
Citation: De María-García, S.;

Ferrando, A.; Conejero, J.A.; De

Córdoba, P.F.; García-March, M.A.

A Method for the Dynamics of

Vortices in a Bose-Einstein

Condensate: Analytical Equations of

the Trajectories of Phase Singularities.

Condens. Matter 2022, 8, 12. https://

doi.org/10.3390/condmat8010012

Academic Editors: Sebastiano Pilati

and Stefano Giorgini

Received: 25 July 2022

Revised: 11 December 2022

Accepted: 14 December 2022

Published: 17 January 2023

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Method for the Dynamics of Vortices in a Bose-Einstein
Condensate: Analytical Equations of the Trajectories of
Phase Singularities
Sergi De María-García 1, Albert Ferrando 2, J. Alberto Conejero 1, Pedro Fernández De Córdoba 1

and Miguel Ángel García-March 1,*

1 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València,
46022 València, Spain

2 Department d’Optica, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot (València), Spain
* Correspondence: garciamarch@mat.upv.es

Abstract: We present a method to study the dynamics of a quasi-two dimensional Bose-Einstein
condensate which initially contains several vortices at arbitrary locations. The method allows one
to find the analytical solution for the dynamics of the Bose-Einstein condensate in a homogeneous
medium and in a parabolic trap, for the ideal non-interacting case. Secondly, the method allows one
to obtain algebraic equations for the trajectories of the position of phase singularities present in the
initial condensate along with time (the vortex lines). With these equations, one can predict quantities
of interest, such as the time at which a vortex and an antivortex contained in the initial condensate
will merge. For the homogeneous case, this method was introduced in the context of photonics. Here,
we adapt it to the context of Bose-Einstein condensates, and we extend it to the trapped case for the
first time. Also, we offer numerical simulations in the non-linear case, for repulsive and attractive
interactions. We use a numerical split-step simulation of the non-linear Gross-Pitaevskii equation
to determine how these trajectories and quantities of interest are changed by the interactions. We
illustrate the method with several simple cases of interest, both in the homogeneous and parabolically
trapped systems.

Keywords: Bose-Einstein condensates; vortices; phase singularities; numerical method

1. Introduction

The experiments on vortices in Bose-Einstein condensates (BECs) have a large tra-
dition, starting from landmark experiments where the vortices are created in rotating
set-ups [1,2], stirring the condensate [3–5], with phase imprinting [6,7], via obstacles [8]
or merging condensates [9]. This research effort has extended for more than twenty years,
with recent very interesting experiments showing, e.g., coupling between the atomic spin
and orbital-angular momentum [10,11], creation of vortices after free expansion [12], or
through a phase transition [13]. In parallel, vortices count with an extensive and strong
theoretical literature within the field of BECs, from initial proposals on their possible obser-
vation [14,15] and stability [16], through studies based on symmetry on inhomogeneous
systems, rings or vortex knots [17–29], to mention just a few examples (for reviews in the
topic, see e.g., [30–32]).

Mathematically, a vortex that appears in complex waves is always associated to a
phase singularity. A phase singularity occurs in those positions where the intensity of
the complex field is zero and the phase is undetermined. Following circuits around these
dark spots which are infinitely close to it, the phase increases or diminishes in integer
multiples of 2π (when it increases (diminishes) one says the vortex has a positive (negative)
charge). These phase singularities appear in many fields, such as plasma physics [33], fluid
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physics [34], atmospheric studies [35] or photonics [36] (with an independent branch of
optics called singular optics [37–39]).

In this paper, we will use a method initially introduced in the context of photon-
ics [40,41] as a benchmark to study the propagation of initial states containing many vor-
tices with a Gross-Pitaevskii equation. This method has two sides: (1) it allows one to solve
a linear Schrödinger equation (a paraxial scalar wave equation in the context of photonics
or an ideal Gross-Pitaevskii equation (GPE) with a vanishing coupling constant) when the
initial condition contains many phase singularities; (2) it offers naturally equations for the
dynamical evolution of the location of each phase singularity, which we call the trajectory
of the phase singularity or vortex line. From these equations one can obtain figures of
merit of interest, such as merging points for singularities of opposite charge. While in the
homogeneous case, the extension from photonics to BECs is merely a pedagogical analogy,
in the inhomogeneous (parabolically trapped) case, we generalize here the technique to
include potentials with powers of the spatial coordinates. We note that the parabollic case
is not common in photonics (except for graded-index optical waveguides [42,43]). Once
the technique for the ideal non-interacting case is established, we use the results, both in
the homogeneous and trapped cases, to obtain some information insightful to analyze the
non-linear cases. To illustrate this, we offer several examples of initial conditions (with one,
two and three initial singularities), numerically solving the GPE with a split-step method
in the non-linear case, and comparing the results with the ones obtained in the linear case.

The study of the motion of vortices in inhomogeneous (trapped) BECs has an exten-
sive and thorough literature. For a single vortex in a two-dimensional condensate, early
numerical studies illustrated that a single (off-axis) vortex precesses around the center of
the trap, and the motion was described with effective models from which one can derive
a Magnus force, which altogether allowed one to estimate the frequency of the preces-
sion [44]. With a variational approach, the effective potential experienced by the vortex was
found, proving that indeed the vortex should precess around the cortex core [45], within
the regime in which the (inhomogeneous) condensate is large compared with the size of
the vortex core (also see Refs. [46,47] for a general study in two and three dimensions
and anisotropic harmonic traps, where precession is also discussed, additionally finding,
for the case of rotating trap, the angular frequency which stabilizes the vortex). Several
works followed, researching diverse aspects of inhomogeneous BECs, generally with a
Thomas-Fermi profile, and extending the limits of validity of previous studies or look-
ing to other configurations or systems, e.g., two-component BECs (a non-comprenhesive
list includes [48–60]—see also experimental results in Refs. [61–65]). The research effort
also focused in the study of the dynamics of two vortices in a BEC, named also vortex
dipoles, or more vortices [66–71], researching diverse aspects such as turbulence, chaos,
or vortex solitonic structures [72–75] (see also review in [27]). These two or more vortices
configurations were studied experimentally in [64,65,76,77]. We highlight here the case of
Jones-Roberts solitons, which show elongated elliptical shape, are immune to the snaking
instability, and can sustain imprinting of configurations of vortices [78,79]. Also, we note
here that a Magnus force also appeared in some of the co-authors previous work, where it
was considered a highly charged vortex located on axis and broken by a sudden turn on of
an optical lattice (with a squared symmetry)—see [80].

We emphasize here that the present work diverts generally in one fundamental aspect
from this list of works. The initial condition is not a vortex embedded in a BEC with
Thomas-Fermi profile or a Jones-Roberts soliton with a phase pattern imprinted. In the
examples used to illustrate the technique introduced here we consider one, two or three
vortices inside a disc of density (see Figure 1). Generally, the technique is valid for an
arbitrary number of vortices at arbitrary positions, see Equation (4). In all initial conditions,
the vortices are located within the ring of density, and the dynamics of the singularities
occurs mostly there. These initial conditions are more natural for interactions which are
attractive, but here we also consider its dynamics in the repulsive case. As discussed in
conclusions and outlook this paper has to be considered as a first step of a research program
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which will extend the method to other initial conditions and compare with the effective
models developed in the literature. The paper is organized as follows: In Section 2, we
introduce the method both for the homogeneous and trapped (linear) cases. In Section 3, we
exemplify the method in the homogeneous case with some linear and non-linear examples
(attractive and repulsive interactions, two and three initial singularities), and compare
both. In Section 4, we undertake a similar analysis for the trapped case (here with one, two
and three initial singularities). We end the paper with some conclusions and outlook in
Section 5.

Figure 1. (a–c) Amplitude (square root of density) of the initial condition for N = 5, 20 and 30
respectively, when there are initially two vortices of opposite charge (q = ±1), located at (±0.5, 0).
(d) corresponding phase. The phase is the same in the three cases because, due to the form of
Equation (4), one decides the position of the singularities with the coordinates of the initial vortices,
and therefore the phase profile. (e,f) amplitude and phase, respectively, for three vortices, one
negatively charged (q = −1) in the origin and two, positively charged (q = 1) located at (±1, 0). In all
plots, the dashed black square is the window represented in other figures in the paper.. Also notice
that the computational box is much larger than the one represented in all figures.
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2. Model and System

The dynamics of a system of ultracold Bose-Einstein condensed bosons is governed
by the Gross-Pitaevskii equation (GPE)

− ih̄
∂φ(r, t)

∂t
=

[
− h̄2

2m
∇2
⊥ + V(r) + g|φ(r, t)|2

]
φ(r, t), (1)

with r = (x, y), ∇2 the Laplacian, m the mass of the bosons, V(x, y) the external potential,
and g the coupling constant. We assume a 2D system characterized by the complex wave
function φ(r, t) of the condensed bosons, with dynamics frozen in the third direction z due
to tight confinement, giving rise then to a quasi-two-dimensional Bose-Einstein condensate.
In the following, we will use complex position operators, ŵ and ˆ̄w, which we define as
ŵ = x̂ + iŷ and ˆ̄w = x̂− iŷ. Their associated momenta are p̂ = −i∂/∂ŵ and ˆ̄p = −i∂/∂ ˆ̄w.
The commutations relations are

[ŵ, p̂] = ŵp̂− p̂ŵ = −i

0︷ ︸︸ ︷
ŵ

∂

∂w
+i

∂

∂w
ŵ = i,

[ ˆ̄w, ˆ̄p] = ˆ̄w ˆ̄p− ˆ̄p ˆ̄w = −i

0︷ ︸︸ ︷
ˆ̄w

∂

∂w̄
+i

∂

∂w̄
ˆ̄w = i.

(2)

From here on we omit the hats in the operators. These definitions allow one to write
the GPE as

− ih̄
∂φ(w, w̄, t)

∂t
=[

− h̄2

2m
∇2

w + V(w, w̄) + g|φ(w, w̄, t)|2
]

φ(w, w̄, t). (3)

Now the Laplacian is, explicitly, ∇2
w = ∂2

∂w2 +
∂2

∂w̄2 . We will consider initial conditions
of the form

φ(w, w̄, 0) =
NA

∏
i=1

(w− ai)
NB

∏
j=1

(w̄− bj)φ00(w, w̄), (4)

with
φ00(w, w̄) = A exp

[
−|w|2/2σ2

]
, (5)

which is a Gaussian of amplitude determined by A and width σ (see some examples of
initial conditions described by this equation in Figure 1). We note that in the case of
BECs the amplitude to the square is the density of the condensate. We normalize the
initial condition (4) to the total number of atoms, N. We keep N in the initial condition
normalization to show explicitly how it appears in a quantity of interest like the merging
point in the non-interacting case and because it determines the distance of the ring of
density to the positions of the singularities (because we fix the position of singularities—see
the examples for two singularities in Figure 1). With this form, the initial condition (4) is a
combination of singularities embedded in a Gaussian wave function. Here, there are NA
(NB) singularities of charge +1 (-1) located at positions ai = (wi, w̄i) (bj = (wj, w̄j)). The
topological charge q of one singularity is defined as the circulation of the gradient of the
phase of the complex field φ(w, w̄) = |φ(w, w̄)|eiθ(w,w̄) in circuits around the positions of
the phase singularities ai (bj), and very close to them, divided by 2π, i.e.,

q =
1

2π

∮
C
∇θ(s)ds. (6)
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In plane words, the phase grows (decreases) 2π along a circuit around ai (bj) assuming
this circuit does not encircle any other singularity. For simplicity of notation we consider in
this point initial conditions which include only individual singularities of charge q = ±1
(as in the initial condition (4)). To consider an initial condition embedding individual
singularities with larger (in modulus) charge is possible: by including powers of factors,
i.e., (w− ai)

k or (w̄− bj)
s, with k and s integers, we would consider singularities of charge

k or −s. We note that the total winding number of the initial condition is the sum of
all topological charges, as it has to be calculated with the same formula but in a circle
that surrounds all singularities inside. We refer to [81] for a pedagogical discussion on
symmetry, angular momentum, topological charge and winding number, with the same
definitions that we use in this manuscript.

Let us now discuss a method to easily find the analytical solutions of the GPE (1)
for multisingular initial conditions, Equation (4), in the linear case, g = 0. This method
was introduced in the context of the paraxial wave equation in optics [40,41] (see also [82]
for an application to a different system). In the following sections we will compare the
solutions analytically obtained for the linear case, with some interesting examples calculated
numerically for the full non-linear equation.

The first step is to expand the initial condition (4) as powers of w and w̄ as follows

φ(w, w̄, 0) = ∑
{n,n̄}

tn,n̄wnw̄n̄φ00(w, w̄), (7)

where {n, n̄} is the set which includes all powers of the form wnw̄n̄ after the expansion and
tn,n̄ are complex coefficients. Let us define the functions

φn,n̄(w, w̄) = wnw̄n̄φ00(w, w̄), (8)

which are defined by means of two quantum numbers, n and n̄.
To give a meaning of these quantum numbers, let us see that they relate to the angular

momentum and radial nodes quantum numbers. We define

` = n− n̄ and p = min(n, n̄). (9)

Let us first consider that n ≥ n̄. Then, one can write Equation (8) as

φ`,p(w, w̄) = |w|2pw` exp
[
−|w|2/2σ2

]
, (10)

which, in polar coordinates, is

φ`,p(r, θ) = r2pr` exp[i`θ] exp
[
−r2/2σ2

]
. (11)

This is a scattering mode (as termed in [41]) labelled by two quantum numbers: the angular
momentum quantum number ` = n− n̄ > 0 and the radial quantum number p = n̄. For
the case n < n̄ one obtains that p = n and ` = n− n̄ < 0, and one can write Equation (8) as

φ`,p(w, w̄) = |w|2pw̄|`| exp
[
−|w|2/2σ2

]
, (12)

which, in polar coordinates, is

φ`,p(r, θ) = r2pr|`| exp[i`θ] exp
[
−r2/2σ2

]
, (13)

which is again a scattering mode. Then, we can expand the initial condition in terms of the
scattering modes (which form a basis) as

φ(r, θ, 0) = ∑
{`,p}

t`,pφ`,p(r, θ), (14)
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that is, as a linear combination of scattering modes with a vortex of charge ` at the origin.
This function (which contains the same information as Equations (7) and (4)) we normalize
to the number of atoms N.

As a second step, let us show how to find the analytical expression for the evolution
of the functions in this basis. First we notice that, in the complex variables, we can write
the effective Hamiltonian leading to Equation (1) with g = 0 as H = pp̄ + V(w, w̄). We
will consider two cases: i) the homogeneous case V(w, w̄) = 0; and ii) that the atoms are
trapped in a parabolic potential, V(w, w̄) = 1

2 mω2|w|2 (in cartesian coordinates, V(x, y) =
1
2 mω2(x2 + y2)). The first case corresponds to the optical case discussed in [40,41], where
the technique used in this paper was introduced for photonic systems. Here we generalize
this technique to the trapped case and compare with the non-linear case, which is the most
relevant for ultracold atom systems.

The evolution operator is U(t) = exp[itH/h̄]. Using the commutation relations
(2), one has that [w, pp̄] = i p̄ and [w̄, pp̄] = ip. Also, we use that [w, ww̄] = 0 and
[w̄, ww̄] = 0. Then, we obtain (We notice the known property that if [A, B] = k, then
[A, exp(λB)] = λk exp(λB))

[w, U(t)] = − p̄
t
h̄

U(t),

[w̄, U(t)] = −p
t
h̄

U(t).
(15)

The last step is to use this commutators to perform evolution. Consider an initial con-
dition which is a scattering mode φ`,p(w, w̄, 0). To evolve it to time t we apply the evolution
operator, φ`,p(w, w̄, t) = U(t)φ`,p(w, w̄, 0). We now use that the scattering mode can be
written as φ`,p = wp+`w̄pφ0,0 if ` ≥ 0 or φ`,p = w̄p+|`|wpφ0,0 if ` < 0 (see Equations (10)
and (12)). Then, using the commutation relations (15) we obtain:

φ`,p(w, w̄, t)

= U(t)φ`,p(w, w̄, 0) = U(t)wp+`w̄pφ0,0(w, w̄, 0)

=

(
w + p̄

t
h̄

)p+`(
w̄− p

t
h̄

)p
U(t)φ0,0(w, w̄, 0),

(16)

if ` ≥ 0 and if ` < 0

φ`,p(w, w̄, t)

= U(t)φ`,p(w, w̄, 0) = U(t)w̄p+|`|wpφ0,0(w, w̄, 0)

=

(
w̄ + p

t
h̄

)p+|`|(
w− p̄

t
h̄

)p
U(t)φ0,0(w, w̄, 0).

(17)

In Equations (16) and (17) one can obtain analytically the evolved scattering mode
φ`,p(w, w̄, t) if one can evolve the function φ0,0(w, w̄, 0). That is if one can obtain the function

G(w, w̄, t) = U(t)φ0,0(w, w̄, 0). (18)

We call this function the generating function of the dynamics. For the homogeneous case,
V(w, w̄) = 0, with an initial condition as (4) with ψ0,0 in (5), the generating function is
conventionally found in simple systems (like free particle in Schrödinger equation).

For the inhomogeneous case, V(w, w̄) 6= 0, with the same initial condition, and
for the particular case where the potential is parabolic, V(x, y) = 1

2 mω2(x2 + y2) that is
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V(w, w̄) = 1
2 mω2|w|2, one can also perform the evolution analytically, provided g = 0. We

will use the two-dimensional harmonic oscillator propagator (see e.g., [80])

φ00(x, y, t) =
csc(t)
2πi

∗ exp
[
−i(x2 + y2) cot(t)

2

]
·

∫ ∫
R2

exp

[
−i

(
(x2

0 + y2
0) cot(t)
2

+ (x0 x + y0 y) csc(t)

)]
·

φ00(x0 + i y0, x0 − iy0, 0)dx0dy0,

(19)

which we have written for time adimensionalized by the frequency ω of the harmonic po-
tential and for space adimensionalized with the harmonic oscillator length aho =

√
h̄/mω.

Then, we can calculate the explicit expression for the generating function G(x, y, t) in
cartesian coordinates

G(x, y, t) =
−Aσ2

s′(t)
exp

[
−(x2 + y2)s(t)

2i ∗ s′(t)

]
, (20)

where s(t) = σ2 sin(t) + 2iπ cos(t). We note that this last expression is 2π-periodic.
Now, to obtain any evolved scattering mode with Equations (16) and (17) one has to

apply several operations to the generating function. To write this in a succinct manner let
us define the raising and lowering operators:

`+(t) = w− i
t
h̄

∂

∂w̄
, and `−(t) = w̄− i

t
h̄

∂

∂w
. (21)

As shown in [41], these operators actually increase/decrease the angular momentum
operator of a general scattering mode φ`,p by one unit. Also let us define the operator
∆ = `+`− which was also shown in [41] to increase its radial quantum number by one unit.
Then, the evolution of a scattering mode can be written as follows:

φ`,p(w, w̄, t) = `
|`|
sign(`)(t)∆

p(t)U(t)φ0,0(w, w̄, 0)

= `
|`|
sign(`)(t)∆

p(t)G(w, w̄, t).
(22)

Let us summarize the method to solve the GPE, Equation (1) when g = 0 and the
initial condition is a multisingular field of the form Equation (4). The method is as follows:

1. Expand the initial condition Equation (4), as a linear combination of terms wnw̄n̄ of
the form (7).

2. Use definition (9) to write this expansion as an expansion in terms of the scattering
modes, Equation (14).

3. Evolve each scattering mode. To this end, find the generating function (which is to
evolve the fundamental mode Φ0,0 in this case).Then use Equation (22) to find each
evolved scattering mode.

4. Use the evolved scattering mode to find the solution, via Equation (14), that is,

φ(r, θ, t) = ∑
{`,p}

t`,pφ`,p(r, θ, t). (23)

Step 3 involves several repetitive operations on the generating function. This can be
done analytically in the homogeneous case, V(w, w̄) = 0. The evolved scattering modes
can be obtained systematically in this case, using the F-polynomials introduced in [41].
These give closed expressions for the evolved scattering modes. We remark here that
the F-polynomials, which are tabulated in [41], obey recurrence relations which facilitate
its computation. We also note that, in the inhomogeneous case, if the potential involves
any combination of w and w̄ and its powers, obtaining the generating function cannot be,
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in general, performed analytically. However, one can still use the method evolving φ0,0
numerically and then, to evolve the scattering modes, perform the operations included
in Equation (22) again numerically. Finally, one builds the solution φ(r, θ, t) as in step 4
(Equation (23)).

We finally mention that the second side of this method, both for the homogeneous
and inhomogeneus cases in the non-interacting g = 0 case, is that it permits one to obtain
algebraic equations for the singularity trajectories. These in turn allow one to determine
several properties related to the position of the phase singularities of the evolved solution
via solving these algebraic equations. To illustrate the method, we offer several examples
in the next section. Also, we compare our results with the non-linear case. To this end, we
use the split-step method to solve the Equation (1) in the non-linear (g 6= 0) homogeneous
and inhomogeneous cases.

3. Some Examples in the Homogenous System
3.1. Two Initial Singularities, One Positive and One Negative

First, we will discuss the case with a field with a positive singularity in a = (a, 0), and
a negative one in b = (b, 0)

φ(w, w̄, 0) = (w− a)(w̄− b)φ00(w, w̄). (24)

We note that the same method can be used for singularities at arbitrary initial conditions,
but the results obtained are long and we omit them here for the sake of simplicity. We
remark here that in all calculations below, we use the adimensionalization mentioned above
for the trapped case (see paragraph after Equation (19)), that is time is scaled by a trapping
frequency ω and positions by the related harmonic oscillator length aho ≡

√
h̄/mω, with

a generic mass and generic frequency. Then, by choosing mass and frequency, one can
recover units.

We first expand the initial condition (24) in powers of w and w̄

φ(w, w̄, 0) = (|w| − aw̄− bw + ab)φ00(w, w̄). (25)

Following step 2 we produce

φ(w, w̄, t) =φ01(w, w̄, t)− aφ−10(w, w̄, t)

−bφ10(w, w̄, t) + abφ00(w, w̄, t).
(26)

And now, step 3 is accomplished using Equation (22), obtaining

φ01(w, w̄, t)=
(

iσ2

q(t)

)(
tσ

πq(t)

)
(1−γ(t)|w|2) exp

[
−iπ|w|2

q(t)

]
φ10(w, w̄, t) = w

(
iσ2

q(t)

)2

exp
[
− iπ|w|2

q(t)

]
φ−10(w, w̄, t) = w̄

(
iσ2

q(t)

)2

exp
[
− iπ|w|2

q(t)

]
φ00(w, w̄, t) =

(
iσ2

q(t)

)
exp

[
− iπ|w|2

q(t)

]
, (27)

where q(t) = t + iσ2 and γ(t) =
πσ2

tq(t)
. Now the solution can be built from Equation (25),

realizing step 4,
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φ(w, w̄, t) =
(

iσ2

q(t)

)
exp

[
− iπ|w|2

q(t)

]
·[(

tσ
πq(t)

)
(1−γ(t)|w|2)−aw̄

(
iσ2

q(t)

)
−bw

(
iσ2

q(t)

)
+ ab

]
.

(28)

Equation (28) is the solution of the evolution for all t, given g = 0. We compared
this solution with those obtained with a numerical simulations of the GPE (1) for g = 0
obtaining complete agreement. The numerical simulations were performed with a split-
step method, which is a spectral method used conventionally when solving non-linear
Schrödinger equations, appearing in various fields, like non-linear optics (see e.g., [83],
where code can be found in appendices). This method is valid for g = 0, for g > 0
(repulsive case) and g < 0 (attractive case). For all simulations we use a computational
domain which is a box where x, y ∈ [−10, 10] in adimensional units. We use a discretization
with M = 1024 points in each side (and then ∆x = ∆y ≈ 0.02 a.u. For the time step we
use also ∆t = 0.02 a.u. We calculate for very long times which depend on the simulations.
That is, the simulation time is limited for the repulsive and attractive case when the density
reaches the boundaries, and starts to interfere with the central dynamics. This maximum
computational time is almost in all (homogeneous) cases tmax = 15 a.u. In the attractive
case, in some instances the computational time is shorter than that because simulation stops
when instability occurs. For the trapped case, we can perform much longer simulations.
For every example shown in this paper, we also calculated with the split-step method in
the non-interacting case to check that the results coincide with the analytical solution. We
checked in all calculations that the energy is conserved during the whole simulation.

Once the linear solution is established, it is interesting to compare with the non-linear
cases. We show a typical non-linear evolution in Figure 2, where we plot the amplitude
and phase after some time evolution for the repulsive case, with N = 30 and g = 0.4. We
present two exemplary times, at t = 1.5 a.u. and t = 2.5 a.u., which are a bit before and a
bit after the merging time (the time at which the two singularities have annihilated each
other). After merging time there is no singularity present in the phase profile. In Figure 3,
we plot the same but for larger interactions strength, g = 0.6. Now for the same time as in
previous example, t = 2.5 a.u., merging of the two singularities has not occurred yet.

For the attractive case, we plot in Figure 4 the amplitude and phase after some time
evolution of different initial conditions, that is, for t = 2.2 a.u., g = −0.5 and N = 5,
N = 20 and N = 30. First we see that the dynamics of the amplitude is very different
in this case when compared to the repulsive one, as expected. In the repulsive one the
amplitude spreads and widens, while in the attractive case it focuses more and more,
leading eventually to instability. The case N = 30 shows an example just a bit before and
after instability occurs (see panels (e) to (h)). Also, in view of Figure 4 we see that for this
g, merging time is larger than t = 2.2 a.u. for N = 5 and shorter for N = 20 (there is no
singularity in the profile for N = 20 yet there are two singularities for N = 5). For N = 30
there are two singularities because N has the effect to make the merging to take place at
larger |g|, for large enough N (that is for this g merging time is larger for N = 30). In
summary, the behavior is very different for different N: whilst for N = 5 and N = 30 we
see the singularities has not merged yet, for N = 20 merging has occurred. Also for N = 30
we see an example just before instability takes place.
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Figure 2. For N = 30 amplitude and phase for g = 0.4 (repulsive case) after t = 1.5 a.u. ((a,b)) and
after t = 2.5 a.u. ((c,d)). Notice we plot a box which is smaller than the computational box. For
t = 1.5 a.u. merging has not yet occurred but for t = 2.5, a.u. the two singularities have merged
leaving a phase profile without singularities. The dashed black squares mark the plotting box in
other figures below.

Figure 3. For N = 30 amplitude and phase for g = 0.6 (repulsive case) after t = 1.5 a.u. ((a,b)) and after
t = 2.5 a.u. ((c,d)). Here, merging has not occurred at t = 1.5 a.u. nor at t = 2.5 a.u., contrarily as in
the case with g = 0.4. The dashed black squares mark the plotting box in other figures below.
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Figure 4. Amplitude and phase for g = −0.5 (attractive case) after t = 2.2 a.u. for N = 5 ((a,b)),
N = 20 ((c,d)), and N = 30, ((e,f)). For t = 2.2 a.u. and N = 5 and N = 30 merging has not yet
occurred. However, for N = 20 it has taken place (see Figure 4 for the cases of N = 5 and N = 30.
We also plot in panels (g,h) the amplitude and phase for N = 30 and t = 4.0 a.u., a time in which
instability has occurred and the simulation is not valid anymore.

We see here that the trajectories followed by the singularities, alternatively referred to
as vortex lines, can show intricate behavior. It is helpful to determine these trajectories for
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the linear case and the compare with the non-linear cases. In these non-linear cases, as we
will see, the trajectories change due to the effect of the density in the dynamics. It would be
very interesting to study, in the context of the literature mentioned in the last paragraph of
the introduction, the behavior in the non-linear case, and whether this method can shed
some light in this direction. However, here we focus on introducing the method to find
equations for the vortex lines in the non-interacting case, and use it to compare with the
interacting case.

To obtain equations of the vortex lines we note that Equation (28) gives more informa-
tion. Equating to zero this solution we can find in which points the solution is zero, for all t.
This will provide equations for the trajectories of the singularities. For this particular case,
the equation is

tσ2(1− γ(t)|w|2)− aw̄iπσ2 − bwiπσ2 + abπq(t) = 0, (29)

which we solve together with its complex conjugate. From here we can find some figures
of merit. In the case of two singularities, we expect that at certain merging time tm, the
two singularities converge and annihilate each other. This merging time can be found
analytically from Equation (29). For b = −a it is

tm =
2a2πσ√
−4a2π + σ2

. (30)

Notice that this expression depends on σ and a. Given a, for different numbers of
atoms, changing σ one can implement the normalization of the initial condition, that is, the
number of atoms N. In Figure 5 we plot how the merging time changes with the number
of atoms in the initial condition, N. As shown, it is a decreasing function of N. Notice
that, due to the way we wrote the initial condition, Equation (4), N governs the distance
between the singularities and the ring of density surrounding them, and the shape of the
density. The dependence of the initial conditions density shape with N is illustrated in
Figure 1.

Figure 5. Decrease of merging time with number of atoms N in the non-interacting case.

In Figure 6a we plot the position of the two singularities as a function of time (the
trajectories or vortex lines), for a = 0.5, b = −0.5, and N = 30 atoms (which gives
σ2 = 10), from the analytical solution, Equation (23). We notice that to find the position
of the singularities requires a dedicated numerical method. For a large enough number
of singularities it may require sophisticated methods, see, e.g., Ref. [84,85] but in our case
we used a simple method. The analytically calculated merging time is tm = 1.9 a.u. In
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Figure 6b–d we plot the position of the two singularities as a function of time for repulsive
interactions, when g = 0.4, 0.54 and g = 1, with N = 30.

Figure 6. (a) Trajectories of phase singularities when the initial condition contains a phase singularity
of charge q = 1 at a = (0.5, 0) and another phase singularity of charge q = −1 at a = (−0.5, 0),
when g = 0 and N = 30. The singularities annihilate at tm = 1.9 a.u. (b–d) Trajectories of phase
singularities for the same initial condition (N = 30) for repulsive interactions given by g = 0.4, 0.54,
and g = 1, respectively. (e,f) Trajectories of phase singularities for an initial condition with N = 5 in
the linear case and for attractive interactions given by g = −0.75, respectively. For N = 5 the merging
time in the non-interacting case is tm = 3.4 a.u. an decreases with |g| (see Figure 2). Green (red) tubes
represent positively (negatively) charged singularities.

The vortex lines shown in Figure 6b, for g = 0.4 illustrate how merging time is
increased with g. The case plotted in Figure 6c, calculated for g = 0.54, shows a case where
the singularities do not merge and seem to stay parallel to the time axis for the whole
computational time (here only plotted up to t = 4a.u. to facilitate location of merging
time). For larger g, the singularities seem to travel outwards (e.g., as in Figure 6d, for
g = 1). However, when calculating for longer times we observe that they bend inwards
again. Nevertheless we cannot study longer dynamics, because of the presence of the
computational boundary, so we cannot be conclusive about the long-time behavior of the
singularities.

In Figure 6e,f we plot the position of the two singularities as a function of time for
the non-interacting case and for attractive interactions, when g = −0.75, with N = 5. In
the attractive case, for N = 30 instability occurs for very small interactions before merging
time, so we calculated for various cases with N < 20 (see also Figure 7). For N = 5 the
merging time in the non-interacting case is tm = 3.4 a.u. (see Figure 5). As seen in Figure 6f
for attractive interactions and N = 5 the merging time is decreased. Nevertheless, this is
not always the case, as we discuss below.

For better visualization, we plot in Figure 7a the x-projection of the trajectories of the
singularities for the same cases as in Figure 6a–d, that is, for N = 30 and for g = 0, 0.4, 0.54
and 1 (blue, magenta, red, green curves respectively). Here, we also see the behavior of the
cases at g = 0.54 and g = 1, where the singularities seem to travel parallel or outwards,
respectively. Nevertheless, as said before, we cannot conclude that they stay traveling
parallel or outwards due to computational limitations. We plot in Figure 7b the merging
time as a function of g for N = 5, N = 20 and N = 30 for the repulsive case. We see that
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for N = 30 the merging time increases only or g > 0.38 approximately while for N = 5 and
N = 20 it increases for every g > 0.

In Figure 7c, we plot the x-axis coordinate of the singularities for the attractive case,
with N = 5 and for g = 0,−0.25, and −0.75. As seen, the merging time decreases as |g|
is increased. Nevertheless, this behavior changes as N is increased. In Figure 7d we plot
the merging time as a function of |g| for N = 5, N = 10 and N = 20 for the attractive case.
We see that for N = 5 (blue curve) the merging time is indeed reduced as the strength of
interactions is increased. For N = 10 (green curve) instead it decreases slightly. For N = 20
(orange curve) the merging time increases with the strength of interactions. It is not the
goal of this paper to study this effect in depth. We conjecture this is an effect of a non-trivial
interplay which involves the dynamical behavior of the density.

Figure 7. (a) Representation of the x position of the trajectories with time, in the repulsive case, for the
same four exemplary cases as in Figure 6 (N = 30, blue, magenta, red, green curves for g = 0, 0.3, 0.54
and g = 1, respectively). As shown, for g = 0.54 they stay parallel for long times. (b) The merging
time as a function of g, for N = 5 (upper, blue curve), N = 20 (green middle curve), and N = 30
(lower, orange curve) atoms in the repulsive case. For N = 5 the merging time is increased for any
value of g. On the contrary, for N = 30, only for g larger than 0.38 the merging time starts to grow. (c)
same than (a) for the attractive case, and three exemplary cases (N = 5, blue, magenta, red curves for
g = 0,−0.25 and g = −0.75, respectively). (d) The merging time as a function of |g|, for N = 5 (blue
curve), N = 10 (green curve), and N = 20 (orange curve) atoms in the attractive case. For N = 5
the merging time decreases with |g|. For N = 10 it decreases slightly and for N = 20 it increases.
In all cases we show the results before instability occurs (we do not show the case with N = 30 as
instability occurs already for g = −0.3).

3.2. Two Positive Singularities and One Negative

Now, let us consider the case with a negative singularity at the origin and two positives,
one at a1 = (a1, 0), the other at a2 = (a2, 0), e.g.,

φ(w, w̄, 0) = (w− a1)(w− a2)w̄φ00(w, w̄). (31)

For g = 0 this case was extensively detailed in [41]. We summarize here all the steps for
illustrative purposes and because the parameters differ from the optics case. We expand
initial condition (31), obtaining

φ(w, w̄, 0) = [w|w|2 − (a1 + a2)|w|2 + a1a2w̄]φ00(w, w̄). (32)
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From here (step 2) we obtain

φ(w, w̄, t) =

φ11(w, w̄, t)− (a1 + a2)φ01(w, w̄, t) + a1a2φ−10(w, w̄, t).
(33)

Now we use Equation (22), to obtain the one wave function we do not have from previous
example

φ11(w, w̄, t)=w
(

iσ2

q(t)

)2( tσ2

πq(t)

)
(2− γ(t)|w|2)exp

[
−iπ|w|2

q(t)

]
. (34)

We obtain the solution from Equation (23) (step 4)

φ(w, w̄, t) =(
iσ2

q(t)

)2

exp
[
− iπ|w|2

q(t)

](
w
(

tσ2

πq(t)

)
(2− γ(t)|w|2)

−(a1 + a2)

(
tσ2

πq(t)

)
(1− γ(t)|w|2) + a1a2w̄

)
.

(35)

Equation (35) represents the solution for all time in the linear case. We also solved
numerically for interacting cases. In Figure 8 we present some illustrative cases, for
N = 150. In panels (a) to (d) we present amplitude and phase for g = 0.3 at t = 1 a.u.
and at t = 4 a.u. ((c) and (d)). As seen one positive singularity has merged with the
central negative singularity, leaving in the origin a positive singularity. We plot in (e)
to (h), amplitude and phase for g = 0.6 at the same times. Very interestingly, now we
observe that at t = 4 a.u. merging has not yet occurred. Very remarkably, two pairs of
positive/negative have appeared far from origin. We discuss this effect succinctly after
obtaining the vortex lines.

Then, to look in some more depth the behavior of the phase singularities, let us study
the trajectories in the linear case. From Equation (35) we find the equations for the trajectories
of the singularities and the merging point. For this particular case the equation is

wtσ2(2− γ(t)|w|2)− (a1 + a2)tσ2(1− γ(t)|w|2)
+ a1a2w̄πq(t) = 0.

(36)

To find the three zeros we need also to solve the complex conjugate of this equation. In
the case that a2 = −a1 the evolution is such that at certain merging time tm one positive
charged singularity merges with the central negatively charged one. The merging time is

tm =
a2

12πσ2√
16σ4 − 4a4

1π2
. (37)

In Figure 9 we plot the position of the three singularities as a function of time (the
vortex lines), for a1 = 1, a2 = −1, and N = 150 atoms (giving σ2 ≈ 10.5) for (a) the linear
g = 0 case and two exemplary interacting cases, (b), (c) and (d) with g = 0.3, g = 0.45 and
g = 0.6, respectively. Again, we use the analytical method for the linear case and numerical
split-step simulations both for the linear (to check it coincides with the analytical) and
interacting cases. The analytically calculated merging time is now tm = 1.9 a.u., and again
it corresponds with the numerically calculated one. As in previous example we observe
that for increasing interactions, the merging time gets larger and larger. We observe a
second effect which is that the singularities emerge again after certain time (see panel (b)
for g = 0.3. We have calculated for a collection of values between g = 0.3 and g = 0.6. We
observed that this re-emergence of the singularities occurs closer and closer to the merging
time and eventually the singularities do not merge again in very long calculations (we
calculated for values pf g up to 1). Also, we observed a third effect of the interactions, really
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remarkable: at certain points, vortex/antivortex pairs appear. They occur in areas of low
density, but outside of the central ring. From Figure 8c, one see that for g = 0.3 the low
density area occurs away from origing. This is the area where the singularities appear in
Figure 8g,h for a larger interactions, g = 0.6. This effect is then not at all trivial, but it falls
out of the scope of this paper. It will be the subject of future research. Finally, we mention
that in this example we have fixed the positions of the vortices in the initial condition in
the x axis. To consider arbitrary positions for the two positive singularities is possible, but
it provides lengthly expressions that we do not reproduce here.

Figure 8. For N = 150, amplitude and phase for g = 0.3 after t = 1 a.u. ((a,b)) and after t = 4 a.u.
((c,d)). In (d) we see that merging of two of the singularities has occurred, leaving only one on-axis
singularity. (e) to (h), same for g = 0.6. Now, at t = 4 a.u. merging has not yet occurred. Also two
pairs of singularities have appeared far from origin. The dashed black squares mark the plotting box
in Figure 9.
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Figure 9. (a) Trajectories of phase singularities when the initial condition contains a phase singularity
of charge q = −1 at the origin, and two singularities with q = 1 each one, at a = (±, 1, 0), when (a)
g = 0, (b) g = 0.3, (c) g = 0.45 and (d) g = 0.6, when N = 150. For the non-interacting case, the
merging point coincides with the analytically calculated. The interactions move the merging time (b).
There is also a re-appearance of the singularities (see panels (b,c)). For large enough singularities,
these singularities do not merge again for very long simulations (see panel (d)). There is also one
more effect visible in panel (d): the generation of vortex-antivortex pairs. Green (red) tubes represent
positively (negatively) charged singularities.

4. Some Examples in the Parabolically Trapped System

In this section we illustrate the dynamical evolution of initial conditions containing
vortices when the external potential is a parabolic trap. The first example is a single
singularity located outside the center of the potential trap, i.e.,

φ(w, w̄, 0) = (w− a)φ00(w, w̄). (38)

In the second example the initial condition contains two singularities, both away from the
center of the potential trap, one positively charged and one negatively charged,

φ(w, w̄, 0) = (w− a)(w̄− b)φ00(w, w̄). (39)

In the third example the initial condition contains three singularities, one negatively
charged located in the minimum of the potential, and two away from its center, both
positively charged,

φ(w, w̄, 0) = (w− a)(w− a′)w̄φ00(w, w̄). (40)

To solve analytically in the linear g = 0 case, we use the method described in Section 2,
for the trapped case. The main difference with the homogeneous case is that one propagates
φ00 using propagator (19) to obtain Equation (20). In Figure 10 we present the dynamical
evolution of the singularities for the three examples (we emphasize that in all cases we
checked that energy is conserved). In Figure 10a we present the case of a single phase
singularity, when a = (1, 0) and N = 12 (σ2 = 10). The trajectory shows the influence
of the trap, as it spins around approaching more the center of the trap. For the second
example, shown in Figure 10b, the trajectories of the two phase singularities with opposite
charge bend around and eventually merge and annihilate each other. From that time on,
no singularity persists in the field. Here, a = (1, 0), b = (−1, 0) and N = 30 (σ2 = 10).
In the third example (Figure 10c), the positively charged singularities perform a spiral
movement before reaching the center of the trap, where one of them annihilate with the
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central negatively-charged one. From that time on, there is only one phase singularity in
the field which stays in the potential minimum of the trap. Here, a = (1.5, 0), a′ = (−1.5, 0)
and N = 150 (σ2 = 10). These three examples show the rich variety of dynamics one can
explore with this method in a parabolic trap. In the panels above these figures we present
these evolutions as three dimensional plots, for a complementary visualization.

Figure 10. (a) Trajectory of a single phase singularity in a parabolic trap, initially off-axis, i.e., located
at a = (1, 0), with N = 12 atoms. (b) Trajectories of two phase singularities in a parabolic trap,
one positively charged initially at a = (1, 0) and one negatively charged initially at b = (−1, 0),
with N = 30 atoms. In this case, the singularities merge at a tm which we obtain numerically.
(c) Trajectories of a negatively charged phase singularity initially at the center of the trap, and two
positively charged phase singularities initially at a = (1.5, 0) and a′ = (−1.5, 0), respectively, in a
potential parabolic trap, with N = 150 atoms. The two positively charged singularities tend to the
center of the trap, where one of them annihilates the central negative phase singularity leaving only
one positively charged singularity which stays there for the rest of the evolution. In all cases, g = 0.
In all panels, time is represented with a color gradient from blue to red. Green (red) circles represent
positively (negatively) charged singularities. Also, we plot on top of each panel the evolution in time,
for better visualization.

To consider interactions shows similar effects as in the homogeneous case, that is,
to contribute to avoiding annihilation of singularities or to create pairs, for instance. To
illustrate this, we show in Figure 11 the evolution with g = 0 and 0.3 when a = (0.5, 0)
and b = (−0.5, 0). This is similar to the second example (shown in Figure 10b), but we put
the singularities initially closer to the minimum of the potential to make the merging time
shorter. As shown in Figure 11a, the singularities tend to center of the trap as in Figure 10b,
and annihilate each other at a merging time of tm = 1.5a.u., leaving a field without
singularities from that time. In the interacting case, shown in Figure 11b, they do not
annihilate at this merging time. Instead, the singularities repel, and perform complicated
trajectories around the center of the trap from that time on. We also observe creation of
pairs which eventually annihilate. The results for larger g (not shown) are qualitatively
similar to the homogeneous case, that is, merging in the center of the trap is avoided and
pairs are created. Here, the trajectories become very intricate and for that reason we do not
include them.



Condens. Matter 2022, 8, 12 19 of 24

.
Figure 11. Trajectory of two phase singularities in a parabolic trap, one positively charged initially at
a = (0.5, 0) and one negatively charged initially at b = (−0.5, 0), for N = 30 atoms, and (a) g = 0
and (b) g = 0.3. In the linear case the singularities merge at a merging time of t = 1.2 a.u. In the
interacting case, the singularities tend to the origin but do not merge. Instead, after colliding at
the center of the trap they perform an intricate dynamics. Green (red) tubes represent positively
(negatively) charged singularities.

5. Conclusions and Outlook

We presented a method which allows one to study different aspects of the dynamics of
a quasi-two dimensional Bose-Einstein condensate with a number of vortices located at ar-
bitrary points. The method has an analytical part, which is only valid when one considers a
vanishing coupling constant. We considered two possible realizations: a homogeneous sys-
tem and a Bose-Einstein condensate in a parabolic trap. For the homogeneous system, the
method is similar to that introduced in the context of photonics [41]. Here, we adapted it to
the case of atoms. In this paper, we extended the method to the trapped case, which is more
conventional in the context of Bose-Einstein condensates. This requires us to determine a
generating function, which is very different than the one in the homogeneous case.

Once this first part is summarized in a recipe with four steps, we showed that the
analytical solution can be used to determine the trajectories of the singularities (vortex lines),
via a set of algebraic equations. These equations can be used to determine some figures
of merit. Then, for the non-linear case, it is necessary to find the numerical solution of the
Gross-Pitaevskii equation via a split-step simulation. The role of the analytical solution
found in the first part is to determine a non-interacting scenario to compare with. The
numerical simulation of the non-linear case allows one to observe how interactions modify
the dynamics obtained in the non-interacting case. For small interactions and depending
on the number of atoms, the dynamics does not change appreciably in some cases.

We illustrated the method with several examples. In the homogeneous system, we
discussed the cases of two singularities with opposite charge and three singularities, one,
located at the origin, with opposite charge than the other two. We found the equations for
the trajectories of the singularities in the two cases. With this we found the merging time
at which two singularities of opposite charge will collide and annihilate. We then turned
on interactions, both attractive and repulsive, and found, numerically, how the trajectories
change and how the merging time changes as a function of the number of particles and the
coupling constant. For two singularities, we exemplified the kind of study one can perform
numerically with this method. For repulsive interactions, we observed that the number of
particles reduces the merging time for the non-interacting case. The merging time increases
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with the coupling constant, but for larger N the merging time is less sensitive to small
values of the coupling constant. For N = 30 atoms we observed that the merging time
does not change until g = 0.38. On the contrary, for larger g the behavior seems similar
irrespectively of the number of atoms. For attractive interactions we see that the behavior
is very affected by the presence of the instability. We show that there is a complex interplay
with the density, which for small N makes the merging time decrease with the strength
of the interactions and for larger N makes the merging time increase with the strength of
the interactions. For three singularities, we observed qualitatively the effect of interactions
(only repulsive) in merging time and an additional effect of the interactions, which is the
spontaneous creation of vortex/antivortex pairs at certain times.

For the inhomogeneous, trapped system, we included examples for one, two oppo-
sitely charged singularities, and three singularities, the one in the origin with opposite
charge than the other two. We showed, within the non-interacting scenario, that the tra-
jectories are influenced by the trap, making the trajectories spiral-like in the trap. We
illustrated the introduction of interactions in one case, only to show that similar effects as
in the homogeneous case are observed, that is, modification of merging time and creation
of vortex/antivortex pairs.

The results presented in this paper are only intended to illustrate the utility of the
method. We envisage several future research directions. For example, to study systemati-
cally the dependence of different quantities of interest, not only merging time, with number
of atoms and interactions, for different cases, such as those included here, both in the
homogeneous and trapped cases. We also consider it interesting to study the phenomena
of creation of vortex/antivortex pairs and its dependence with number of atoms, coupling
constant, and trap frequency. Another research problem which can be approached with
this method is to study initial conditions with many singularities at random positions; we
note that this last case will require us to determine its locations numerically (which as
commented requires a dedicated numerical method as [84,85]). In addition, it will require
us to solve a large set of equations even in the non-interacting case. The perturbative
study and comparison with the analytical solution may give some hints as well. Last but
not least, we see that one can pursue adapting the method to initial conditions which
are more conventional in the context of BECs. That is, with a Thomas-Fermi profile and
vortices separated by their vortex cores or Jones-Roberts solitons sustaining vortices as
in [78,79]. The comparison with the effective models established in the literature may give
interesting results. For the initial conditions studied here, it is still of interest to study the
interplay of the singularities with the density, probably with similar models as those used
for initial conditions with a Thomas-Fermi profile. All these possible directions show that
this method can be of utility in the study of vortices in Bose-Einstein condensates.
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