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Abstract: Fast and local probes, such as X-ray spectroscopy, X-ray diffraction (XRD), and X-ray
microscopy, have provided direct evidence for nanoscale phase separation in high temperature
perovskite superconductors composed of (i) free particles coexisting with (ii) Jahn Teller polarons
(i.e., charges associated with local lattice distortions) not detected by slow experimental methods
probing only delocalized states. Moreover, these experimental probes have shown the formation of
a superstripes phase in the pseudogap regime below T* in cuprates. Here, we focus on the anoma-
lous temperature dependence of short range X-ray diffraction CDW reflection satellites with high
momentum transfer, probing both charge and lattice fluctuations in superconducting HgBa2CuO4+y

(Hg1201) in the pseudogap regime below T* and above Tc. We report compelling evidence of the
anomalous anticorrelation of the coherence volume with the peak maximum amplitude of the CDW
XRD satellite by cooling below T*. This anomalous temperature trend of the short-range striped
Jahn Teller polaronic CDW puddles is in agreement with predictions of the Q-ball theory of the
quark gluon plasma extended to cuprates, providing compelling evidence for non topological soliton
puddles of striped condensate of pairs in the pseudogap phase.

Keywords: high temperature superconductivity; synchrotron X-ray diffraction; charge density waves;
Q-balls

1. Introduction

Recently, it has been proposed that the physics of Euclidean Q-balls developed in the
frame of the quark-gluon plasma inside a proton in the atomic nucleus could be extended
to the physics of complexity in high-temperature superconductivity [1]. In cuprates, short-
range charge density waves (CDW) forming a supersolid phase called superstripes [2–4]
have been observed by joint experiments of temperature-dependent X-ray diffraction (XRD)
and scanning micro-XRD [2]. The superstripes phase [3,4] was also unveiled by X-ray
absorption spectroscopy and anomalous diffraction experiments probing the condensa-
tion of polaronic charge density waves in striped puddles. Polarons involving localized
charges with associated local lattice distortions, proposed by Bednorz and Müller [5], have
been confirmed by experiments probing short-range order [6]. The X-ray absorption fine
structure (EXAFS) [7,8] in X-ray spectroscopy, probing fast and local bond fluctuations, has
been applied to cuprate superconductors, providing information on the polaron anisotropy,
shown to be of pseudo-Jahn-Teller type, and on the large polaron size extending over
eight copper sites [9–11]. The isotope effect [12] has been observed also at the pseudogap
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temperature [13,14] associated with the onset of polaron ordering using X-ray absorption
near edge structure (XANES) [15] a fast and local probe of many local body electronic con-
figurations [16] and higher order atomic correlations in a nanoscale atomic cluster around
Cu ions [17]. Pseudo-Jahn Teller polarons in cuprates have been confirmed by Goodenough
et al. using thermopower experiments [18–22] probing electron-lattice vibronic coupling
and heterogeneous charge fluctuations, forming a complex nanoscale phase separation as
in colossal magneto-resistance manganite perovskites [23]. Nanoscale phase separation was
predicted theoretically [24], and it has been the topic of two important workshops [25,26].
The complex landscape with the coexistence of two electronic components (free and local-
ized charges) was confirmed by several experiments [27]. The experiments pointed toward
the coexistence of undistorted stripes of charges in a strongly correlated doped charge-
transfer Mott insulator with distorted stripes of polaronic charges. These experimental
results provided the basis for the proposal of Bianconi-Perali-Valletta (BPV) theory in 1997
of multigap superconductivity in a striped nanoscale ultrastructure composed of a superlat-
tice of quantum stripes. Here, the multigap superconductivity is generated by quantum size
effects forming quantum minibands. The Tc amplification is driven by a Fano resonance
due to configuration interaction between the first open pairing scattering channel forming
BCS Cooper pairs composed of free particles in the first miniband and a second closed
scatting channel forming pairs in the crossover of the Bose-Einstein Condensation (BEC)
and Bardeen–Cooper–Schrieffer (BCS) (called the BEC-BCS crossover) with the formation
of bipolarons in the intermediate coupling regime associated with strong electron-lattice
interaction in the upper miniband. The coexistence of a first BCS condensate in the first
miniband and a second BCS-BEC crossover condensate in the second miniband appears at
a topological Lifshitz transition [28]. The discovery of high temperature superconductivity
in layered multigap MgB2 [29] confirmed the theoretical prediction of the amplification of
the critical temperature also for a superlattice of quantum wells.

In this complex landscape, the essential ingredient in the mechanism of high-temperature
superconductivity is the coexistence of two electronic components: (i) delocalized and
weakly interacting itinerant particles, which coexist with (ii) localized and strongly inter-
acting polarons. In perovskite materials, the polarons are formed by doped holes with
the associated cloud of phonons and the formation of pairs of polarons. Using extended
X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES),
the probability distribution function of the instantaneous Cu-O bond length of the local
lattice geometry has been determined, showing large nanoscale anisotropic pseudo-Jahn-
Teller polarons forming instantaneous polaronic short-range CDW, which coexists with a
Fermi liquid.

The formation of striped puddles of ordered polarons is driven by elastic attractive
polaron-polaron interaction, which is zero when the polarons are in contact and it increases
with the polaron-polaron distance. This attractive polaron-polaron force in hole-doped
cuprate superconductors is analogous to the strong nuclear force between quarks forming
the Q-balls, which competes with the repulsive Coulomb force between charges and
determines the charge and the size of the short-range polaronic CDW puddle [30–33].

Using thermoelectric power experiments and thermal conductivity, Goodenough et al.
have supported these results by showing vibronic strong electron-phonon coupling with a
nonadiabatic regime, large low-symmetry polarons, and the formation of a striped lattice
pattern, and they pointed out the similarity of nanoscale phase separation in manganites
and cuprates with a striped texture [34–36].

Experiments of Müller, Shengelaya, Keller, Conradson, Mustre de Leon et al., and
theory work of Bussmann-Holder, de Gennes, Deutscher, Bishop, Gorkov, Teitelbaum, and
Kresin et al. have provided further evidence for the key role of local lattice fluctuations, com-
plexity and charge and lattice heterogeneity in high-temperature superconductors [37–52].
In this paradigm, supported by a large set of different experimental methods and many
different authors, the origin of the pseudogap phase below T* and above Tc was assigned to
the polaron coherence in high temperature superconducting cuprates with the formation of
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isolated condensed nanoscale puddles of local pairs called superstripes [3,4]. EXAFS exper-
iments have unveiled the double-well potential for oxygen vibration in the superconduct-
ing perovskite Ba1−xKxBiO3 with the formation of a Fermi-Bose mixture with stripe-like
nanoscale structural phase separation in superconducting in BaPb1−xBixO3 [53–55]. Strong
electron-lattice interaction, in particular hot spots in the k-space has been observed also in
pressurized sulfur hydrides [56]. This confirms the universal scenario of two-component
superconductivity in systems with strong unconventional electron-lattice interaction and
ubiquitous unconventional short-range structural fluctuations and percolation, as has been
confirmed recently in cuprates [57,58]. Recently, static CDW, long-range CDW, short-range
CDW, and dynamic charge fluctuations have been observed by resonant X-ray scattering in
cuprates pervading the full phase diagram [59–71] of cuprates and nickelates [72].

The proposed Euclidean Q-ball phase [1] may explain the pseudogap (PG) phase
of high-Tc superconductivity in hole-doped high-Tc cuprates that precedes the multigap
high-Tc superconducting phase with one particular large gap due to polaronic pairing
in a strong coupling regime. This theory is based on a new physical mechanism for
binding the fermions into local pairs via exchange with semiclassical density fluctuations
of finite amplitude inside the Q-balls. The charge fluctuations inside the Q-balls possess
a local minimum of potential energy at finite amplitude and, therefore, provide greater
binding energy of fermions into local pairs than usually considered and also exchange
infinitesimal spin-waves, charge-density fluctuations, or polaronic charge density waves
(CDWs) in the Fröhlich picture. At couplings stronger than some critical values, local
pairs percolate between Q-balls, forming a large superconducting cluster. We have used
temperature-dependent X-ray diffraction (XRD) to test the theoretical predictions of the
Q-ball temperature evolution [1]. We have selected a putative Q-ball reflection at a high
momentum transfer [73,74], characterized by the reflection peak amplitude A being much
higher than that of static weak CDW, with coherence volume Vcoh smaller than that of
static weak CDW appearing at a small momentum transfer, and the temperature onset at
T* being much higher than that of static CDW TCDW, showing an anomalous temperature
dependence of both the reflection peak amplitude A and Vcoh. The measured temperature
variation in the pseudogap phase has been found to agree with the prediction of the Q-ball
theory [1], allowing us to attribute the nature of the selected short-range CDW to the
presence of Q-balls in the pseudogap phase.

2. Results and Discussion

In this work, we focus on the puddles of short-range dynamical charge density fluc-
tuations in the pseudogap phase in a high temperature superconductor, oxygen-doped
HgBa2CuO4+y (Hg1201). Hg1201 has a simple tetragonal average structure [75–87] with
an optimum Cu-O bond length of 194 pm. It shows the self organization of dopants
composed of atomic stripes of mobile oxygen interstitials (O-i) [81,82] running in both
the horizontal (100) and vertical (010) directions in the ab plane. The nanoscale phase
separation is composed of first puddles rich in O-i stripes that are anticorrelated with
second puddles showing short-range dynamic charge density waves (CDW), which have
been visualized by scanning micro-X-ray diffraction [2]. The HgBa2CuO4+y single crystals
have been grown [76] with a final oxygen treatment to establish a y concentration of oxygen
interstitials of approximately y = 0.12, showing the superconducting optimum critical
temperature Tc of 94 K [75–78]. The crystal structure has been determined by standard
X-ray diffraction. The crystal structure has P4/mmm symmetry with lattice parameters
a = b = 0.3886 (5) nm and c = 0.9517 (2) nm at T = 100 K (numbers in parentheses indicate
the standard deviation of the last digit, in agreement with reference [79].

Short-range dynamic CDW puddles have been investigated by X-ray diffraction mea-
surements performed at the XRD1 beamline of the ELETTRA synchrotron facility in Trieste,
Italy. The charge modulation gives rise to clear superlattice reflections [1]. We have iden-
tified a particular satellite of a main Bragg diffraction peak assigned to a short-range
dynamic CDW order in Hg1201, tuning the photon energy at 17.6 keV with a beam size
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of 200 × 200 µm2. The selected short-range dynamic CDW is located in the k-space at
qCDW = (0.23, 0, 0.16) around the (1, 0, 18) Bragg reflection.

We used a liquid nitrogen cryostat whose flux on the sample provided a variable
temperature measured with an uncertainty of 1K. The cooling ramp was set with a step
of 1K and a thermal waiting time of 10 min between two successive measurements. In
order to reduce the temperature uncertainty, we averaged the collected data for every three
measurements. The error bar at each temperature corresponds to the standard deviation of
each group of three measurements.

To get a direct view of the temperature dependence of the short-range CDW-satellite
reflection in the temperature range 85 < T < 280 K, we show in Figure 1 the two-dimensional
color plots of the CDW-peak profile along the a* (top panel) and c* (bottom panel) reciprocal
lattice directions as a function of temperature. The selected peak appears as the sample
was cooled below 240 K, which is close to the onset of the pseudogap phase T*.
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Figure 1. Color plots of temperature evolution of short-range CDW or charge fluctuations XRD
profiles along (upper panel) a* and (lower panel) c* directions of reciprocal lattice around the (1, 0,
18) Bragg peak.

The CDW-peak amplitude A at wavevectors qCDW(a*), qCDW(c*), and full widths at
half maximum, ∆qCDW(a*), and ∆qCDW(c*), along both the in-plane a* (H) and out-of-plane
c* (L) directions, have been extracted by fitting the CDW profiles with a Gaussian function
after background subtraction. The coherence lengths ξa and ξc have been calculated as
ξa = a/∆qCDW(a*) and ξc = b/∆qCDW(c*), where a and c are the crystallographic axes.
The short-range dynamic CDW satellite shown in Figure 1 is assumed to be a putative
Q-ball, which appears at the pseudogap temperature T*. This temperature is higher than
the temperature onset, Tcdw = 159 K, of the long-range static CDW weak reflections. In
fact, static long-range CDW satellites are observed by resonant Cu L3 X-ray scattering at
small momentum transfer near the l = 1 main reflection in the approximate range from
0.26 to 0.29 r.l.u. [87]. Therefore, the selected satellite reflection is assigned to a short-range
dynamical CDW detected in ref. [69] which is assigned to Q-balls made of pseudo- Jahn
Teller polarons [88,89].

The CDW peak amplitude A, indicating the population of CDW puddles, reaches a
maximum at T = 100 K, and then undergoes a drop associated with the onset of supercon-
ductivity at T = Tc, as shown in the three panels of Figure 2. The in-plane puddle size given
by the coherence length ξa (along the a-axis) and out-of-plane ξc (along the c-axis) of CDW
puddles can be inspected in Figure 2a,b, respectively. We observed smaller CDW puddles
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along the c-axis. In Figure 2c, we report the coherence volume of the CDW puddles as
given by:

Vcoh = ξa·ξa·ξc (1)
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Figure 2. The short-range dynamic CDW-peak amplitude and coherence lengths as a function of the
reduced temperature T/T* (a) along the a-axis (ξa) and (b) along the c-axis (ξc). T* = 240 K is the
onset temperature for CDW in Hg1201. (c) Coherence volume, Vcoh, with the amplitude peak as a
function of reduced temperature. The vertical dashed lines indicate the onset of reduced temperature
for CDW where T = T*.

Recently, a new theory of the Euclidean Q-ball phase has been proposed [1]. It was
demonstrated analytically that the Euclidean action of the strongly correlated electron
system may possess stable saddle-point configurations in the form of finite-size puddles
(Q-balls) with superconducting density fluctuations coupled to oscillating Matsubara-time
fluctuations of charge or spin.

This Q-balls scenario is reminiscent of the famous Q-balls formation in the super-
symmetric standard model, where the Noether charge responsible for the baryon number
conservation is associated with the U(1) symmetry of the quarks’ field [1]. In condensed
matter, the Q-Balls can be associated with the short-range charge density wave puddle;
thus, we call Q-ball charge according to the Q-ball theory [1,90] as:

Q-Ball = T·A·Vcoh (2)

where T is the temperature, A is the CDW peak amplitude, and Vcoh represents the coher-
ence volume, given by Equation (1).

In Figure 3a, we show the behavior of the coherence volume Vcoh as a function of the
amplitude normalized to its maximum value. This behavior is well described by a power
law Vcoh = C (A/Amax)−β where C is a constant and β is the critical exponent equal to
1.0 as predicted by the theory [90]. In Figure 3b,c, we report the temperature evolution of
the product AVcoh and the temperute-dependent Q-Ball, respectively. The comparison of
the Q-Ball temperature-dependent charge given by T Vcoh A measured in this experiment
(black dots) with the theoretical curve calculated by Mukhin [90] (red curve) shows a very
good agreement below T* = 240 K, which is the critical temperature for the evaporation of
the Q-ball.
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Figure 3. (a) Coherence volume, Vcoh, as a function of the normalized CDW peak amplitude,
A/Amax. The black line represents the fitting curve following the power-law Vcoh = C (A/Amax)−1.
(b) Coherence volume, Vcoh, multiplied by CDW amplitude, A, and (c) Q-Ball = T Vcoh A, as a
function of the reduced temperature T/T*, where T* = 240 K. The red line represents the theoretical
modeling elaborated by Mukhin [90].

3. Conclusions

We have used synchrotron radiation and X-ray diffraction to measure the short-range
dynamic charge density waves (CDW) puddles in the optimum-doped HgBa2CuO4+y with
y = 0.12 and Tc = 94 K. We have found a short-range incommensurate CDW reflection with
wavevector qCDW = (0.23, 0, 0.16) around the Bragg peak (1, 0, 18) below T* = 240 K, which
is assigned to a dynamic short-range CDW. We have extracted the CDW peak amplitude,
wavevector, and coherence length as a function of the temperature from room temperature
down to 85 K. The experimental results on the temperature evolution of the dynamic short-
range CDW puddles in the superconducting HgBa2CuO4+y may be interpreted in terms of
the Euclidean Q-Balls theory [1,90]. Finally, after decades of experimental and theoretical
research on high-temperature copper perovskites, the complexity of these systems is due to
a nanoscale phase separation composed of coexisting (i) atomic wires of oxygen interstitials
with a scale-free distribution, (ii) static long-range CDW puddles, observed in resonant X-
ray scattering at low momentum transfer [87], and (iii) dynamic short-range Q-balls, which
have been called charge density fluctuations [69], which show similarity with the case of
doped La2−xSrxNiO4 where dynamic short-range CDW coexist with quasi-static long-range
CDW in different spatial locations [72]. Further and more extensive experimental work
investigating the spatial distribution and time evolution of the short-range polaronic CDW
puddles is in progress to enforce the proposed analogy between the Q-ball scenario and
short-range CDW puddles appearing at the pseudogap temperature, T*, in cuprates.
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