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Abstract: The thermal expansion coefficient (TEC) of suspended two-dimensional (2D) nanomaterials
is usually negative due to their ability for large out-of-plane deflection as the temperature increases.
The presence of a substrate can nonetheless restrict the flexibility of 2D materials and significantly
change their dimensional change by temperature. In this short communication, the thermal expansion
coefficients of suspended and supported four popular 2D structures of graphene, phagraphene,
C3N and BC3 monolayers is systematically investigated. For this purpose, we conduct molecular
dynamics simulation, in which the atomic interactions are defined by highly accurate machine
learning interatomic potentials. The obtained results show that by increasing the strength of the van
der Waals interactions between the monolayer and the substrate, from 2 meV to 8 meV, the TEC for
graphene and phagraphene increases from a negative value to a positive one; while the negative value
for the C3N and BC3 structures is still retained. Analysis of molecular dynamics trajectories reveals
that the substrate can significantly reduce the formation of out-of-plane wrinkles and consequently
affect the value of TEC. The obtained results provide useful vision on the role of substrate on the
complex thermal expansion responses of 2D materials.

Keywords: 2D materials; thermal expansion; machine learning; molecular dynamics

1. Introduction

Two-dimensional (2D) nanomaterials have unique properties compared to their bulk
counterparts, but when supported over a substrate, their properties may change consid-
erably [1]. Most of 2D materials are grown or synthesized over a substrate, which can be
an insulator, semiconductor, or electrical conductor. Depending on the type of substrate,
the properties of the 2D material can be subsequently affected. For instance, the substrate
reduces the thermal conductivity of graphene from about 2000–4000 W/mK to about
200–800 W/mK [2]. Such a substantial reduction is due to the suppression of out-of-plane
vibrations of graphene atoms, correlated to flexural phonon modes, which yield significant
contribution to the thermal conductivity of graphene. Moreover, such a reduction effect
can happen for any other 2D material supported by a substrate. In addition, the interfacial
thermal resistance between the 2D materials and the substrate can be considered as a barrier
to heat dissipation in nanoelectronics devices [3]. The thermal expansion coefficient is one
of the critical thermal factors in the applications of 2D materials in transistors, batteries,
and nanomechanics [4]. 2D materials usually have a negative TEC in the suspended state.
When the temperature increases, atomic fluctuations and out-of-plane movements increase
more than interatomic bond length elongation, leading to a negative TEC [5]. The presence
of a substrate in other 2D materials significantly impacts the TEC [6–8]. Although the effect
of the substrate has been investigated experimentally and theoretically for graphene [9,10],
it has not been sufficiently studied for other 2D materials.
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Different methods can be employed to study the thermal expansion coefficient in ma-
terials. Experimental and quantum mechanics-based numerical studies are usually costly
in terms of facilities and computational time, respectively. On the other side, molecular
dynamics simulations based on the empirical interatomic potentials, despite their com-
putational efficiency, are not guaranteed to be accurate. Recently, machine learning (ML)
approaches can compromise between highly accurate quantum mechanics methods with
density functional theory (DFT) approximation and computationally efficient molecular
dynamics simulations [11]. In the ML method, the potential function becomes highly accu-
rate by training on different atomic configurations obtained from the quantum ab-initio
calculations. In this study, by employing authentic machine learning interatomic potentials
(MLIPs), we investigate the effect of a substrate on the TEC of various 2D materials of
graphene, C3N, C3B, and phagraphene [12] monolayers.

2. Computational Methods

Figure 1a shows the atomic structures of the two-dimensional materials of graphene,
phagraphene [12], BC3, and C3N monolayers studied in this communication. The optimized
Tersoff [13] potential is traditionally used to describe the atomic interaction within the
considered structures, which cannot accurately predict the phononic properties as com-
pared with DFT calculations [14,15]. Interatomic potentials trained by machine learning
algorithms on quantum ab-initio trajectories can be an excellent alternative to empirical po-
tential functions. In our earlier works, we successfully employed moment tensor potentials
(MTPs) [16], a class of machine learning interatomic potentials, to calculate the thermal
conductivity and thermal expansion of various 2D structures [11]. The phonon dispersion
curves for the considered nanosheets in this work based on MTPs have been previously
compared with DFT results, which confirmed the remarkable accuracy of developed classi-
cal models [11]. Therefore, in the present study we employed the MTPs developed in our
earlier study [11], to analyze the substrate effects on the thermal expansion.
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Figure 1. (a) Atomic structures of studied 2D materials: graphene, phagraphene, C3N (C: blue,
N: yellow points), and BC3(C: blue, B: red points). (b) The schematic view for a supported 2D
material over a van der Waals substrate.

In this paper, the initial sizes of the structures were considered to be around 10 × 10 nm2.
The equation of motion was solved using the Nosé–Hoover thermostat and barostat
(NPT) [17] method, employing the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) [18] package. The time step is considered equal to 1 fs. To consider the
effect of a substrate, a van der Waals wall was positioned under the considered monolayers,
which is schematically shown in Figure 1b. The initial distance between the substrate
and 2D material was about 5 Å, which approaches to the equilibrium distance during the
structural relaxation. The Lennard-Jones (LJ) potential of 12–6 was used to describe the
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non-bonding interaction between the substrate and 2D materials. The LJ potential depth of
the potential well (ε), is considered to be 2, 4, 6, and 8 meV. The corresponding distance
parameter of LJ potential was selected to be 3.4 Å, close to the thickness of graphene. The
boundary conditions were periodic in planar directions and non-periodic perpendicular
to the plane. In order to simulate the thermal expansion process, the temperature of the
monolayers was gradually increased from 50 to 1000 K, with a 25 K step. At each tempera-
ture, first the NPT calculations were carried out for 10 ps in order to equilibrate the lattice
and remove the effects of applied perturbation. The NPT calculations were continued for
another for 50 ps, in which the sizes of the simulation box were averaged. For elaborated
computational details, refer to the data availability section of our recent study [11], which
includes LAMMPS input scripts. By fitting a 3rd order polynomial function on the averaged
area data points, the TEC was calculated as α = 1

A
dA
dT [11,19].

3. Results and Discussion

Figure S1 of the supporting information document shows the results for the evolu-
tion of per-atom area of the supported monolayers as a function of temperature for the
interaction strength of ε = 2 meV. As it can be seen, for full-carbon structures of graphene
and phagraphene, the projected area increases with the temperature rises. This means that
in addition to the increase in wrinkles heights due to the rise in temperature, the bond
length elongation also affects the total area variation. This is in contrast to the behavior
of the suspended monolayers, as observed in our previous work [11]. To better illustrate
the increase in the wrinkles formation in graphene due to temperature rise, in Figure 2 we
illustrate the contour of atomic out-of-plane displacement for four temperatures of 300,
400, 500, and 600 K. In contrast to supported graphene and phagraphene, the projected
area of supported C3N and BC3 with the interaction strength of ε = 2 meV, decreases when
the temperature increases, as shown in Figure S1. This finding reveals that the increase
in out-of-plane deflection of these structures by the temperature rise is more dominant
as compared with the bond length elongation. Table 1 shows the coefficients of the fitted
3rd order polynomial function on the size variation of the monolayers with respect to the
temperature and the corresponding area at 300 K.
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Figure 2. Contour of out-of-plane displacement with respect to the center of mass of supported
graphene on the substrate with the interaction strength of ε = 4 meV between the substrate and
the graphene.

Figure 3 illustrates the predicted TEC curves for graphene and phagraphene in the
presence of a substrate with four different interaction strengths and suspended without
a substrate. As it is shown, when the interaction strength increases, the TEC value shifts
from a negative value for the suspended form to a positive value for the supported cases.
This behavior is in accordance with what has been found in a recent study by Feng et al. for
graphene [10], in which they investigated the effect of a CH4 substrate on graphene TEC by
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both experimental and molecular dynamics calculations. The TEC results for the supported
BC3 and C3N 2D structures are also compared in Figure 3. Although these two supported
monolayers yield less negative TEC values, as compared with their suspended forms, their
TEC stays negative but approaches zero when ε goes from 0 to 8 meV. Figure S2 compares
the atomic out-of-plane displacement contour for considered monolayers at T = 300 K,
with and without the presence of a substrate (ε = 0 and 4 meV). It can be seen that the
amount of wrinkles area can be significantly reduced with the substrate effect. However,
in both supported C3N and BC3 nanosheets, the formed wrinkles are more considerable
in comparison with graphene and phagraphene, which could explain the negative TEC
values of the C3N and BC3 structures. As it is clear, despite of similar atomic structures,
the considered monolayers show different thermal expansion behaviors. On this basis, the
MLIP potential has to be specifically developed for a given material, in order to accurately
explore the thermal expansion behavior. Another aspect that can be explored in the future
studies, is to investigate the effects of number of layers on the thermal expansion response
of 2D materials.

Table 1. Per-atom area fitting curve (aT3 + bT2 + cT + d) coefficients between 50–1000 K for the
supported monolayers with interaction strength of ε = 4 meV.

Graphene Phagraphene C3N BC3

a (K−3 Å2) 4.34 × 10−12 2.26 × 10−10 1.95 × 10−12 −1.09 × 10−11

b (K−2 Å2) 8.68 × 10−9 −2.04 × 10−7 6.51 × 10−10 8.68 × 10−9

c (K−1 Å2) 9.79 × 10−6 5.46 × 10−5 −1.77 × 10−5 −1.28 × 10−5

d (Å2) 2.629 2.698 2.557 2.893
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(ε = 0 meV) and supported monolayers with four different interaction strengths of ε = 2, 4, 6 and 8 meV.

4. Summary

In summary, the thermal expansion coefficients of suspended and supported four
carbon-based nanosheets were investigated by employing highly accurate and computa-
tionally robust machine learning interatomic potentials. For the supported monolayers, the
Lennard-Jones potential was employed to describe interactions between the considered
monolayers and the substrate. The main findings can be summarized as follows:
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(1) The presence of substrate can significantly reduce the wrinkles formation of nanosheets
at elevated temperatures.

(2) The projected area of graphene and phagraphene in two forms of with and without
a substrate show different behavior with respect to the temperature. Without a
substrate, the projected area decreases with increasing temperature. In contrast, for
the supported monolayers with the presence of substrate, the size of the structure
increases when the temperature rises. This behavior leads to a positive thermal
expansion coefficient of supported graphene and phagraphene, whereas they both in
the suspended form exhibit negative thermal expansion coefficients.

(3) The projected area of the C3N and BC3 monolayers in the presence of substrate
decreases with increasing temperature, similar to that occurs for their suspended
forms. On other words, the presence of the substrate is not as strong to overcome the
increase in the formation of wrinkles as the temperature rise, which result in retaining
the negative thermal expansion coefficient of the C3N and BC3 nanosheets.

(4) The increase in the strength of interaction between the substrate and the 2D material
from 0 meV to 8 meV leads to increase of the algebraic value of the thermal expansion
coefficient, which at room temperature was predicted to raise from: −2.95 × 10−6 K−1

to 3.15 × 10−6 K−1 for graphene, from −6.49 × 10−6 K−1 to 3.62 × 10−6 K−1 for
phagraphene, from −11.9 × 10−6 K−1 to −5.76 × 10−6 K−1 for the C3N, and from
−8.51 × 10−6 K−1 to −1.95 × 10−6 K−1 for the BC3 monolayer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/condmat7040067/s1, Figure S1: Evolution of the supported
monolayers per-atom area as a temperature function for the interaction strength of ε = 4 meV;
Figure S2: Contour of out-of-plane displacement with respect to the center of mass of considered
monolayers in suspended form (without substrate) and supported form (with substrate) in ε = 4 meV.
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