to ref. [7], the following approximation of the fluid dynamic
viscosity η ≈ ηl can be made. Let us remember that, within the limit where Equation (14) is
satisfied, we have ηl =

K
HN(v)τ with τ = d/c0, where c0 =

√
K/ρ is the characteristic shear

elastic celerity in the medium. Then, it becomes:

Re =
ρ
(

v f

)
av

L

η
∼=

L
d

(
∇v f

)
av

τ HN(v) (15)

where L represents the hydraulic diameter corresponding to the particular experiment
considered and τ HN(v) is the time scale of viscous diffusion when the Knudsen term
of the viscosity can be neglected. We recall that the more general expression is given by
τν = d2

η/ρ (Ref. [8]), which represents the ratio between the kinetic energy and the average
power dissipated, per unit volume.
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2+v
1+v as given by Equation (14).

For example, if we consider the flow in a tube, then L corresponds to the tube diameter
D and, if the diameter is sufficiently small, then the dissipative distance is such that
d = D/2. From Equation (15), one deduces that:

Re ∼= 2
(
∇v f

)
av

τ HN(v) (16)

Equation (16) shows that the Reynolds number is scaled by the product Λ =
(
∇v f

)
av

τ.

The quantity
(
∇v f

)
av

represents an average rate of injection of mechanical energy by the
external source, while τ represents the average time required by the system to evacuate this
energy to the outside. This product Λ, which involves the macroscopic distance d = c0 τ, is
therefore associated with a global property of the flowing system.
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Given that, by construction, λ is zero for a system at equilibrium, it is logical to assume
that λ is an increasing function of the average velocity gradient

(
∇v f

)
av

in the flowing
system. It is postulated that λ is the local equivalent of the global parameter Λ. Therefore,
the relevant characteristic time is no longer the macroscopic time τ, but the microscopic

time τmol = lpm/c0, where lpm =
(

M
Naρ

)1/3
represents the average distance between two

molecules of the fluid such that ρ is the mass per unit volume, M is the molar mass and Na
is the Avogadro number. Therefore, λ is defined such that:

λ =
(
∇v f

)
av

τmol =

(
∇v f

)
av

lpm

c0
(17)

Theoretical justification of Equation (17) requires the introduction of new concepts that
are beyond the scope of this article. This justification will be given in a forthcoming paper.

Now, this definition of λ shows that, when
(
∇v f

)
av

tends to infinity, λ tends to infinity,

and, therefore, HN(v, λ) and, consequently, <
∣∣u2
∣∣ > tend to zero. The consequence of this

result is the following: with zero or very weak velocity gradient, the size of the thermal
cloud pictured by <

∣∣u2
∣∣ > may, in many instances, depending on the thermodynamic

parameters T and ρ, be much greater than the average distance lpm between particles. This
means that, in fact, one thermal cloud contains many particles. Since the particles cannot
be localized in their thermal cloud, this means that a significant number of particles are
indistinguishable in a large volume whose size may, in some cases, be as large as the
macroscopic distance d. This volume is related to the function HN(v, λ = 0), and thus
to Neff ≈ N >> 1. In this sense, one can say that the system is in a coherent state. On
the contrary, when the velocity gradient is high enough, <

∣∣u2
∣∣ >1/2 becomes smaller

than lpm, thus, the coherent volume is very small, it contains only one particle, and we
have Neff ~ 1. Therefore, by increasing the velocity gradient, the fluid system goes from
a “coherent” state where all fluid particles are indistinguishable in a large volume, to an
“incoherent” state where all fluid particles are independent from each other. This result
suggests to identify this dynamical transition as some kind of Bose–Einstein condensation,
where it is the velocity gradient, thus, the action temperature TA (see ref. [8]) is the relevant
parameter, and not the thermodynamic temperature T as modeled in the framework of
standard statistical mechanics. This transition will be illustrated in the case of water vapor
in Section 3.2. This feature will also be discussed in more detail in a forthcoming paper.
Another way to understand this result regarding the reduction of thermal fluctuations
<
∣∣u2
∣∣ > caused by velocity gradients is presented in Appendix A in the form of an

expression that is reminiscent of the uncertainty principle of Quantum Mechanics.
At this point, it is important to stress that λ is an external parameter determined by the

experimental conditions, mainly the imposed average velocity gradient and the intrinsic
parameters of the medium via the celerity c0 and the intermolecular distance lpm. Let us
remember that c0 characterizes the velocity at which the shear information propagates in
the medium. Strictly speaking, in a real experiment, the relation c0 =

√
K/ρ is only valid

in an ideal case where the no-slip condition is rigorously satisfied on all surfaces in contact
with the liquid. In a less perfect case (e.g., presence of bubbles, more or less hydrophobic
surface), the information will take longer to cross the system, so it is as if c0 had to be
replaced by an effective celerity ce f f =

√
Ke f f /ρ where Keff represents an effective shear

elastic constant such that Ke f f = CK K with CK < 1. If the non-perfection surface can be
pictured as region where the fluid is freely slipping, the coefficient CK is a parameter that
can be interpreted as the ratio of the detached surface to the total surface.

This important practical point being specified, it appears that Equation (17) is based
on the ability to determine an average velocity gradient throughout the sample. However,
in a usual viscometer experiment, the velocity gradient is generally not uniform. In a tube
viscometer, it is generally strong near the walls, especially as the flow rate in the tube is
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high, whereas it is much lower in the rest of the sample. If the gradient depends on the
point

→
r , then the same must be true for the parameter λ. However, since it is the function

HN that quantifies the disorder which governs all properties, and since the disorders are
additive, it is possible to define a new mean value 〈λ〉 of λ by an average using the function
HN such that: HN(v, 〈λ〉) = 1

V
∫
V

HN

(
v, λ
(→

r
))

dV. Since HN(v, λ) is large for small λ, the

value of 〈λ〉 is determined by low gradient values rather than high ones. Therefore, it is the
quietest regions of the sample that control the reduction of fluctuations in <

∣∣u2
∣∣ >; the

larger the corresponding volume, the greater the contribution of these quietest regions.
The combination of Equations (15) and (17) shows that the parameter λ is related to

the Reynolds number Re in the following way:

λ ∼= Re
lpm

L
1

HN(v)
(18)

In the case of the usual viscometry experiments, the term that multiplies the Reynolds
number in the right member is very small (i.e., of the order of 10−11), so the λ values
will generally be lower than 10−8. Figure 3 shows that, for these numerical values of λ,
the approximation HN(v, λ) ∼= HN(v) is perfectly justified. In other words, in the usual
viscosity measurement experiments, the generalized theory can be reduced to the elastic
mode theory presented in ref. [7].

Finally, λ is a function of T and ρ through the state equations of K(T, ρ) and Tt(T, ρ). These
state equations have been determined for water in ref. [7] and for potassium and thallium
in ref. [9]. We will explore in the following section the consequences of the present modeling
for various experiments done to determine the dynamic viscosity of water. We recall that the
calculation program corresponding to ref. [7] can be freely downloaded from ref. [10].

3. Application to Different Experiments of Water Viscosity Measurements

In ref. [7], it was argued without a supporting calculation that external energy could
be neglected in the whole analysis, i.e., that λ is low enough such that it can always be
assumed that HN(v, λ) ∼= HN(v) in the elastic mode theory. It is therefore important to
verify here this assertion by calculation.

The pressure–density–temperature relationships used for water are taken from ref. [11].

3.1. Exploration of the Liquid-Like Phase

In the liquid and supercritical phases of water, it was shown in ref. [7] that most of the
viscosity value is determined by the “liquid” part ηl , where the function HN(v) appears in
the denominator of the expression. In these states, it is therefore important to study the
changes introduced by the parameter λ. In accordance with what was shown previously
with Figure 3, it is expected that there is a

(
∇v f

)
av

value that marks the change in the

behavior of HN(v, λ) with respect to HN(v). Figure 4 actually shows for the particular
isotherm T = 295 K that the “separation curve” between Equations (8) and (10) is around a
value of

(
∇v f

)
av
≈ 1000 s−1. For

(
∇v f

)
av

values less than a few 100 s−1, the difference

between HN(v, λ) and HN(v) is decades smaller than the smallest error bars associated
with water viscosity measurements (i.e., there is no difference for calculations to consider
HN(v) instead of HN(v, λ)).

It can be shown that the
(
∇v f

)
av

value of this “separation curve” is almost inde-
pendent of the temperature value of the isotherm, and, therefore, the chosen isotherm for
Figure 4 can be considered as representative.

To conclude on the suitability of replacing HN(v, λ) with HN(v) for analyzing viscosity
measurements, it is necessary to study some of the most constraining experiments.
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Figure 4. Semi-logarithmic plot of the variations of Equations (8) and (10) along the isotherm 295 K
when λ is equal to zero or is given by Equations (13) and (17) with water equations of state. The
variation of the density scale corresponds to liquid water from its density on the saturation vapor
pressure curve ρσ,Liq(295 K) ∼= 0.99775 g/cm3 to a high density of 1.3 g/cm3. The dissipative
distance is d = 100 µm.

The experiment of Korosi et al. (Ref. [12]) is considered to be one of the most accurate
measurements of water viscosity at atmospheric pressure between 20 ◦C and 60 ◦C, i.e., the
corresponding uncertainty is ±0.05%. The device used for this measurement is an open-
type Cannon master viscometer. In this experiment, the radius of the capillary tube is
R = 0.0165 cm for a length L = 45.6 cm, but the volume of liquid in this tube is less than 1%
of the total volume of liquid. Using the Poiseuille formula, the average velocity gradient on

the wall of the capillary tube is

∣∣∣∣∣∣∣∣
(
∇v f

)
tube

wall

∣∣∣∣∣∣∣∣ =
R∆P
2η L , where ∆P is the pressure difference

between the top and bottom of the tube. As the viscometer works under the action of

gravity, it follows that ∆P = ρgL, hence

∣∣∣∣∣∣∣∣
(
∇v f

)
tube

wall

∣∣∣∣∣∣∣∣ =
ρgR
2η . In the temperature range

studied by Korosi et al., it is found that

∣∣∣∣∣∣∣∣
(
∇v f

)
tube

wall

∣∣∣∣∣∣∣∣ varies between 806 s−1 and 1706 s−1.

According to Figure 4, it can be seen that these values are distributed around the “separation
curve” of Equations (8) and (10). However, these values represent a maximum value of
the gradient in the sample. Now, it was mentioned earlier that

(
∇v f

)
av

is essentially
determined by the quietest flow regions, i.e., here, by what happens in the water tank,
which has a radius about 100 times larger than the capillary tube. It is deduced that the
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required average
(
∇v f

)
av

is such that
(
∇v f

)
av
≈

∣∣∣∣∣∣∣∣
(
∇v f

)
tube

wall

∣∣∣∣∣∣∣∣/1003, i.e., the value to

be considered for this experiment is of the order 10−3 s−1 (or a value of λ ≈ 1.8 × 10−16).
Figure 4 shows that, for such a value, there is no calculable difference between HN(v)
and HN(v, λ).

As a second example, we will consider Hallett’s experiment (Ref. [13]), which de-
termines the viscosity of water always at atmospheric pressure but in the supercooled
phase between −24 ◦C and 0 ◦C. Hallett’s experiment corresponds, as before, to observing
the flow in a capillary tube with a radius of R = 0.01 cm and length L = 15 cm. In this
experiment, the pressure difference in the capillary tube is set at ∆P = 1167.13 Pa. In this

temperature range,

∣∣∣∣∣∣∣∣
(
∇v f

)
tube

wall

∣∣∣∣∣∣∣∣ varies between 70 s−1 and 217 s−1. However, as in the

experiment of Korosi et al., one must consider what happens in the water tank, which has
a radius 200 times larger than that of the capillary tube. It is deduced that the average

(
∇v f

)
av

is such that
(
∇v f

)
av
≈

∣∣∣∣∣∣∣∣
(
∇v f

)
tube

wall

∣∣∣∣∣∣∣∣/2003, of the order 10−5 s−1 (or a value

of λ ≈ 1.8 × 10−18). Here, again, it can be considered that there is no difference between
HN(v) and HN(v, λ).

We will analyze a third example by considering the experiment of Först et al. (Ref. [14])
called “optical method”, which consists of observing the fall of a spherical glass ball inside
a tube. The ball has a radius RS = 25.4 µm and a density ρS = 2.42 g/cm3. The analysis
of these data in ref. [7] showed that the dissipative distance d = RS should be considered
here. It is assumed that a maximum value of the velocity gradient on the ball surface can

be determined from the following formula:

∣∣∣∣∣∣∣∣
(
∇v f

)
ball

surface

∣∣∣∣∣∣∣∣ =
2RS(ρS−ρ)g

9η . In the studied

pressure range,

∣∣∣∣∣∣∣∣
(
∇v f

)
ball

surface

∣∣∣∣∣∣∣∣ varies between 51 s−1 and 77 s−1 along the isotherm at

293.15 K. If we simply assimilate these values to
(
∇v f

)
av

, it is found that the relative

deviation between HN(v) and HN(v, λ) varies from 5 × 10−6% to 3.5 × 10−7%, which is
totally negligible in the calculation of viscosity, given that the uncertainty of the data is±5%.
Now, the diameter of the tube is 27.6 times larger than the diameter of the ball, therefore, if
we take it as the diameter of an effective water tank then we obtain

(
∇v f

)
av
≈ 3× 10−3 s−1

(or a value of λ ≈ 5× 10−16). This leads to the same conclusion as in the previous examples.
We will consider a fourth and last example with the analysis of the experiment of

Mariens et al. (Ref. [15]) using the oscillating disc method. By considering the solution of the
Navier–Stokes equation for region II as defined in ref. [15], one can directly deduce an order

of magnitude of the mean velocity gradient such that:
(
∇v f

)
av
≈ 2π ∆

T α(0)
√

ρ
η

2π ∆
T Rd,

where T is the period of the oscillation in the fluid, 2π∆ is the logarithmic decrement of
the amplitude in the fluid, α(0) is the angular deflection of the disc at instant t = 0 and
Rd is the disc radius. From the data of their Table III (Ref. [15]) for water at atmospheric
pressure, it can be deduced for the studied temperature range that

(
∇v f

)
av

varies between

4.3 × 10−3 s−1 and 2.1 × 10−2 s−1. It is then deduced that the relative deviation between
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HN(v) and HN(v, λ) varies from 5 × 10−14% to 4 × 10−12%, which is totally negligible in
the calculation of viscosity.

Thus, through these examples, it appears that, for the analysis of the usual viscosity ex-
periments of liquid water, one can well consider that the perturbation by the measurement
is negligible, thus, replacing Equation (10) with Equation (8) in the elastic mode theory is
an allowed simplification.

3.2. The Dilute-Gas Limit

The dilute-gas limit is generally associated with perfect gas behavior, so it is important
to study the behavior of the present modeling within this limit. Expressions for the various
model parameters in the dilute-gas limit are given in ref. [7], sections III.B and IV.B.4. Here,
we are interested in the expression for the size of the thermal cloud because, in this limit,
<
∣∣u2
∣∣ >1/2 can become comparable to the dissipative distance d in a real experiment.

The expression for <
∣∣u2
∣∣ > given by Equation (6) is written as the product of two

terms. The first term is kBT qc/
(
π2K

)
. In the dilute-gas limit, lim

ρ→0
K ∝ ρ3 and lim

ρ→0
qc ∝ ρ−1 so

that the first term varies as ρ−4. For the second term, (i) if λ is sufficiently small, i.e., satisfies
condition (11), then one has lim

ρ→0
v→ 2 and lim

ρ→0
HN(v, λ) ∼= HN(2, 0) = N− 1 ∝ ρ2. In total,

in the weak perturbation limit, <
∣∣u2
∣∣ > diverges as 1/ρ2. In practice, this divergence of

<
∣∣u2
∣∣ > is limited by the finite sample size, comparable to the fluctuative distance dN ;

(ii) If, instead, λ is sufficiently large, according to Equation (9), HN(v, λ) ∝
(
1/λ3) (1− 1/N3).

Since, according to Equation (17), lim
ρ→0

λ ∝ ρ−
4
3 , and since lim

ρ→0
(N − 1) ∝ ρ2, then, in first

approximation, lim
ρ→0

HN(v, λ) ∝ ρ6. In total, for ρ→ 0 , in the strong perturbation limit,

<
∣∣u2
∣∣ > is proportional to ρ2.

As mentioned in Section 2.2, this analysis confirms the existence of a Bose–Einstein-like
transition in the case of gas. Figure 5 illustrates this behavior in the case of steam at room
temperature. The transition is clearly visible for sufficiently low densities. The transition is
smooth and occurs around an average velocity gradient of about 100 s−1. It is then less and
less visible as the density increases.
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Figure 5. Semi-logarithmic plot of the variations of Equation (6) along the isotherm 295 K when λ

is equal to zero or is given by Equations (13) and (17) with water equations of state. The variation
of the density scale corresponds to the steam from its density on the saturation vapor pressure
curve ρσ,Gas(295 K) ∼= 1.927× 10−5 g/cm3 to ρtr,Gas/100, where ρtr,Gas represents the triple point
gas density of water. The dissipative distance is d = 100 µm.
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Figure 5 also shows that, as long as
(
∇v f

)
av

is small enough, calculating <
∣∣u2
∣∣ >

with Equation (8) or Equation (10) is strictly equivalent. The difference between the
two expressions occurs for extremely small densities: for d = 100 µm, the condition
<
∣∣u2
∣∣ >/d2 = 1 is reached for a density much smaller than ρtr,Gas and is practically

independent of
(
∇v f

)
av

. It can be observed that the increase in
(
∇v f

)
av

eventually

combines with density variation in such a way that <
∣∣u2
∣∣ > remains very small.

In the gas phase, it has been shown in ref. [7] that the essential part of viscosity
variation is determined by the Knudsen term ηKnu, which is not dependent on the HN
function. However, the liquid term ηl represents about half of the total viscosity value and
therefore, in order to validate this analysis, it is important to show that HN(v, λ) does not
differ significantly from HN(v) in the corresponding experimental conditions.

We will take here as an example the experiment of Yasumoto (Ref. [16]) because these
measurements correspond to the lowest densities reached in the vapor phase of water.
This experiment consists of measuring the vapor viscosity by means of a tandem capillary-
flow viscometer whose capillary radius is about R = 0.06 cm. A short capillary serves as
a “measuring capillary”, while a second capillary, 2.43 times longer, connected in series,
allows the laminar flow rate to be reached for the measurement. Knowing the flow rate Q for
each measuring point, one can determine the maximum velocity gradient on the wall of the

capillary tube, such that

∣∣∣∣∣∣∣∣
(
∇v f

)
tube

wall

∣∣∣∣∣∣∣∣ =
16 Q
π R3 . For Yasumoto’s temperature and density

ranges, a value between 4.5 × 104 s−1 and 1.476 × 105 s−1 is obtained. Figure 6 shows that
if we assign these values to

(
∇v f

)
av

then we are in the region where Equation (10) varies
strongly with the velocity gradient parameter (on the other hand, it can be observed that
the function HN does not vary with temperature). As was done in the previous section, a(
∇v f

)
av

value is determined here using the ratio of the lengths of the two capillary tubes.

It is then deduced that
(
∇v f

)
av

varies between 3136 s−1 and 10 286 s−1. The relative

deviation between HN(v) and HN(v, λ) varies from 2 × 10−3% to 7 × 10−2%, which is
totally negligible in the calculation of viscosity given that the uncertainty of the viscosity
data is ±1%.
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Figure 6. Semi-logarithmic plot of the variations of Equations (8) and (10) along the isochor
6.1036 × 10−6 g/cm3 when λ is equal to zero or is given by Equations (13) and (17) with water
equations of state. The temperature range corresponds to that explored by Yasumoto’s experiment
(Ref. [16]). The dissipative distance is d = 100 µm.
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To complete the previous analysis, let us consider one of the “worst” cases, where(
∇v f

)
av

= 104 s−1. Figure 7 shows the deviation that this
(
∇v f

)
av

value produces on the
HN function. It is observed that the deviation only starts to become significant in relation
to the experimental uncertainties in the region near the critical point. It can be concluded
that it is possible to use Equation (8) instead of Equation (10) for all usual viscometry
experiments with a vapor density lower than 0.05 g/cm3.
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Figure 7. Deviation plot 100(HN(v)− HN(v, λ))/HN(v) for steam. The water vapor density range
is from ρtr,Gas to the critical density ρc and the temperature range is from the triple point temperature
Tt to the critical temperature Tc. The thick red curve represents the vapor coexistence curve of water.
The dissipative distance is d = 100 µm.

From Equation (17), the parameter λ can be also interpreted as the ratio of two
velocities such that λ = vm/c0, where vm represents an average relative velocity between
two neighboring atoms (or molecules) of the medium. In all cases, vm cannot exceed
the speed of light c (i.e., the velocity gradient cannot exceed c/lpm), therefore λ admits a
limit value λmax = c/c0. However, in the dilute-gas limit, we have shown in ref. [7] that
lim
ρ→0

c0 ∝ ρ. It follows that λmax (and therefore λ) can become infinite in the limit ρ→ 0 . In

other words, Neff tends to 1 in this limit. This still implies that the particles can only be
considered as isolated in the limit ρ→ 0 . However, it should be noted that the divergence
of λ is theoretical since, from an experimental point of view, one cannot reach ρ = 0. Thus,
in practice, the divergences do not exist but only result in large numbers. Finally, it should
be noted that in the limit ρ→ 0 , the cutoff pulsation ωc of the inertial mode theory tends to
zero as c0. In other words, there exists in this limit only the transient regime, which persists
for an infinitely long time (i.e., the inertial modes are irrelevant).

3.3. Experiments from Low to High Shear Rates at Atmospheric Pressure and Room Temperature

In most of the previously analyzed experiments, the velocity gradient varies strongly
at various points in the system and, therefore, the evaluation of the average gradient is
not easy. It is then useful to analyze more particularly the viscosity data in experiments
where the gradient can be easily determined and, moreover, is quasi-uniform in the studied
system. To carry out such experiments, two rotating experimental devices are used and
their main characteristics are presented in the next section.

3.3.1. Presentation of Devices and Experimental Results

The first set-up used is a HAAKE DC60/1 device with a double cone rotor. Some
geometrical characteristics of the rotor are grouped in Table 1. The tank containing the
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liquid is temperature-controlled to an accuracy of 0.1 K. The rotor and the tank are made of
stainless steel.

Table 1. Some geometrical features of the HAAKE DC60/1 rotor.

Cone Diameter
(mm)

Bottom Cone Angle
(deg)

Upper Cone Angle
(deg)

Bottom Cone Truncation
(mm)

Height of the Cylindrical Shape
Separating the Two Cones

(mm)

63.562 1.023 5 0.054 2

Depending on the filling of the tank, it is possible to shear the liquid only with the
bottom cone (i.e., this kind of experiment will be called “simple cone”) or with both cones
(and this kind of experiment will be called “double cone”). Moreover, with this instrument,
it is possible to impose a linear stress ramp or a linear strain ramp as function of time.

Figure 8 shows three regions where the viscosity behavior with the velocity gradient
is significantly different: subregion 1 corresponds to the medium shear during the dynamic
transition phase; in subregion 2, the viscosity is independent of the velocity gradient and,
thus, corresponds to the value of the viscosity in the Newtonian regime; finally, subregion 3
shows a regular increase in viscosity with an inflection point in the vicinity of 2000 s−1.
This qualitative behavior is not specific to the double cone experiment, but is also observed
in the simple cone experiment as well as with the second experimental device.
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Figure 8. Experimental results of liquid water viscosity as a function of the velocity gradient obtained
with the double cone by realizing either a linear stress ramp or a linear strain ramp. T = 293.15 K.

Figure 8 also shows that the results for liquid water in subregions 2 and 3 do not
depend on the imposed linear ramp type; therefore, no distinction will be made between
the results later on.

The second experimental device used is a Couette cell whose inner cylinder is fixed
and whose outer cylinder rotates at a constant velocity in order to prevent the occurrence
of the Taylor–Couette instability. The inner fixed cylinder ends with a conical shape at
its base, corresponding to a thickness of 1 mm. Some geometrical characteristics of the
Couette cell are grouped in Table 2. The cell temperature is not regulated here and is at
room temperature (i.e., ~293.15 K). It should be noted that the cell is made of polycarbonate,
which is a weakly hydrophilic material. With this cell, we can only impose a linear rotation
velocity ramp of the external cylinder as a function of time, which is equivalent to imposing
a linear strain ramp as a function of time.
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Table 2. Some geometrical features of the Couette cell.

Inner Cylinder
Diameter

(mm)

Outer Cylinder
Diameter

(mm)

Height of the Cell
(mm)

Height of Water
(mm)

20 21 40 16.787

The volumes of water used in the double cone experiment and in the Couette cell are
comparable. In the simple cone experiment, the volume is slightly lower than in the other
two experiments. The characteristic values of these volumes are grouped in Table 3. It
should also be noted that the height of water in the Couette cell is much lower than the
cylinder’s height in order to prevent liquid ejection during rotation.

Table 3. Characteristic water volumes used in the different experiments.

Double Cone
Water Volume

(cm3)

Simple Cone
Water Volume

(cm3)

Couette Cell
Water Volume

(cm3)

~3.2 ~2 3

Figure 9 shows that, whether it is for the simple cone or the Couette cell, the three
subregions described in Figure 8 are observed. However, it can be noticed that the numerical
values in subregion 3 are significantly higher with the simple cone and with the Couette
cell than with the double cone. Moreover, “stalls” appear in subregion 3 at high shear rates.
These differences are partly related to the presence of a free surface in the simple cone
and Couette experiments, contrary to the case of the double cone experiment. However,
the high numerical values obtained with the Couette cell are also due to the cell material,
which causes a strong slip of the liquid, as we shall see.
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Figure 9. Experimental results of liquid water viscosity as a function of the velocity gradient obtained
with the different experimental devices used. T = 293.15 K.

Considering that the experimental results analyzed in the different devices involve
linear strain ramps, it is useful to give some explanation on the measurements. A linear
strain ramp is equivalent to imposing a linear ramp on the rotor angular velocity in the
different experiments. The theoretical models established then allow us to transform this
angular rotation velocity into a velocity gradient (e.g., see ref. [1]). The torque exerted on
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the rotor is then measured and converted into stress from these theoretical models. The
viscosity is then simply defined as the ratio of the stress to the velocity gradient. Table 4
regroups the characteristic values of the linear strain ramp slopes imposed for the different
types of data presented in Figure 9. These values make it easy to convert the values of the
velocity gradients into time and vice versa. The second line of Table 4 allows us to check
the agreement between the slopes of the strain ramps and the characteristic durations of
the experiments.

Table 4. Characteristic values of the linear strain ramp slopes for the different experimental data
shown in Figure 9.

Double Cone Simple Cone Couette Cell

Slope of the linear strain ramp (s−2) 1.6148 0.9989 1.6715

Experiment duration (s) 2500 1000 900

Ultra-pure deionized water was used for the experiments presented in the paper.
However, tests with different qualities of deionized water up to the use of tap water did
not show any change in the observation of the different regimes as well as their variations.
This is perfectly in line with the viscosity data for salt water that have been analyzed in
Figure 56 of ref. [7] and that show that the viscosity variations can be described in the same
way as for liquid water. In other words, the quality of the water does not matter for the
variations, and it is only the set of absolute values that are numerically shifted.

In all cases, the experimental conditions correspond to water at atmospheric pressure
and a mean temperature of 293.15 K. For these conditions, the 1995 IAPWS state equation
formulation (Ref. [11]) gives a liquid water density ρ = 0.998207 g/cm3 and the 2008 IAPWS
formulation (Ref. [17]) gives a liquid water viscosity η = 1.0016 mPa·s. The elastic mode
theory (Ref. [7]) gives a liquid water viscosity η = 1.0018 mPa·s with a Knudsen term
ηKnu = 0.0379 mPa·s. However, the apparatus constants in these experimental devices
were set to find η = 1.002 mPa·s. This said, the absolute values given by the experimental
devices vary quite strongly, while the variations of viscosity as a function of the velocity
gradient can be always superimposed for a given type of experiment. Changing the rise
time by a factor of 2 to 4 leads to the same results to experimental precision.

Knowing the experimental conditions, the characteristic times of different processes
can be determined. Table 5 shows that the shortest characteristic time is the time τ related
to the propagation of the shear information. The viscous diffusion time τν is several orders
of magnitude higher than the stress relaxation time. This stress relaxation time for water is
deduced from ref. [8] for deformations higher than 60%, which is always the case in the
experiments performed here. Table 5 shows that the system has time to reach the steady
state for each measurement made.

Table 5. Characteristic time values for the two rotating experimental devices with liquid water.

τ

(s)
τν≈τ HN(v)

(s)
Stress Relaxation Time

(s)

Interval Between Two
Experimental Points

(s)

10−8 10−2 10−1 100

3.3.2. Experimental Results Analysis

The usual rheological models introduce non-dimensional numbers such as the Weis-
senberg number or the Reynolds number. However, in this new approach, other non-
dimensional numbers are relevant, such as the parameter λ, which represents the ratio
between the injected mechanical energy and the energy of the elastic response of the sys-
tem, or T∗A, which represents the ratio between the action temperature and the re-action
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temperature (see ref. [8]). If some of these dimensionless numbers can be related to usual
dimensionless numbers, they should not be confused with them.

We will start by analyzing subregion 3 because it does not require us to calculate the
viscosity absolute value in the Newtonian regime. One can simply take the experimental
value corresponding to subregion 2, whatever its value. Indeed, if we note η0 the value
of the viscosity in subregion 2 corresponding to the usual Newtonian regime for which it
has been shown previously that the viscosity can be described using HN(v) only, then the
influence of λ on the viscosity value is to increase it with respect to the Newtonian regime
in such a way that:

η(λ) = η0

(
1− ηKnu

η0

)
HN(v)

HN(v, λ)
+ ηKnu (19)

where HN(v) is given by Equation (8) and HN(v, λ) by Equation (10). The viscous term
ηKnu represents the gas-like term (also called the Knudsen term) corresponding to the
contribution of the gas released by the action of the shear stresses. The parameters v and
ηKnu are two constants which depend only on temperature and density of the liquid. The
value of η0 is determined experimentally from subregion 2. The quantity λ being the
variable, Equation (19) is then entirely determined if N is known. Remember that N is
decomposed as follows in ref. [7]:

N − 1 = dN
qc0,crit

2π
(20)

where qc0,crit = qc0(ρc) =
(

6π2ρc Na
M nB

)1/3
represents the cut-off wave vector modulus of the

elastic modes at the critical density ρc and dN represents the fluctuative distance, whose
value depends on some characteristic length of the experimental set-up. The distance dN is
therefore the only adjustable parameter of the model.

Figure 10a shows that Equation (19) makes it possible to reproduce very faithfully the
evolution of viscosity in the whole subregion 3 by fixing dN at the value of 1.3144 cm. The
value of dN is slightly lower than the cubic root of liquid water volume in this experimental
run, i.e., 1.4342 cm. This value of dN is perfectly in line with what is expected for this type
of experimental device.
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Figure 10. (a) Comparison of theoretical model (red curve, Equation (19) with dN = 1.3144 cm)
with the experimental results (blue points) for liquid water viscosity as a function of the velocity
gradient. (b) Deviation of the experimental data with Equation (19). Only the experimental points
corresponding to subregions 2 and 3 are represented. Double cone experiment at T = 293.15 K.

Figure 10b shows in a different form the comparison between the experimental data
and Equation (19). It can be seen that the deviation is within an uncertainty band of ±1.5%.
This uncertainty corresponds to that of the experimental device, which is about ±2%. Then,
it can be noticed an oscillation of great “wavelength” of the uncertainty. This oscillation is
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in phase with the oscillation of the temperature control (±0.05 K) and is therefore inherent
to the device itself.

It was mentioned in the previous section that the viscosity evolution in subregion 3
admitted an inflection point. Figure 11 shows very clearly the existence of this inflection
point at 2100.13 s−1 and indicates a positive curvature of the viscosity variation for lower
velocity gradients, while the curvature is negative for high values of the velocity gradient.
One has the feeling that the curve tends asymptotically to zero when the velocity gradient
becomes very large. From a theoretical point of view, given Equation (9), Equation (19) is
written in the limit:

η(λ→ ∞) = 3η0

(
1− ηKnu

η0

)
HN(v) λ1+v + ηKnu (21)
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The second derivative of Equation (21) is such that:

d2η

dλ2 (λ→ ∞) = 3v(1 + v)η0

(
1− ηKnu

η0

)
HN(v) λv−1 (22)

Thus, when v > 1, the second derivative is positive at the limit and tends to infinity.
One can verify that another inflection point appears for a velocity gradient value of the
order of 6.82 × 1011 s−1, using the parameters of Figure 10. In practice, for this velocity
gradient value, the turbulence has already appeared and the present modeling is no longer
valid (see Appendix B).

Until now, the experimental data analyzed corresponded to those for which the contact
of the liquid with the surfaces could be considered as perfect (i.e., no slipping at the wall).
Indeed, in the double cone the wall surfaces could be considered sufficiently hydrophilic
(i.e., almost perfect wetting) and there is no free liquid surface. The data concerning the
experiments with the simple cone and the Couette cell, on the contrary, involve free liquid
surfaces as well as partial slipping at the walls. Therefore, as mentioned in Section 2.2, in
order to analyze these data, the elastic constant K must be replaced by the effective elastic
constant Ke f f = CK K in the various theoretical expressions. On the other hand, the intrinsic
parameters that define the medium at equilibrium, such as the transition temperature Tt,
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are not impacted by the coefficient CK. Specifically, the value of exponent v, which appears
in all calculations, is not affected by this replacement.

Given the transformations of K into a Keff, the data in Figure 9 corresponding to
the simple cone experiment can be analyzed similarly to those from the double cone
experiments. First of all, it can be seen in Figure 12a that the plateau corresponding to
subregion 2 is strongly shifted in absolute value. Moreover, this plateau is rather narrow.
The theoretical curve determined with Equation (19) shows that the beginning and the end
of subregion 3 can be reproduced correctly, while the middle appears as a bump. Figure 12b
shows that the evolution of the viscosity is only a consequence of the stress variation. In
this same figure, it can be seen that the stress has a significant change of evolution around
400 s−1 and then suddenly returns to a “normal” behavior beyond 970 s−1. If the bump is
ignored for the moment, the theoretical curve requires that the parameter dN be equal to the
cone radius. This is perfectly consistent with what was found in ref. [8] with the case of the
plate-plate rheometer, which also contained a free surface. The presence of this free surface
also has the effect of inducing wall slip, which is translated in the elastic mode theory by a
decrease in the static shear elastic constant K value. Indeed, the theoretical curve requires
the decrease of K by a coefficient CK = 0.7655. This is also in perfect agreement with what
has been shown in ref. [8].
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Figure 12. Liquid water experiment at T = 293.15 K with the HAAKE simple cone by imposing a
linear strain ramp. (a) Experimental results (orange triangles) versus theoretical model (black curve
with dN = 3.1781 cm and CK = 0.7655) for the viscosity as a function of the velocity gradient. (b) The
experimental stress versus the velocity gradient. (c) Experimental results (orange triangles) versus
theoretical model (black curve with dN = 3.1781 cm and CK = 0.5137) for the viscosity as a function
of the velocity gradient.

Let us now analyze the case of the bump in subregion 3. The bump appears because
the stress is stronger than it should be, that is, the torque to drive the liquid is too strong.
This suggests an “abnormally” strong slip. Indeed, Figure 12c shows that this bump can be
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reproduced by changing only the value of the coefficient CK, which must decrease until
it reaches a value 1.49 times lower. The relatively sharp decrease of the viscosity during
the stalls observed at high shear rate in the simple cone experiments can be interpreted
as a reduction of the slip for certain values of the rate, phenomena probably related to
the existence of a free surface for the liquid combined with the unavoidable vibrations
associated with relatively high velocities of rotating mechanical systems.

The viscosity variation in Figure 9 corresponding to the Couette cell experiment has
the same qualitative behavior as the simple cone experiment. This behavior must therefore
be explained in the same way. First of all, it can be observed in Figure 13 that the data
here are much less precise. It is interesting to note that the theoretical curve in Figure 13a
imposes a value of dN corresponding to the height of water in the cell. In addition, a
lower value of the static shear elastic constant K must be introduced. This is in accordance
with the fact that there is the presence of a free surface as in the simple cone experiment,
which induces a slip, but it appears as an intensification of this slip because of the more
hydrophobic material of the Couette cell compared to the stainless steel of the cone. The
value of CK is perfectly compatible with the results of Badmaev et al. (Ref. [18]) to reproduce
the values of the liquid water shear elastic modulus G′ for low wettability of the contact
surface (see the corresponding discussion in ref. [8]).
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Figure 13. Liquid water experiment at T = 293.15 K with the Couette cell by imposing a linear
strain ramp. (a) Experimental results (green diamonds) versus theoretical model (black curve with
dN = 1.6787 cm and CK = 0.01086) for the viscosity as a function of the velocity gradient. (b) The
experimental stress versus the velocity gradient. (c) Experimental results (green diamonds) versus
theoretical model (black curve with dN = 1.6787 cm and CK = 0.00617) for the viscosity as a function
of the velocity gradient.

As with the simple cone, Figure 13b shows that the bump in subregion 3 is due to
a significant change in stress variation between 155 s−1 and 1130 s−1. Again, this bump
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represents an “abnormally” strong slip. Figure 13c shows that this bump can be reproduced
by only decreasing the value of the coefficient CK until it reaches a value 1.76 times lower.
This analysis is therefore consistent with that of the simple cone experiment.

It may seem strange at first sight that the viscosity increases due to wall slip. However,
this is only true in subregion 3, where the influence of the external disturbance can no longer
be neglected. The explanation is as follows: a decrease in the value of K induces an increase
in the parameter λ because of the decrease in the celerity c0 =

√
K/ρ (see Equation (17)) and

the decrease in K in the expression of the liquid term of the viscosity ηl = K τ/HN(v, λ),
which is preponderant in the liquid phase and is more than compensated for by the decrease
in HN(v, λ), thus resulting in an increase in the ratio. In other words, the slip effect is largely
compensated by the increasing influence of the external perturbation introduced in the term
HN(v, λ). Thus, the introduction of the parameter λ provides a clear physical explanation
of the shear-thickening phenomenon despite the presence or absence of wall slip.

The analysis of subregion 3 allowed us to determine the parameters dN and CK in each
experiment. The analysis was done in relative form using an empirical value of the viscosity
η0. To determine an absolute value of η0, the value of the dissipative distance d must be
fixed. To be consistent, the analysis of subregion 1 should be described using the inertial
mode theory presented in ref. [8]. This theory introduces the notions of action temperature
TA, of viscous mass Kt

A0 (further details on this notion are given in Appendix C) and of
threshold stress σT =

(
KN + Kgas

) ξ
e , where KN = K

HN(v,λ=0) represents the macroscopic
static shear elastic modulus, Kgas is the shear elastic modulus of the released gas and ξ is the
correlation length between the fluid basic units. The parameter e represents a characteristic
distance of the experimental set-up. In the case of the plane-plane rheometer with a small
air gap eg, it was shown in ref. [8] that, for these conditions, e = d = eg. It has been shown
that ξ is compatible with the value ξ = eg at zero strain (corresponding to a zero-action
temperature) and then decreases when the strain increases until reaching the value ξ0
corresponding to an action temperature consistent with the establishment of a Newtonian
regime. Let us recall that ξ0 is an intrinsic property of the fluid, which represents the
distance over which the fluctuations of the unit cells are correlated in the bulk phase at
thermodynamic equilibrium (see ref. [7]).

Equation (28) of ref. [8] allows us to define an effective viscosity ηe f f , which must
tend towards the known viscosity of the fluid η0 when the action temperature TA becomes
sufficiently large in front of the reaction temperature TA0 so that we can consider the flow
regime as Newtonian. Thus, by definition, we write:

ηe f f = Ccal
EA(X) d
v f (X, t)

(23)

where v f (X, t) is determined by Equation (28) of ref. [8]. By construction, Equation (23)
is such that ηe f f tends to η0 when TA >> TA0 and t >> ω−1

c = τc, where ωc represents
the cut-off pulsation of the inertial modes. In the case of the experiment with the HAAKE
viscometer or with the Couette cell, EA(X) is identified with the experimentally determined
or imposed stress σ and v f (X, t) with the maximum radial velocity. The parameter Ccal
represents the calibration constant that must be applied to η0 to compensate for the offset
of the experimental data corresponding to the plateau of subregion 2.

As for subregion 3, we will start by analyzing the double cone experiments. The
numerical values of the parameters needed for the modeling are grouped in Table 6.

Figure 14a shows that Equation (23) reproduces the data with a well-centered deviation.
The deviation in subregion 2 is less than ±2% in agreement with the accuracy of the
measurements. In subregion 1, the deviation increases up to ±4%, but this deviation is
only the result of the oscillations of the shear stress σ. Indeed, Figure 14b shows that the
oscillations of σ are strong at the beginning of the experiment until a time t ~ 20 s. These
oscillations are then reflected in the calculation of ηe f f in such a way that the value of
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the resulting deviation is consistent with these oscillations of σ. Therefore, Equation (23)
provides the best possible representation of the data.

Table 6. Numerical values of the fundamental parameters for liquid water at atmospheric pressure
and 293.15 K when using the modeling from ref. [7] and geometric characteristics of the double
cone experiment.

Name (Unit) Value

K (GPa) 2.95364
c0 (m/s) 1720.33
KN (Pa) 18,318.7
Kgas (Pa) 652.8
dN (cm) 1.3144
ξ0 (Å) 3.71768
v 1.71492
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Figure 14. Liquid water experiment at T = 293.15 K with the HAAKE double cone by imposing
a linear strain ramp. The model parameters specific to this run are Ccal = 1.03789, d = 88.5 µm
and e = 0.0908 cm. (a) Deviation of the experimental results with Equation (23). (b) Stress varia-
tion as a function of time t for the first 100 s. (c) Representation of the reduced correlation length
ξ∗ (left coordinate axis) and the reduced action temperature T∗A (right coordinate axis) as a func-
tion of velocity gradient using the experimental stress σ as an input parameter (σ1 = 0.099478 Pa,
σ2 = 1.17158 × 10−4 Pa, ε1 = 10.358 and ε2 = 2.402). (d) Experimental results (blue points) versus theo-
retical model (red curve) for the viscosity as a function of the velocity gradient for all the subregions.

Note that the parameters d and e fix the absolute values of viscosity, while ξ allows
the description of their variations in subregion 1. The values of these parameters are in
accordance with what is expected for this type of experiment. Indeed, it is found that d
is slightly smaller than the “reference” value equal to 100 µm (see ref. [7]). Similarly, it is
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found that e is slightly higher than the liquid thickness at distance R corresponding to the
rotor radius for the bottom cone. Since the upper double cone must be considered, it is
normal to find a value of the order of 1 mm.

Let us focus on the variations of the effective viscosity in subregion 1. These variations
are determined by the variations of the correlation length ξ. This is what was shown in
ref. [8] such that ξ decreases as the strain increases. Similarly, ξ should decrease when the
strain rate increases. Given the boundary limits on ξ previously mentioned, it turns out
that this variation can be empirically described by the following general function:

ξ∗(σ) =
ξ

ξ0
= 1 +

(
e

ξ0
− 1
)

exp
(
−(σ/σ1)

ε1
)

1 + (σ/σ2)
ε2

(24)

where σ1, σ2, ε1 and ε2 are four empirical constants. It is immediately seen that Equation (24)
has the correct boundary properties when σ = 0 and σ >> σ1. We preferred here a description
in terms of the shear stress σ rather than in terms of strain rate, which allows us to have a
single input parameter for the whole modeling. The evolution of the parameter ξ is shown
in Figure 14c and we note that the variation is limited to subregion 1 at low strain rates.
Therefore, as expected, the value of ξ is equal to ξ0 in subregion 2.

The knowledge of the parameter ξ allows us then to represent the variation of the
reduced action temperature T∗A = TA/TA0. It has been shown in ref. [8] that the regime
can be considered as Newtonian when T∗A reaches values of the order of 100. Figure 14c
shows that T∗A evolves between 25 and 35 in subregion 2. This mean that the liquid in this
subregion 2 has not reached a perfectly Newtonian behavior and the measured viscosity
has therefore not reached its Newtonian limit, although it is numerically very close to it.
Figure 14c also shows that the value T∗A = 1 is exceeded very quickly, corresponding to
very low strain rates (i.e., ~10 s−1). Thus, the measurements made essentially correspond
to a regime in which the medium behaves as a liquid.

Figure 14d shows that the combination of Equations (19), (23) and (24) allows a
consistent quantitative representation of the experimental data for all subregions. It can be
seen that the Newtonian plateau simply corresponds to a flat minimum in the measured
effective viscosity.

Above, an example was presented where a linear strain ramp was imposed. We recall
here that the results when imposing a linear stress ramp give exactly the same results and
therefore lead to the same analysis.

As for subregion 3, analysis of the data from the simple cone and Couette cell exper-
iments requires replacing c0 in Equation (23) by the effective celerity ce f f =

√
Ke f f /ρ as

previously explained.
We will analyze the results of the simple cone experiments. The numerical values

of the parameters needed for the modeling are grouped in Table 7. It is observed that
the decrease of the shear elastic constant K leads to a strong decrease of the equilibrium
macroscopic parameter KN = K/HN(v, λ = 0).

Table 7. Numerical values of the fundamental parameters for liquid water at atmospheric pressure
and 293.15 K when using the modeling from ref. [7] and geometric characteristics of the simple
cone experiment.

Name (Unit) Value

Keff (GPa) 2.2741
ce f f (m/s) 1509.37
KN (Pa) 1728.6
Kgas (Pa) 652.8
dN (cm) 3.1781
ξ0 (Å) 2.7029
v 1.71492
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Although the parameters have significantly different numerical values compared to
those of the double cone experiment, Figure 15 shows that the analysis of the experiments
with the simple cone is very similar to that of the double cone, except that there is more noise
in the determination of σ(t), which is reflected in the calculation of ηe f f . An interesting
difference lies in the numerical value of the parameter e, which is much closer to the liquid
thickness at distance R corresponding to the rotor radius for the bottom cone. This result is
consistent with what is expected since, for these experiments, the liquid height exceeds the
thickness at distance R corresponding to the rotor radius for the bottom cone by only 1 mm.
The other difference that can be observed is that subregion 2 is shifted to lower values of
the velocity gradient, but we still have ξ = ξ0. This is consistent with the fact that T∗A takes
a higher value for the same velocity gradient in the simple cone experiments than with
the double cone. It is observed that the medium reaches the same liquid-like regime in
subregion 2 with T∗A values between 25 and 40.
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Figure 15. Liquid water experiment at T = 293.15 K with the HAAKE simple cone by imposing a linear
strain ramp. The model parameters specific to this run are Ccal = 1.42564, d = 110 µm and e = 0.0618 cm.
(a) Deviation of the experimental results with Equation (23). (b) Stress variation as a function of time
t for the first 100 s. (c) Representation of the reduced correlation length ξ∗(left coordinate axis) and
the reduced action temperature T∗A (right coordinate axis) as a function of velocity gradient using the
experimental stress σ as an input parameter (σ1 = 0.12813 Pa, σ2 = 8.3848 × 10−5 Pa, ε1 = 4.527 and
ε2 = 1.945).

The experiments with the Couette cell lead to a very strong decrease of the effective
elastic constant of the medium, which leads to a rather strong decrease of most of the
parameters, as can be seen in Table 8. Thus, it is now the elastic constant of the released gas
that dominates, whereas the value of Kgas was negligible in the experiment with the double
cone and about three times lower in the experiment with the simple cone. This shows the
importance of taking into account the gas released during the shear action.
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Table 8. Numerical values of the fundamental parameters for liquid water at atmospheric pressure
and 293.15 K when using the modeling from ref. [7] and geometric characteristics of the Couette
cell experiment.

Name (Unit) Value

Keff (GPa) 0.06675
ce f f (m/s) 258.59
KN (Pa) 4.9179
Kgas (Pa) 652.8
dN (cm) 1.6787
ξ0 (Å) 1.2857
v 1.71492

Figure 16 shows that the results obtained with the Couette cell are quite similar to those
obtained with the simple cone, which is consistent with the fact that these two experiments
have in common the existence of a free surface. The deviation obtained in Figure 16a is
quite high, but consistent with the strong oscillations of the curve σ(t), as can be seen
in Figure 16b. The deviation, being well centered, shows that Equation (23) allows the
reproduction of the data as well as possible.
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Figure 16. Liquid water experiment at T = 293.15 K with the Couette cell by imposing a linear strain
ramp. The model parameters specific to this run are Ccal = 0.95707, d = 320 µm and e = 0.1 cm.
(a) Deviation of the experimental results with Equation (23). (b) Stress variation as a function of time
t for the first 100 s. (c) Representation of the reduced correlation length ξ∗(left coordinate axis) and
the reduced action temperature T∗A (right coordinate axis) as a function of velocity gradient using the
experimental stress σ as an input parameter.
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The major difference is that, from the first recorded points, we have ξ = ξ0. This
very fast variation of ξ is consistent with the fact that very large values of T∗A are quickly
obtained, as can be seen in Figure 16c. This also explains that subregion 2 is reached for
lower values of the velocity gradient than in the previous experiments. The decrease of the
effective viscosity in subregion 1 when the strain rate increases is no longer related to the
evolution of ξ, but corresponds to the transient regime. Indeed, in the experiments with the
HAAKE viscometer, the characteristic time τc of this transient regime is of the order of 0.1 s,
i.e., the first experimental point recorded already corresponds to at least 10τc. On the other
hand, in the experiments with the Couette cell, the characteristic time τc is of the order of
10 s. Subregion 2 is reached after a time of about 4τc. Although the medium transits very
quickly to a Newtonian liquid-like regime, there is still a time needed for the steady state to
set in and, thus, for subregion 2 to be established. This transient regime was “hidden” by
its very short duration in the HAAKE experiments.

It is also important to note that the value of e is, here, exactly equal to the value of
the Couette cell air gap, which is perfectly consistent with what is expected for this type
of experiment.

The set of experiments described in this section has allowed a wide range of parameter
space to be explored, thus allowing a thorough test of the theoretical model. The experi-
mental results shown in Figure 9 find a unique theoretical framework, which allows us to
account for them and provides a coherent physical interpretation.

To conclude this section, Figure 17 presents an example of results obtained with liquid
n-octane. The strong resemblance with the results obtained with water suggests that the
present model applies to all liquids, probably in their whole phase diagram. This is also in
substance what Heyes (Ref. [5]) wrote in his conclusion:

“It was discovered here that simple liquids (e.g., argon, chlorine and water)
behave rheologically [i.e., they should shear thin and shear thicken] in much the
same way as these more chemically complicated fluid mixtures [e.g., mineral oil,
polysaccharide xanthan gum]”.
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Figure 17. Liquid n-octane experiment at atmospheric pressure and T = 293.15 K with the HAAKE
simple cone by imposing a linear strain ramp. (a) Viscosity variation as a function of velocity gradient.
The black horizontal line represents the expected viscosity value according to ref. [19]. (b) Stress
variation as a function of velocity gradient.

4. Synopsis and Conclusions

Contrary to standard (local) molecular models, which are based on short-range inter-
actions in space and on Markovian processes in time, thus without spatial nor temporal
memory, the present (global) model is completely the opposite, since it is based on long-
range interactions in space, described by elastic modes (spatial memory), and hereditary
processes in time, described by inertial modes (temporal memory), with the use of func-
tionals introducing fractional derivatives. Let us recall that the fractional derivative of a
continuous mathematical function is the convolution of this function with a power law,
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and it is this notion of convolution that introduces the memory aspects. The development
of the model introducing two principles of equipartition, thermal energy (for space) and
mechanical energy (for time), allows us to establish formal expressions for the measurable
quantities (the observables) in terms of the model parameters. These parameters are of two
types: intrinsic and extrinsic. (i) The intrinsic parameters are “necessary”, they are of a
physico-chemical nature and concern the system at thermodynamic equilibrium: molecular
composition, thermodynamic quantities such as the critical parameters, the phase diagram
as well as all thermodynamic functions, to which are added, in the framework of the model,
the elastic constant K0, the shear celerity c0, the cutoff wave-vector qc of the elastic modes,
the correlation length ξ0 and the number of atoms/molecules in the basic unit nB, all related
to the thermodynamic parameters. (ii) The extrinsic parameters are “contingent”: they
depend on the type of experiment (here, a “flow” in the broad sense of the term) that
we want to carry out: the size, shape and volume of the samples through the fluctuative
distance dN and dissipative distance d, the nature of the walls of the container through the
parameter KN, the parameter λ associated with the average velocity gradient caused by the
imposed mechanical stress and possibly other additional external fields such as an electric
or magnetic field for more complex experimental situations.

In Refs. [7–9], the model was limited to physical situations where the perturbation on
the system is sufficiently small so that the theory could be developed assuming that the
system remains at thermodynamic equilibrium during the measurement process. In the
present paper, this perturbation is explicitly introduced in the model by adding an external
energy term in the expression of the elastic energy functional, which describes the coupling
between the random thermal motions and the deterministic displacement induced by the
mechanical perturbation.

It has been shown that the combination of this generalized elastic mode theory with the
inertial mode theory developed in ref. [8] allows us to understand and describe to experimental
precision the results of a number of rheology experiments on liquid water in a broad range of
experimental conditions. This demonstrates that the spatiotemporal aspects represented by
these two theories are inseparable to analyze rheological experimental results.

The new results on liquid water presented here show non-Newtonian behavior, except
in a range of velocity gradients corresponding to the Newtonian plateau. For this limited
range, which leads to viscosity values compatible with a Newtonian flow regime, it has
been shown that the simplified form of the elastic mode theory, as presented in ref. [7], is
sufficient to analyze the usual viscometry experiments.

The “shear-thinning” behavior observed at very low velocity gradients is explained
by the dynamic phase transition of the inertial mode theory from a solid-like regime to a
liquid-like regime, such that the correlation length ξ introduced in the model decreases from
a characteristic distance e of the experimental set-up, allowing us to define the threshold
stress, to the correlation length ξ0 defined by Equation (10) of ref. [7]. This behavior is
in perfect agreement with the fact that, sufficiently close to thermodynamic equilibrium
(not net flow), any finite volume of fluid must be considered as a solid, as abundantly
demonstrated by numerous rheology experiments with sub-millimeter size samples at very
low shear stress or strain amplitude and frequency (see ref. [8] for more details).

When the velocity gradient is increased further beyond the Newtonian plateau, the
experimental results show that the liquid water viscosity increases. This “shear-thickening”
behavior is explained by the fact that the influence of the external energy, characterized in
the model by the non-dimensional parameter λ, can no more be neglected and may become
preponderant at sufficiently high velocity gradients. In other words, numerically, one can
no longer neglect the disturbance introduced by the measurement process, and this aspect
is taken up again in Appendix A in connection with the measurement problem in Quantum
Mechanics. Thus, in the present modeling, this shear-thickening phenomenon, which
becomes measurable at sufficiently high velocity gradients, is associated with the increased
importance of the external energy injected in the system, which tends to decrease the ampli-
tude of the thermal fluctuations, thus increasing the effective viscosity and the associated
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shear elasticity. For even larger stresses, one reaches the turbulence domain discussed in
Appendix B and, at very high stresses corresponding to “high energy” situations, the size
of the thermal clouds tends towards zero so that the particles can now be considered as
conventional material points with zero size, which can be localized in space, and whose
displacements are described by the deterministic equations of classical mechanics.

This model, which has allowed us to represent within experimental error the data in an
ideal case where the no-slip condition is well satisfied, can also be applied in more complex
cases where slip-phenomena occur by slightly modifying the model via the introduction of
an effective shear elastic constant Keff.

It has also been mentioned that the same analysis can be made with other liquids,
suggesting that this modeling can be extended to phenomena implying a large variety of
fluids and probably in other domains of physics.

A very important feature of this model is that, as soon as a mechanical action, however
small, is made on a system, more generally, as soon as a system is out of thermodynamic
equilibrium, all the integrals involved in the expressions of the experimental quantities
never diverge, whatever the finite or infinite size of the system. This is inherent to any
measurement, since one cannot imagine obtaining any information on a system without
exchanging energy with it, thus without perturbing it. This feature of the theory is to
be compared with the problem of measurement in quantum mechanics, but which here
applies whatever the scale of the system.

In conclusion, in all practical situations, the present modeling has shown that the
random aspects associated with thermodynamics and the deterministic aspects associated
with mechanics coexist, and one or the other is predominant only in extreme physical
situations. The random aspects dominate as long as the mechanical energy is very low in
front of the thermal energy, and vice versa. However, this is only true numerically at the
experimental level. In all rigor, the two aspects are inseparable for the description of the
real world. This combination of the random and the deterministic aspects proposed by the
present modeling is probably one key to solve the controversial and long-standing problem
of the interpretation of Quantum Mechanics.

Some examples of application of this theory extended to different domains of physics
will be presented in forthcoming papers.
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Appendix A. “Uncertainty Relationship”

Considering Equations (17) and (13), <
∣∣u2
∣∣ > can be rewritten in a form that is

reminiscent of the uncertainty principle of Quantum Mechanics (QM). First of all, let us
remember that the product

(
∇v f

)
av

lpm can be interpreted as an average relative velocity
vm between two neighboring atoms (or molecules) of the medium. It becomes then:

<
∣∣∣u2
∣∣∣ > v2

m =
λ2HN(v, λ)

π2
kBT qc

ρ
(A1)

By introducing the volume per atom (or per molecule)
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pm
 is a dimensionless coefficient that depends only on tem-

perature and density of the medium. The parameters cc q2=  and 

CompComp 2 q=  are the elastic mode cut-off wavelength and Compton wavelength, 

respectively. The quantity 
Tk

c
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2
eth =  represents a characteristic distance, whose phys-

ical meaning will be discussed in a future paper. 

We thus see appearing in the right-hand side of Equation (A2) a dimensionless coef-

ficient in the parentheses, which depends on the temperature and the density of the me-

dium, and on the action bringing out of equilibrium the medium through the parameter 

λ: for a given temperature and density, eth  is a constant such that the coefficient in 

parentheses in the right-hand member of Equation (A2) varies only as a function of λ; and 

where m represents
the mass of an atom (or of a molecule), which is related to the Compton wave-vector
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qComp = mc/} (c being the celerity of light and } the reduced Planck constant) associated
with this atom (or molecule), the following expression can be deduced:

<
∣∣∣u2
∣∣∣ > (mvm)

2 =
(

λ2HN(v, λ)Φeth

) }2

4
(A2)

where
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is a dimensionless coefficient that depends only on temperature

and density of the medium. The parameters Λc = 2π/qc and ΛComp = 2π/qComp are
the elastic mode cut-off wavelength and Compton wavelength, respectively. The quantity
leth = 2}c

kBT represents a characteristic distance, whose physical meaning will be discussed
in a future paper.

We thus see appearing in the right-hand side of Equation (A2) a dimensionless co-
efficient in the parentheses, which depends on the temperature and the density of the
medium, and on the action bringing out of equilibrium the medium through the param-
eter λ: for a given temperature and density, Φeth is a constant such that the coefficient in
parentheses in the right-hand member of Equation (A2) varies only as a function of λ; and
this coefficient decreases when λ increases. Thus, the greater the external action on the
medium, the smaller <

∣∣u2
∣∣ > is and, therefore, the more localized the basic unit is in space

in accordance with what is expected from the wave mechanics.
It can be interesting to ask for which value of λ the coefficient of }2/4 reaches the unit

value. In a general way, it is necessary to solve the equation λ2HN(v, λ) = Φ−1
eth. However,

the values of λ which satisfy this equation are large in front of 1 and, therefore, one can
consider the asymptotic limit of HN(v, λ) ≈

(
3λ1+v)−1 to the first approximation (see

Equations (9) and (13)). It is then deduced that λ, which satisfies the sought condition, is
simply written as:

λMQ =

(
Φeth

3

) 1
v−1

(A3)

Equation (A3) is a function of T and ρ. Figure A1 shows, in the case of liquid water in
normal and supercooled phases, the function λMQ(T, ρ). We first notice that the values of
λMQ are large in front of unity except near 200 K. It appears that, in the normal liquid phase,
the variations are small so that λMQ ≈ 500, while, in the supercooled phase, the variations
are larger with a peak around 250 K. Any value of λ that is greater than λMQ(T, ρ) leads to
a coefficient in front of }2/4 that is smaller than 1, and vice versa.

If we now transform the function λMQ(T, ρ) in terms of
(
∇v f

)
av, MQ

(T, ρ), then it is

obtained that the variations are much smaller and uniform, such that
(
∇v f

)
av, MQ

varies

between 1014 s−1 at 200 K and 1015 s−1 in the normal liquid phase. These gradient values
are very large and far exceed the values of the experiments we have analyzed in this paper.
They are also large in front of the values of λ for which turbulence appears in the usual
experiments, as described in Appendix B. Therefore, the coefficient in front of }2/4 is
greater than 1 in the usual experiments with liquid water.

Figure A2 shows what Equation (A3) gives in the gaseous phase of water. It can be seen
that λMQ(T, ρ) now depends strongly on the density, but almost not on the temperature.
Although the numerical values of λMQ here are large, their correspondences in terms of(
∇v f

)
av, MQ

show little variation between 1015 s−1 and 1016 s−1. These values are thus

comparable to those obtained for the liquid phase. These values can therefore be reached
more easily with gases than with liquids.

In conclusion of this Appendix, it appears that the present modeling has a certain link
with QM through the notion of uncertainty. Indeed, in both models, there is a source of
fundamental indeterminacy through the impossibility of defining the position and velocity
of a particle in the deterministic sense of classical mechanics.
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Figure A1. Representation of Equation (A3) in the normal liquid and supercooled phases of water
between 200 K and the critical temperature. The thick red curve represents the liquid coexistence curve
in the normal liquid phase and then extends into the supercooled phase with the atmospheric isobar.
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Figure A2. Representation of Equation (A3) in the gaseous phase of water between the triple point
and critical temperature, and from the triple point gas density to the critical one. The thick red curve
represents the vapor coexistence curve.

In the present modeling, the particles necessarily belong to a fluid, and the indetermi-
nacy on the position is related to the existence of the thermal cloud, whose size is related to
the experimental conditions, whereas, in QM, an isolated particle exists a priori, but the
indeterminacy is, according to the possible interpretations, either an intrinsic property or
related to the problem of the measurement.

For the velocity, things are also different. In the present model, the velocity con-
cerns the fluid, and the indeterminacy is related to the difference in velocity between
two neighboring particles caused by the existence of an average velocity gradient. The
corresponding uncertainty principle follows from the fact that the theory predicts that the
size of the thermal cloud is an inverse function of the mean velocity gradient, which leads
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to Equation (A2). For QM, the notion of velocity exists per se, but the uncertainty is as for
position, either an intrinsic property or related to the measurement problem as well. For
QM, velocity and position are defined with respect to a fixed reference frame, whereas, in
the present model, these are defined with respect to the fluid in which there is fluctuation
(because of the thermal cloud) and dissipation (because of the velocity gradient), the notion
of laboratory reference frame not being directly involved, only to define the details of the
experimental set-up. All these notions and differences between the two descriptions will
be clarified in a forthcoming paper concerning the effusion of a dilute gas in “vacuum”.

Appendix B. Criterion for Transition to Turbulence

In this appendix, we will see how one can define a criterion for transition to turbulence
in the framework of the present modeling.

We have seen that the parameter λ can be written as the ratio of two rates, the average
velocity gradient

(
∇v f

)
av

and the inverse of the time τmol = lpm/c0 associated with the
characteristic intermolecular or interatomic distance. It was thus noticed that λ has a
microscopic meaning. Indeed, when λ = 1, it means that the velocity gradient becomes
comparable to the response time of the reaction of the system at the microscopic level. For
stronger gradients, then the molecules or atoms will behave as if they were isolated from
each other. Indeed, when λ = 1, we observe that HN(v, λ) is always close to its limit value
given by Equation (9), whatever the value of N and v > 1. Given the typical values of τmol,
which are on the order of picoseconds or less, the velocity gradient values that correspond
to the condition λ = 1 are of the order of terahertz.

The transition to turbulence corresponds to a macroscopic response of the system and
not a microscopic one. However, the response time of the system at the macroscopic scale
is given by the time τ, and this time is related to the time τmol such that: τ = d

lpm
τmol. By

definition, the time τ reflects the natural “capacity” of the macroscopic system to dissipate
the energy (finally transformed into heat), which is communicated to it during an action
made on this system. Depending on whether the velocity gradient is smaller or larger
than τ−1, the system is expected to respond differently, i.e., it is around

(
∇v f

)
av

τ = 1
that a qualitative change in the system’s response to the action producing the velocity
gradient will occur. The time τ being typically of the order of 10−8 s, it is deduced that the
condition will be fulfilled when the velocity gradient will be of the order of ten megahertz.
In Section 2.2, the following notation has been introduced:

Λ =
(
∇v f

)
av

τ (A4)

Given Equation (17), the following relation is obtained:

λ = Λ
τmol

τ
= Λ

lpm

d
(A5)

Therefore, the condition Λ = 1 will occur for a smaller value of the velocity gradient
than for the condition λ = 1. Considering Equation (A5), it is deduced that the typical order
of magnitude of λ when Λ = 1 is λ ≈ 10−6.

It can be noticed that the dimensionless number Λ resembles a Weissenberg number,
except that the time involved here is not the stress relaxation time, but the time for the
shear information to propagate over the distance d. Given Equation (A4), we determine the
expression for the average power dissipated per unit volume such that:
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where 
t

A0K  represents the viscous mass (see Appendix C) and BV  is the volume per 

basic unit. The numerator in Equation (A6) thus represents the average energy ( )
avE  

dissipated in the basic unit volume during the time τ. At the turbulent transition, the 

(A6)

where Kt
A0 represents the viscous mass (see Appendix C) and
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unit. The numerator in Equation (A6) thus represents the average energy
(
Eη

)
av dissipated

in the basic unit volume during the time τ. At the turbulent transition, the average
dissipated energy per basic unit is then simply written as

(
Eη

)
av = Kt

A0 c2
0, which recalls a

famous formula of special relativity.
In the liquid phase where the approximation η ≈ ηl can be considered, Equation (15)

allows us to relate the parameter Λ with the Reynolds number Re such that:

Re ∼=
L
d

Λ HN(v, λ) (A7)

Given Equation (A7), the condition Λ = 1 results in:

Recrit ∼=
L
d

HN

(
v, λ =

lpm

d

)
(A8)

Figure A3 shows the values of the critical function HN

(
v, λ =

lpm
d

)
in the case of

liquid water along the atmospheric isobar. It can be seen that this critical function increases
with increasing temperature, which means that the value of the critical Reynolds number in-
creases, all other things being equal. This is consistent with the fact that the dynamic as well
as the kinematic viscosities decrease with increasing temperature along the atmospheric
isobar: the liquid being less viscous, the transition to turbulence is delayed.
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Figure A3. Evolution of the critical function HN
(
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)
(with d = 0.01 cm) versus the temper-

ature along the atmospheric isobar of liquid water, between the triple point temperature Ttr and the
saturated vapor pressure curve temperature Tσ.

It is known that the value of the critical Reynolds number depends on the geometry of
the experiment. Let us consider three well-known cases of simple geometry:

• In the case of tubes, L corresponds to the diameter of the tube D, and, if the capillary
tube is small enough, then d = D/2 and the critical Reynolds number is such that
Recrit ∼= 2 HN

(
v, λ =

lpm
d

)
. At room temperature, we deduce from Figure A3 that

Recrit ∼= 2242. This value typically corresponds to the minimum value allowed for this
type of experimental device.

• In the case of channels, L corresponds to the distance between the two parallel planes,
and, if the thickness of the channel is small enough, then d = L and the critical Reynolds
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number is such that Recrit ∼= HN

(
v, λ =

lpm
d

)
. At room temperature, we deduce from

Figure A3 that Recrit ∼= 1121. This value typically corresponds to the minimum value
allowed for this type of experimental device.

• In the case of flow over a flat plate, L corresponds to the critical distance xc to the
upstream edge of the plate. Typical values of xc are of the order of magnitude of a
few centimeters, therefore, at room temperature, the minimum value of the critical
Reynolds number is Recrit ∼= 112, 100. This value typically corresponds once again to
the minimum value allowed for this type of experimental device.

We deduce that the condition Λ = 1 is a very general condition that characterizes the
fluid with respect to the translational turbulence instability in a given geometry.

This provides a picture and scenario of the transition to turbulence in the framework
of the present modeling. Indeed, let us consider a region of the fluid of average dimension
L, which undergoes a velocity gradient such that Λ calculated with this distance L is greater
than 1. Then, this region will divide into smaller fragments of dimensions L’ < L such that
Λ’ = 1, so as to evacuate sufficiently quickly the heat introduced by the gradient at the
interfaces thus created. If there is a broad distribution of sufficiently strong gradients in the
sample, then fragments will be formed, whose size distribution will reflect the distribution
of these gradients.

It is important to point out that this description should not be confused with that of
Kolmogorov (Ref. [20]). Indeed, we do not have here a cascade of scales within large eddies
to smaller eddies, but we can have a distribution of fragmented regions defined by Λ = 1
up to λ = 1 depending on the local velocity gradient.

In conclusion of this appendix, it appears that the model presented in all our previous
papers as well as this one can be considered as a new approach to quantitatively describe
fluid physics, not only in a range of relatively slow flow regimes, such as the solid shear-
thinning regime, laminar regimes (Newtonian and shear-thickening), but also to predict the
existence of dynamic transitions leading to chaotic regimes such as turbulence. It would
be appropriate to try to describe the experimental results in these areas for a quantitative
test of this model and to compare them with the analyses made by the standard theories of
turbulence and chaos. This is the subject of future work.

Appendix C. Notion of Viscous Mass

In ref. [8], the parameter Kt
A0, which has the dimension of a mass, was introduced by

analogy with the elastic constant K of the elastic mode theory (Ref. [7]). As mentioned, Kt
A0

is a global quantity associated with dissipative effects, so we will name it viscous mass.
The expression for Kt

A0 defined by Equation (20) in ref. [8] involves the function HN(v),
which means that Kt

A0 was assumed to be independent of the dynamic state of the fluid.
We have seen that in practice this approximation is sufficient in the Newtonian regime, but,
beyond this regime, the dependence on the parameter λ can no longer be ignored and must
be considered by replacing HN(v) with HN(v, λ). In the framework of the generalized
formalism introduced in this article, it is then interesting to discuss more deeply this notion
of viscous mass. Its expression is defined by Equation (20) of ref. [8] as the sum of two
terms such that:

Kt
A0 = ml

vi + mKnu
vi (A9)

where
ml

vi =
mB

HN(v, λ)
(A10)

and

mKnu
vi = mB

ρKnu
ρ

δ

d

√
RgT/M

c0
(A11)

Both terms are scaled by the basic unit rest mass mB, which is a local quantity.
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The parameter ρKnu represents the density of the released gas due to the shear stresses,
which induces the flow, and δ is a characteristic distance, which, in the case of a Poiseuille-
type flow, can be identified with the dissipative distance d.

Given the definition of the liquid and gaseous components ηl and ηKnu in the expres-
sion of the dynamic viscosity defined by Equations (13) and (16) in ref. [7], one can deduce
a rewriting in terms of the expressions of the viscous masses such that:
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where 
t

A0K  represents the viscous mass (see Appendix C) and BV  is the volume per 

basic unit. The numerator in Equation (A6) thus represents the average energy ( )
avE  

dissipated in the basic unit volume during the time τ. At the turbulent transition, the 

represents the volume per basic unit.
It is seen that Equations (A12) and (A13) can be written analogously in a form reminis-

cent of the expression from the kinetic theory of gases, but where the average velocity of the
molecules/atoms is replaced by the shear celerity c0, the mean free path by the dissipative
distance d and the mass of an atom/molecule by the viscous mass. In other words, the
microscopic quantities of the kinetic theory of gases are replaced by macroscopic quantities
at the sample scale. Despite a form of dissimilarity in the expression of the viscous masses,
Equations (A12) and (A13) show a uniformity in the description of the viscous terms.

By inverting Equations (A12) and (A13) and introducing the characteristic time τ = d/c0,
we derive the following general relationship:
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which shows that the viscous mass is proportional to the viscosity, the characteristic time τ
as well as to a length scale, which depends on the geometry of the experiment.

The dependence of the mass on the dynamic state of the system, characterized by the
parameter λ, which is equal to the ratio of two velocities, has some relation with the Special
Relativity (SR) where the mass also depends on the ratio of two velocities. In both cases, it is an
increasing function of this ratio. However, the analogy stops there. In SR, the variation of the
mass concerns the total energy of the moving system in a model without dissipation, whereas,
in the present modeling, it concerns the dissipation only. The other important difference is that,
in SR, the velocity vf is that of the particle with respect to the laboratory reference frame and
the reference velocity is the speed of light c, whereas, in the present modeling, the former is the
average relative velocity between two neighboring particles in the fluid vm =

(
∇v f

)
av

lpm,
and the latter is the shear velocity c0. In a normal fluid flow, the relativistic aspect is totally
negligible as far as the transported energy is concerned, and, therefore, the total mass can
be assimilated to the rest (or proper) mass, while the viscous “relativistic” aspect, although
negligible in the Newtonian regime, becomes fundamental beyond, since it governs not only
the variation of dissipation associated with the increase of viscosity (see Figure 8), but also the
appearance of instabilities such as turbulence (see Appendix B).

Considering the analogy that we have pointed out with SR, it is interesting to push
further the analysis by observing the evolution of the mass ratio ml/Knu

vi /mB. We will start
with the analysis of the gaseous ratio because it does not depend on the dynamical state of
the system (i.e., it does not depend on λ), but only on the existence of a shear stress which
induces the flow. In Equation (A11), the quantity

√
RgT/M is identified with the square

root of the variance
〈
v2

M
〉

of the Maxwellian velocity distribution in the kinetic theory of
gases. For the sake of simplification, we will assume here that δ = d, which is generally
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the case in usual rheology experiments. Thus, the sought ratio for the released gas can be
simply written as:

mKnu
vi

mB
=

ρKnu
ρ

√〈
v2

M
〉

c2
0

(A15)

In usual experiments, it has been shown, in the case of water (Ref. [7]), potassium
and thallium (Ref. [9]), that ρKnu << ρ and

〈
v2

M
〉
≈ c2

0, therefore, Equation (A15) implies
that mKnu

vi << mB. Let us examine the conditions to obtain mKnu
vi /mB = 1. It was shown

in ref. [7] that the condition ρKnu(ρ, T) = ρ leads to a density value ρg0(T) that is much
smaller than that of the gas at the triple point of water along the isotherm at 650 K (see
Figure 68 of ref. [7]). Thus, this situation occurs for dilute gases at high temperature. It
is deduced that

〈
v2

M
〉
= c2

0 can also be written by using the perfect gas equation of state
P
ρ = cK0K0

ρc

(
ρ
ρc

)2
(see Section III.A of ref. [7]), where P represents the hydrostatic pressure.

By combining this result with the value of ρg0, it is deduced a value of pressure that satisfies

mKnu
vi /mB = 1 along the considered isotherm such that P = cK0K0

(
ρg0
ρc

)3
. If we take the

example given above from Figure 68 of ref. [7], the condition mKnu
vi /mB = 1 leads to a

pressure value P = 1.162 × 10−11 Pa, which is much lower than the value of the triple point
pressure of water, a situation which is not reached in the usual experiments.

Let us now analyze the case of the liquid ratio ml
vi/mB = 1/HN(v, λ). The description

of the function HN(v, λ) is done in Section 2.1, but it appears here as a physical quantity
relating the rest mass of a basic unit to the viscous mass. Let us first note that ml

vi/mB ∼= 1
when v = 0 and λ = 0 for N sufficiently large (i.e., HN(v = 0, λ = 0) = 1− 1

N ), in other
words, the viscous mass becomes identical to the rest mass when placed in the framework of
classical physics where the collective effects are described only through the elastic constant
K. Therefore, in the framework of the elastic mode theory where v ≥ 1, the transition
from a dynamical regime where the ratio ml

vi/mB remains nearly constant (which we call
subshearic) to the regime (which we call supershearic) where it increases according to a
power law in λ satisfying Equations (9) and (13), is obtained when λ = 1, i.e., when(

ml
vi

mB

)
λ=1

=
1

HN(v, 1)
=

1
H1

N(v)
(A16)

The transition value of the ratio
(

ml
vi/mB

)
λ=1

thus depends on the state of the
medium through the variable v, but depends little on N as soon as this one is large enough
(i.e., N > 10), as it can be seen in Figure A4.
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We can remark that, if, again, we consider classical physics, then Equation (A16)
leads to the value H1

N(0)
−1 = 4.65979 . . ., which is very close to the Feigenbaum number

δF = 4.66920 . . . (Ref. [21]), which describes the self-similarity of an infinite cascade by
period doubling in the framework of chaos theory (e.g., ref. [22]). As we mentioned in
ref. [7], the function HN is a self-similar function (e.g., at the transition v = 1, all derivatives

of the function HN(v) are such that lim
v→1

dn

dvn HN(v) =
(ln N)n+1

n+1 ; therefore, all derivatives are

infinite for N infinite and one could expect to find the Feigenbaum number. The small
difference can be explained by the fact that the cascade considered, for example, to describe
the appearance of turbulence in Appendix B is never infinite, but always finite. Under
these conditions, we end up with a value that is always lower than the limit value for a
quadratic logistic function (Ref. [21]).

Figure A5 shows the evolution of Equation (A10) for the value of v corresponding
to the experiments analyzed in this paper. It appears that for values of λ lower than
10−10, ml

vi/mB = 1/HN(v, λ) tends to a constant smaller than 1. This region of λ is the
one typically corresponding to the Newtonian plateau. The subshearic regime where the
viscous mass is smaller than the basic unit rest mass corresponds to the fact that, in a
laminar flow, the dissipation is weak and, therefore, the equivalent in mass converted
into heat is also small compared to the energy transported by the flow. According to
Equation (9), it can be observed with Figure A5 that the supershearic regime no longer
depends on N as soon as N is greater than 10.
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Figure A5. Logarithmic plot of the function 1/HN(v, λ) and Equation (A16) for v = 1.71492. The
states below the semi-transparent light red surface correspond to the subshearic regime, and above to
the supershearic one.

As can be seen in Figure A6, in the limiting case where v = 2 and N is infinite, the
function HN(v, λ) can be represented by a simple power law versus λ in the subshearic
regime. In other words, in this limit, outside a small region around λ = 1, the function
HN→∞(v = 2, λ) can be approximated by two power laws as a function of λ such that:

HN→∞(v = 2, λ) ∼=
{ 1

0.9 λ3/4 if λ < 10−3

1
3 λ3 if λ > 1

(A17)

In conclusion of this appendix, it appears that the present modeling is based on a new
notion of mass, which depends on the dynamic state of the system, contrary to classical
physics, where the notion of mass simply corresponds to the energy content of the matter



Condens. Matter 2023, 8, 22 38 of 39

in terms of weight. It is only in the framework of the SR that one can find similar ideas.
However, as mentioned above, the velocity v f in SR should not be confused with the
average velocity between two particles vm involved in the parameter λ. Moreover, the
dependence of the mass on the dynamical state in SR is associated with the transport of
energy from a source to another point in space, without any loss of energy between the
source and the detector (i.e., the energy provided by the source is time-independent), while,
in the present model, the situation is quite different. Indeed, in an ordinary laminar flow,
the kinetic energy transported per unit volume is 1

2 ρ v2
f , where ρ is the density of the fluid

calculated with the rest mass, but there is dissipation in the sense that part of this energy is
lost as heat in this transport, this loss being characterized by the viscous dissipation time
τν = d2

η/ρ ≈ τ HN(v). The generalization of the SR within the framework of the inertial
mode theory will be described in a future paper.
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