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Abstract: The experimental discovery that compressed sulfur hydride exhibits superconducting
transition temperature of Tc = 203 K by Drozdov et al. (Nature 2015, 525, 73–76) sparked studies
of compressed hydrides. This discovery was not a straightforward experimental examination of a
theoretically predicted phase, but instead it was a nearly five-decade-long experimental quest for
superconductivity in highly compressed matters, varying from pure elements (hydrogen, oxygen,
sulfur), hydrides (SiH4, AlH3) to semiconductors and ionic salts. One of these salts was cesium iodide,
CsI, which exhibits the transition temperature of Tc ∼= 1.5 K at P = 206 GPa (Eremets et al., Science
1998, 281, 1333–1335). Detailed first principles calculations (Xu et al., Phys Rev B 2009, 79, 144110)
showed that CsI should exhibit Tc ∼ 0.03 K (P = 180 GPa). In an attempt to understand the nature
of this discrepancy between the theory and the experiment, we analyzed the temperature-dependent
resistance in compressed CsI and found that this compound is a perfect Fermi liquid metal which
exhibits an extremely high ratio of Debye energy to Fermi energy, }ωD

kBTF
∼= 17. This implies that direct

use of the Migdal–Eliashberg theory of superconductivity to calculate the transition temperature
in CsI is incorrect, because the theory is valid for }ωD

kBTF
� 1. We also showed that CsI falls into the

unconventional superconductors band in the Uemura plot.

Keywords: cesium iodide; insulator-metal transition under pressure; nonadiabatic type
of superconductors

1. Introduction

Since superconducting transition at 203 K was observed in highly compressed sulfur
hydride by Drozdov et al. [1], dozens of superconducting hydrogen-based phases have
been discovered [2–17] (extended reviews on the current status of the topic can be found
elsewhere [18–20]). The report by Drozdov et al. [1] was the triumphant culmination of a
nearly five-decade-long journey in the terra incognita of hydrogen-rich compounds [21]
and highly compressed matter [22]. On this journey, the superconductors family was
significantly extended and the superconducting transition was experimentally observed in
many non-superconducting (at ambient conditions) elements/compounds. At the same
time, the transition was not observed in materials for which the first principles calculations
(FPC) and the Eliashberg theory [23] of the electron–phonon mediated superconductivity
predicted a high critical temperature, Tc. We may mention AlH3 [24,25] as an outstanding
case of this class of materials.

However, more often, the superconducting transition was observed, but predicted
Tc significantly exceeds the experimental value. The most notable case of this class of
materials is compressed SiH4 for which Feng et al. [26] calculated a Debye temperature of
Tθ = 3500− 4000 K and Tc ∼= 165 K, while the experiment performed by Eremets et al. [27]
showed that Tc = 7− 17 K.

More intriguingly, there are several highly compressed compounds in which exper-
imentally observed Tc significantly exceeds the calculated value. The most famous case
of these highly pressurized compounds is sulfur hydride, for which Li et al. [28] initially
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predicted Tc ∼= 80 K. However, Drozdov et al. [1] reported that the experimentally observed
transition temperature is significantly higher, Tc = 203 K, and the observed value is in
excellent agreement with theoretical calculations reported by Duan et al. [29].

Another material from this category is highly compressed CsI, for which detailed first
principles calculations performed by Xu et al. [30] predicted Tc = 0.03 K at a pressure of
P = 180 GPa, while the experimental value reported by Eremets et al. [31] is Tc ∼= 1.5 K (at
P = 206 GPa).

In this work, we answer the question, why highly compressed CsI exhibits nearly
two orders of magnitude higher Tc in comparison with the predicted value by FPC and
the Eliashberg theory of electron–phonon mediated superconductivity. Our answer is that
highly compressed CsI exhibits an enormous ratio of the Debye temperature, Tθ , to the
Fermi temperature, TF, Tθ

TF
∼= 17, while the Eliashberg theory [23] of the electron–phonon

mediated superconductivity is valid for Tθ
TF
� 1.

2. Results
2.1. The Electron–Phonon Coupling Constant and the Debye Temperature in CsI at p = 206 GPa

Cesium iodide is isoelectronic with the noble gas solid xenon (i.e., Cs+ and I− ions in
ionic salt have closed xenon-like electronic shells, and the short-range interaction between
Cs+ and I− ions in uncompressed salt and two Xe atoms in solid xenon is identical). The
main difference between Xe and CsI is the very strong Coulomb interaction in cesium iodide
in comparison with xenon [32,33]. The strength of the Coulomb interaction decreases on
compression, and at P ∼= 110 GPa CsI is metallized [31,33].

In the theory of the electron–phonon mediated superconductivity [23,34], the phonon
spectrum is one of the primary properties that determine the superconducting transition
temperature, Tc, and, thus, this is of great interest to determining the main characteristic
parameter of this spectrum, i.e., the Debye temperature, Tθ . This value can be deduced
from the fit of temperature-dependent resistance, R(T), to the Bloch–Grüneisen (BG)
equation [35–40]:

R(T) = R0 + A×
(

T
Tθ

)5
×
∫ Tθ

T

0

x5

(ex − 1)(1− e−x)
· dx, (1)

where R0 is the residual resistance at T → 0 K, and the second term describes the electron–
phonon scattering, where A and Tθ are free-fitting parameters. Equation (1) was applied
to deduce the Debye temperature in many highly compressed superconductors, for in-
stance, in black phosphorus [41], boron [41], sulphur [42,43], lithium [42], ζ-phase of
O2 [42], SnS [37], GeAs [41], SiH4 [41], H3S [41,43], D3S [41,43], LaH10 [41,43], C2/m-
SnH12 [44], Th4H15 [45], ThH9 [45], ThH10 [45], YD6 [45], metallic hydrogen phase-III [45],
and (La, Nd)H10 [46].

The fit of the R(T) curve of compressed CsI (P ∼= 206 GPa) reported by Eremets
et al. [31] in their Figure 3B of [31] to Equation (1) is shown in Figure 1a. The derived Debye
temperature is Tθ = 339± 1 K. From this value and the measured Tc ∼= 1.1 K [31] (see
Figure 5 of [31]), one can calculate the electron—phonon coupling constant, λe−ph, as the
root of an advanced McMillan equation [41]:

Tc =

(
1

1.45

)
× Tθ × e

−(
1.04(1+λe−ph)

λe−ph−µ∗(1+0.62λe−ph)
)
× f1 × f ∗2 (2)

f1 =

(
1 +

(
λe−ph

2.46(1 + 3.8µ∗)

)3/2
)1/3

(3)

f ∗2 = 1 + (0.0241− 0.0735× µ∗)× λ2
e−ph (4)



Condens. Matter 2022, 7, 65 3 of 10

where µ∗ is the Coulomb pseudopotential; it can be assumed that µ∗ = 0.13 [4,18–20]. In the
result, λe−ph = 0.445 was calculated as a root of Equations (2)–(4). It can be noted that the
deduced λe−ph = 0.445 is close to λe−ph = 0.43 for aluminum [47]. It should also be men-
tioned that deduced Tθ = 339± 1 K for CsI is not very different from Tθ = 394–428 K [48,49]
for aluminum.
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Figure 1. Temperature-dependent resistance data, R(T), in highly compressed cesium iodide
(P = 206 GPa) and data fits to Equation (1) (panel a) and Equation (5) (panel b). Raw R(T) data are
from [31]. (a) p = 5, deduced Tθ = 339± 1 K, R0 = 0.0995 Ω, fit quality R-Squared (COD) = 0.9993;
(b) deduced p = 2.01± 0.01, Tω = 516± 3 K, R0 = 0.0988 Ω, fit quality R-Squared (COD) = 0.9998.
95% confidence bands (in pink) are narrower than the fitting curves width.

One can make a comparison of the Tθ = 339 K and λe−ph = 0.445 values derived from
experiment (P = 206 GPa) with the values computed by first principles calculations [30].
Xu et al. [30] reported λe−ph = 0.262 (P = 180 GPa) and λe−ph = 0.257 (P = 216 GPa),
and both these values are significantly lower than the one deduced from the experiment
here. Xu et al. [30] also calculated the logarithmic phonon frequency }

kB
ωlog = 285 K

(P = 180 GPa), and }
kB

ωlog = 314 K (P = 216 GPa). By its definition, ωlog is close, but does

not exactly equal, to the Debye frequency, Tθ = }
kB

ωD, and this is what one can see for these
values in highly compressed CsI.

By utilizing the Allen–Dynes equation [47,48] and µ∗ = 0.10, Xu et al. [30] calcu-
lated Tc = 0.03 K (P = 180 GPa) and Tc = 0.025 K (P = 216 GPa). Both calculated
that the Tc values (and this was acknowledged by the authors of [30]) are by about two
orders of magnitude lower than the experimental value. To explain this discrepancy, Xu
et al. [30] hypothesized that because first principles calculations show that the CsI exhibits
an anisotropic crystalline structure (under pressure), then the Allen–Dynes equation [48,50]
(developed for the single-band isotropic superconductors) cannot accurately average an
anisotropic case.
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Our explanation for the discrepancy is based on a different idea which arose from a
more advanced analysis of the temperature-dependent resistance curve described below.

2.2. Perfect Fermi Liquid Conductor CsI at p = 206 GPa

Despite the fit of the R(T) curve for the compressed CsI to the BG equation (Equation
(1)) having a high quality (Figure 1a), more advanced analysis is based on the approach
when the power–law exponent in Equation (1) is a free-fitting parameter [51–55]:

R(T) = R0 + A×
(

T
Tω

)p
×
∫ Tω

T

0

xp

(ex − 1)(1− e−x)
· dx. (5)

In this approach, the Tω (Equation (5)) is not any longer the Debye temperature;
however, this temperature represents a characteristic energy scalar for the charge carrier
interaction in the conductor. There are several integer p-values which associate with a
particular charge-carrier interaction mechanism [56–58] and, in particular, p = 2 implies
that charge carriers in the conductor obey a perfect Landau’s Fermi liquid phenomenol-
ogy [56–58].

It should be mentioned that for some materials, such as ReBe22 [53,59] and
(ScZrNb)0.65[RhPd]0.35 [54,60], the power–law exponent is indistinguishable from 5, which
implies that these materials are pure electron–phonon-mediated superconductors. How-
ever, for the majority of highly compressed superconductors, including the ε-Fe phase, the
power–law exponent, p, varies between 1.80 ≤ p ≤ 3.3 [53–55].

The fit of the R(T) curve in the CsI (P = 206 GPa) to Equation (5) is shown in Figure 1b,
where it can be seen that the deduced p is indistinguishable from p = 2.0. This means that
the highly compressed CsI at (P = 206 GPa) is a perfect Fermi liquid metal.

2.3. Compressed CsI (p = 206 GPa) in the Uemura Plot

One of the widely accepted ways to classify the superconducting state in the material
is to position the material in the Uemura plot, i.e., in the plot where the X-axis is the
Fermi temperature, TF, and the Y-axis is the transition temperature, Tc [61,62]. The Fermi
temperature in the superconductor can be calculated by the equation [42,63,64]:

TF =
εF
kB

=
π2

8·kB
×
(

1 + λe−ph

)
× ξ2(0)×

(
α

kBTc

}

)2
, (6)

where εF is the Fermi energy, kB is the Boltzmann constant, α = 2·∆(0)
kB ·Tc

, and ∆(0) is the
amplitude of the ground state energy gap, } = h/2π is the reduced Planck constant, and
ξ(0) is the ground state coherence length. Based on a very large database on electron–
phonon-mediated superconductors [47], one can expect that the CsI (P = 206 GPa) which
exhibits λe−ph = 0.445 should have α = 2·∆(0)

kB ·Tc
not very different from 3.53, and we used

this value in our calculations. Thus, to calculate TF in the compressed CsI, one needs to
estimate the ground state coherence length ξ(0) (Equation (6)).

We deduce ξ(0) for the compressed CsI (P = 206 GPa) from the fit of the temperature-
dependent upper critical field, Bc2(T), to the simplest equation of the Werthamer–Helfand–
Hohenberg theory [65,66]:

Bc2(0) =
φ0

2πξ2(0)
= −0.697× Tc ×

(
dBc2(T)

dT

)∣∣∣∣
T∼Tc

. (7)

The upper critical field represents the applied magnetic field in which the super-
conducting state collapses in the experiment. We extracted the Bc2(T) dataset in highly
compressed CsI from the magnetoresistance data reported by Eremets et al. [31] in their
Figure 5. To define Bc2(T) we utilized a 50% normal state resistance criterion. The fit of the
Bc2(T) data is shown in Figure 2, from which ξ(0) = 26± 3 nm was estimated.
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Figure 2. Superconducting upper critical field, B(T), data (blue) for compressed CsI at pressure
p = 206 GPa (data is from [31]) and fit to WHH model [65,66] (Equation (7)) for which Tc was fixed it
is experimental value of 1.087 K; fit quality R-Squared (COD) = 0.90.

From all determined/estimated values, one can calculate TF = 20± 4 K and the ratio
of Tc

TF
, which varies within a range:

0.04 .
Tc

TF
. 0.07 (8)

In the result, the CsI (P = 206 GPa) falls into the unconventional superconductors
band in the Uemura plot (Figure 3).

It should be noted that the A-15 superconductor V3Si (which exhibits the electron–
phonon-mediated superconductivity with λe−ph = 0.96 and α = 2·∆(0)

kB ·Tc
= 3.7 [47,67]) is

also located in the unconventional superconductors band in the Uemura plot (Figure 3).
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Another material which can be mentioned is the magic-angle twisted bilayer graphene
(MATBG) which exhibits very close Tc = 1.4± 0.3 K and TF = 23± 6 K values [68,69]
(Figure 3) to the compressed CsI.

Thus, our result that the highly compressed CsI (exhibited λe−ph = 0.445) falls into
the unconventional superconducting band manifests itself as an interesting, but not unique,
case. The explanation of this result is based on, roughly speaking, the degree of Cooper
pairs overlapping [70]. In CsI and V3Si, the average size of the Cooper pairs at the low
temperature, ξ(T → 0), is comparable with the average distance between pairs and, thus,
the pairs overlapping is not significant and is close to the Bose–Einstein condensate [70].
However, in superconductors located on the BCS side of the Uemura plot (Figure 3), the
distance between the Cooper pairs centers is significantly smaller than the ξ(T → 0) and
the pairs’ overlapping is high. Details for the position of the superfluid 4He in Figure 3 can
be found elsewhere [62].

2.4. Nonadiabalic Superconductivity in CsI (P = 206 GPa)

It is important to note that one of our central findings is that our analysis shows that
the compressed CsI is a remarkably prominent nonadiabatic superconductor. This finding
directly follows from the ratio of the Debye temperature, Tθ (for which we used the value
deduced from the R(T) data fit to Equation (1), to the Fermi temperature, TF:

}ωD
kBTF

∣∣∣∣
CsI, P=206 GPa

=
Tθ = 339 K
TF = 20 K

= 17± 4. (9)

Roughly speaking, the Eliashberg theory of electron–phonon-mediated supercon-
ductivity [23] is based on Migdal’s theorem [71], which is the many-body version of the
principle of Born–Oppenheimer [72]. Namely, it is an argument over adiabaticity, since
charge-carrier particles are expected to move faster than ions. Thus, instead of taking the
interaction with an electron in a certain position, it is easier to consider the interaction with
the full electronic cloud. This consideration is applicable if the electrons are much faster
than ions, but in some materials (such as in the C60 compound), the Fermi energy and the
average phonon energy are just the same, and for these materials the Migdal theorem [71]
and the Eliashberg theory [23] are no longer valid.

These kinds of superconductors, designated as nonadiabatic superconductors [73],
were first theoretically considered by Pietronero and co-workers nearly three decades
ago [73–77]. Pietronero and co-workers [73–77] considered the generalization of the many-
body theory of superconductivity in the cases in which the Migdal theorem does not work,
typically the systems with very low Fermi energy (or Fermi velocity, or Fermi temperature).

3. Discussion

Equation (9) shows that the compressed CsI (P = 206 GPa) exhibits relatively “very
fast” phonons and relatively “very slow” charge-carriers. For instance, one can make a
comparison of the ratio for the CsI (Equation (9)) with the ratio for elemental electron–
phonon superconductors (data for the ratios are taken from [49]):

}ωD
kBTF

∣∣∣∣
Pb

=
Tθ = 88 K

TF = 110000 K
= 8× 10−4. (10)

}ωD
kBTF

∣∣∣∣
Nb

=
Tθ = 265 K

TF = 61800 K
= 4× 10−3. (11)

}ωD
kBTF

∣∣∣∣
Al

=
Tθ = 394 K

TF = 136000 K
= 3× 10−3. (12)

Equation (9) shows that the standard Migdal–Eliashberg theory [23,71] of the electron–
phonon-mediated superconductivity is inapplicable for highly compressed CsI and, there-
fore, this is our explanation for the discrepancy between the superconducting transition
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temperature, Tc, predicted by first-principles calculations [30] (following standard Allen–
Dynes methodology [48,50]) and the observed Tc in experiment [31].

To the best of our knowledge, such a large }ωD
kBTF

∣∣∣
CsI, P=206 GPa

= 17 ratio has not been

reported for any superconductor to date.

4. Conclusions

In ambient conditions, CsI represents typical ionic salt, which transforms into a metallic
state at high pressure. Xu et al. [30] performed first principle calculations for compressed
CsI and established that within the Migdal–Eliashberg theory [23,69] this compound should
exhibit the superconducting transition temperature Tc(p = 180 K)~0.03 K. Experiments
performed by Eremets et al. [31] showed that highly compressed CsI exhibited a nearly two
orders of magnitude higher transition temperature Tc(p = 206 K)~1.5 K.

In attempts to find the primary origin for the discrepancy between the theory and the
experiment, here we analysed available experimental data measured in highly compressed
CsI (p = 206 GPa) and found that:

1. CsI is a perfect Fermi liquid metal.
2. CsI exhibits an extremely high ratio of Debye energy to Fermi energy, }ωD

kBTF
∼= 17.

Based on this, one can conclude that the superconducting state in this compound
cannot be described by the Migdal–Eliashberg theory [23,69] because the theory is
valid when }ωD

kBTF
<< 1.

3. CsI exhibits the ratio of Tc=1.1 K
TF=20 K = 0.055± 0.015 and, thus, it falls to the unconventional

superconductors band in the Uemura plot. This level of the Tc
TF

ratio is typical for
many superconductors, including the electron–phonon-mediated A-15 compound
V3Si. It should be mentioned that the magic-angle twisted bilayer graphene exhibits
close Tc = 1.4± 0.3 K and TF = 23± 6 K values [68,69].
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