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Abstract: In this work, we investigate the collective role of thermal and quantum fluctuations on
non-equilibrium thermodynamics of a quantum system, specifically, the quantum-thermodynamic
description of spin-1 nuclei based on the concepts of quantum and statistical mechanics. We explore
the dynamical response of the system when driven out of equilibrium by a work parameter and
compute analytically the full distribution of the work generated by the process. Considering work
performed on the system as a random variable, we collect data for a large number of repeated cyclic
processes of finite time. These data of finite time non-equilibrium processes will permit us to derive
equilibrium values in quantities such as the free energy difference between the final and initial states
of the system. Various properties of the system’s work distribution are explored.

Keywords: nuclear magnetic resonance; non-equilibrium process; spin-1 magnetic system; quantum
thermodynamics

1. Introduction

In the real physical world, both thermal and quantum fluctuations play a crucial role
in bringing change to the state of a system itself or to the system’s state. This implies that
the collective contribution of thermal and quantum fluctuations brings out changes in the
thermodynamic properties of matter. Fluctuations are also important on nanometer scale
systems and lead to the large variability of mechanical and functional properties. They
may also create noises affecting the performance of the devices. Thus, fluctuations are
unavoidable either in the thermodynamic description or in the atomic description of the
system. The field of study that incorporates both thermal and quantum fluctuations in its
description of the system is known as quantum thermodynamics.

Quantum thermodynamics emerges as a theory aimed to interrelate the microscopic
theory to macroscopic measurements. This means that it plays a continuous dialogue be-
tween the two independent theories: thermodynamics and quantum mechanics. So, in the
study of quantum thermodynamics, it is possible to address the thermodynamic laws from
inherent quantum mechanical theories. Unlike that of quantum statistical mechanics [1],
it emphasizes the dynamical processes out of equilibrium. Hence, in quantum thermody-
namics, there is a quest for the study of a single individual quantum system. The recently
developed, highly controlled quantum experiments

(
[2,3]

)
, the availability of powerful

numerical methods [4], and the development of novel theoretical tools
(
[5,6]

)
further help

scientific scholars rely on the field of quantum thermodynamics. In general, quantum
thermodynamics is used to extend the theory of standard thermodynamics [7] and non-
equilibrium statistical mechanics [8] to an ensemble of sizes well below the thermodynamic
limit, in non-equilibrium situations, and with the full inclusion of quantum effects.

In thermodynamics, as a macroscopic theory [7,9], the limited number of macroscopic
variables, such as volume, temperature, and pressure are used to completely characterize
the state of the thermodynamic system near equilibrium, and further used to model the
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exchange of energy, work and heat based on few laws. Equilibrium thermodynamics is
the systematic study of the transfer of matter and energy within the system as they pass
from one equilibrium state to another. On the other hand, non-equilibrium thermody-
namics deals with physical systems that are not in thermodynamic equilibrium in terms
of variables that represent an extrapolation of the variables used to specify the system in
thermodynamic equilibrium. Non-equilibrium thermodynamics is mainly concerned with
transport processes and with the rate of chemical reactions [10].

The microscopic constituents of the thermodynamic system are always in a state
of inherent chaos and randomness so the variables underlying the microscopic world
are constantly fluctuating. Such fluctuations in non-equilibrium dynamics contribute to
quantum fluctuations. The out-of-equilibrium dynamics of quantum systems has so far pro-
duced important statements on the thermodynamics of small systems undergoing quantum
mechanical evolutions [11,12]. Particularly, Crooks and Jarzynski’s relations [13,14] have
provided the relations that connect equilibrium properties of thermodynamical relevance
with explicit non-equilibrium features. Although in the real world, it is impossible to isolate
a particular quantum system from its surroundings, recent advancements in experimental
techniques allow one to measure and control systems at the level of single molecules and
atoms [15,16]. The random fluctuations present in small systems affect thermodynamic
quantities, such as work and heat, so they must be included in the description of the whole
system’s dynamics. Recently, a number of authors have proposed definitions of work,
and derived fluctuation theorems for quantum systems [5,13,17–19]. However, in non-
equilibrium processes, the work conducted must be treated as a random variable [14,20].
Therefore, a statistical approach is needed to find the average value of the work distribution.

The Gibbs formulation in equilibrium statistical mechanics [21] provides a powerful
means to explain the macroscopic properties of thermodynamic systems from the fluctuat-
ing microscopic variables. Since the quantum fluctuations (ever existing at the atomic level)
cannot be easily measured macroscopically, statistical mechanics focuses on the ensemble
of a large number of systems where those fluctuations become negligible. So, the mea-
surements we experience at the macroscopic level take place by averaging the fluctuations
taking place at the microscopic level. The averaging is performed by implementing the law
of large numbers [22]. Indeed, talking about the average behavior of a given ensemble of
systems in statistical mechanics is probabilistic.

Studies on the non-equilibrium thermodynamics of nuclear magnetic resonance (NMR)
of spin-half sample nuclei have been performed in 2016 [19]. We extend their work to the
NMR of spin-one nuclei where the sample atomic nuclei are first subjected to a strong static
magnetic field, B0, in the z-direction and are perturbed by a weak radio frequency field, B1,
applied along a direction perpendicular to B0. As the nuclei interact with B0, their energy
splits into three levels with respect to the orientation of B0. Then, B1, causes a transition in
the state of the system from its previous state. So, we intend to solve the work distribution
as transitions are promoted by the perturbation. We further want to monitor the average
work conducted both as a function of frequency and time. In general, Spin-1 nuclei such as
deuterium atomic isotopes when exposed to an external magnetic field will orient in three
possible discrete states. To the best of our knowledge, we have not seen any previous work
dealing with their quantum thermodynamic properties. Their rich properties motivated us
to address them.

The rest of this work is organized as follows. In section 2, the model system is pre-
sented along with the protocol to administer the cyclic process in order to collect data.
In Section 3, the time evolution of the system under static and rotating magnetic fields
is worked out. Section 4 derives the expression for the mean polarization along the
x, y, and z-axis. Section 5 deals with the different aspects of work distribution. In Section
6, work distribution properties are explained starting from their characteristic functions.
Lastly, the summary and conclusion are given in Section 7.
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2. The Model

We consider a sample of spin-1 nuclei placed under a strong static magnetic field, B0,
oriented in the z-direction. Since in such a nucleus the charge distribution is not spherically
symmetrical, the energy of the nucleus depends on its spin orientation with respect to the
non-uniform internal electric field existing at its location [23]. Accordingly, each nucleus can
be in any one of the three quantum state orientations: parallel, anti-parallel or perpendicular
to the external magnetic field, B0. The spin Hamiltonian for the interaction of every single
spin with this static field, B0, is given by

H0 = −µ · B0 (1)

where µ is the magnetic polarization of the nuclei. The nuclear spins are more strongly
coupled to the external environment than to their molecular environment. So, by neglecting
the effect of quadrupolar interactions of the nuclei, which is due to the rotation of the
electric charge of the nuclei, here we only consider nuclear spin interaction with the
external magnetic field. We attached this spin-1 system to a heat bath of temperature T
while we made an assumption that the system is extremely weakly coupled to the bath
such that the energy relaxation and the decoherence rate are proportionally very small for
the undergoing process to be unitarily evolving. Initially, we let the system equilibrate
with the heat bath. A finite-time cyclic process was carried out according to the following
procedure with a corresponding collection of data during each cycle.

Model of operating the cyclic process and collecting data—the protocol. Once the
system has equilibrated, a weak alternating r.f. magnetic field is switched on and its
corresponding energy value, Ei, is measured at the start time (t = 0). The r.f. field is
imposed to act on the system until time τ and switched off while its corresponding energy
value, E f , is measured at the end. The system is allowed to equilibrate once again and
the same procedure of switching on and off the r.f. magnetic field is carried out with its
corresponding measurements of Ei and E f taken. This cyclic process is performed a large
number of times up until there are enough data to carry out the statistics.

3. Time Evolution of the Model under Static and Rotating Magnetic Fields

In this section, we place our model system in a strong static magnetic field Bo in
the z-direction and study its time evolution using the standard Schrodinger equation
(Section 3.1). Our system is further subjected to a weak alternating r.f. field rotating in
the xy-plane with frequency ωz and the time evolution of the combined action is studied
accordingly (Section 3.2).

3.1. Spin-1 in a Static Magnetic Field

The Schrodinger equation for a nuclear spin in a strong static magnetic field oriented
along the z-direction is:

i
∂|ψ〉

∂t
= Ĥ0|ψ〉 = −µz · B0|ψ〉 = −ω0Iz|ψ〉. (2)

where we have used ω0 = −γB0 as Larmor frequency, γ the gyromagnetic ratio and } = 1.
Since the Hamiltonian, H0, is proportional to an operator (Iz), H0 and Iz commute and
as a result share common eigenstates. This statement will be clear when we write the
Hamiltonian as a matrix in the Zeeman eigenbasis of Iz. Because the static magnetic field
considered is uniform, the orientation of the spin changes periodically. This means, if it
is initially oriented along the z-direction, it periodically returns to that direction. Since
Equation (2) is the time-independent Schrodinger equation, its solution will be

|ψ(t)〉 = e(iω0 Îzt)|ψ(0)〉. (3)
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This implies that if the state of the spin system is known at one point in time, then it is
possible to predict it at later times by applying the time-dependent Schrodinger equation to
each individual spin. Accordingly, for the spin-1 nuclei coupled to the heat bath at inverse
temperature, β, the state of the system can be expressed by the Gibbs density matrix as

ρth =
e−βĤ0

Z0
, (4)

where Z0 is the initial partition function which ensures the normalization condition of the
state density matrix.

Let E0
n and |n〉 be the eigenvalues and eigenvectors of the Hamiltonian Ho = H(λ0).

Then, the probability Pn of having the system in the state |n〉 with energy eigenvalue E0
n

will be

Pn = 〈n|ρth|n〉 =
e−βE0

n

Z0
. (5)

Since the Hamiltonian, Ĥ0, given in Equation (2) is already diagonal in the usual
Zeeman basis which diagonalizes Îz, Equation (4) can be rewritten in matrix form as

ρth =
1

Z0

e
ω0
T 0 0
0 1 0

0 0 e
−ω0

T

.

The partition function is the trace of this matrix,

Z0 = tr(e
−Ĥ0

T ) = 1 + e
ω0
T + e

−ω0
T . (6)

Using the hyperbolic trigonometric relations of the form: e±x =
1±tanh( x

2 )
1∓tanh( x

2 )
, the thermal

density matrix can be rewritten in a convenient way as

ρth =
1

3 + f 2

1 + 2 f + f 2 0 0
0 1− f 2 0
0 0 1− 2 f + f 2

 (7)

where we have used f = tanh( x
2 ) and x = ω0

T

3.2. Spin in a Rotating Magnetic Field

Immediately after the first energy measurement, we initiate the r.f. field

B1(t) = B1(cos ωztx̂ + sin ωztŷ). (8)

where ωz may be positive or negative. Although B1 � B0, it plays the role to tip the
magnetization away from the z-axis into the xy-plane giving rise to the nuclear magnetic
resonance (NMR) signal in the form of an induced voltage in an orthogonal plane.

Our system under the collective action of the strong static field, B0 and an alternating
weak radio frequency field, B1(t) can be described as

B(t) = B0ẑ + B1(cos ωztx̂ + sin ωztŷ). (9)

The magnetic spin Hamiltonian (which describes the way the nuclear magnetic energy
changes as the nuclei rotate) will be

Ĥ(t) = −µ · B
= −ω0Îz −ω1(Îx cos ωzt + Îy sin ωzt) (10)

Ĥ(t) = Ĥ0 + Ĥ1(t) (11)
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where we have used ω0 = γB0 and ω1 = γB1. Thus, the total Hamiltonian of the sample has
a time-independent z-component, H0 = −ω0, and a circularly polarized field representing
a magnetic field rotating in the xy-plane, H1(t) = −ω1(cos ωzt + sin ωzt).

Now, by using the matrix form of nuclear spin components for the spin-1 system, Îz, Îx,
and Îy the matrix representation of the above time-dependent Hamiltonian in Equation (10)
will become

Ĥ(t) =

 −ω0 − ω1√
2
(cos ωzt− i sin ωzt) 0

− ω1√
2
(cos ωzt + sin ωzt) 0 − ω1√

2
(cos ωzt− i sin ωzt)

0 − ω1√
2
(cos ωzt + i sin ωzt) ω0

. (12)

We note here that as a result of this time-dependent field, the system evolves in time.
To study the non-equilibrium properties of the system, we must know the initial

thermal state, ρth, given in Equation (2) and the time-evolution operator, Û(t) given as

ψ(t) = Û(t)|n〉; Û(t = 0) = 1l. (13)

where |n〉 represents one of the three possible states of the spin-1 system |1, 1〉 or |1, 0〉 or
|1,−1〉.

The Schrodinger equation corresponding to this Hamiltonian, Ĥ(t), can be given as

i∂tÛ(t) = Ĥ(t)Û(t)

i∂tÛ(t) = {−ω0Îz −ω1(Îx cos ωzt + Îy sin ωzt)}Û(t) (14)

where we have used ∂t = ∂
∂t

. Substituting the value of Ĥ(t) from Equation (12) into
Equation (14) yields

i
∂Û(t)

∂t
=

 −ω0 − ω1√
2

e−iωzt 0

− ω1√
2

eiωzt 0 − ω1√
2

e−iωzt

0 − ω1√
2

eiωzt ω0

U(t). (15)

where we have used the Euler formula: e±iωzt = cos ωzt± i sin ωzt.
For the spin-1 system, the unitary time evolution operator, Û(t), can be expressed in

matrix form (by using Zeeman basis) as

Û(t)|n〉 =

Û+(t)
Û0(t)
Û−(t)

. (16)

Then, by substituting Equation (16) into Equation (15) and performing matrix multiplication
it yields:

i

∂tÛ+(t)
∂tÛ0(t)
∂tÛ(t)

 =

 −ω0Û+(t)− ω1√
2
Û0(t)e−iωzt

− ω1√
2
Û+(t)eiωzt − ω1√

2
Û−(t)e−iωzt

− ω1√
2
Û0(t)eiωzt + ω0Û−(t).

. (17)

This leads to the three coupled equations

(1) i∂tÛ+(t) = −ω0Û+(t)−
ω1√

2
Û0(t)e−iωzt

(2) i∂tÛ0(t) = − ω1√
2
(Û+(t)eiωzt + Û−(t)e−iωzt) (18)

(3) i∂tÛ−(t) = − ω1√
2

Û0(t)eiωzt + ω0Û−(t).
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The time-dependence in the coefficients of these three equations can be eliminated by
defining a new time-varying operator by the transformation method. This transformation
corresponds to going to a coordinate system that rotates with an angular frequency ωz
about the z-axis

Û′(t) = eiωzt Îz Û(t) =⇒ Û(t) = e−iωzt Îz Û′(t). (19)

Accordingly, the three coupled equations in Equation (18) can be rewritten as

(1) i∂tÛ′+(t) = −(ω0 + ωz)Û′+(t)−
ω1√

2
Û′0(t) (20)

(2) i∂tÛ′0(t) = − ω1√
2

{
Û′+(t) + Û′−(t)

}
(21)

(3) i∂tÛ′−(t) = (ω0 + ωz)Û′−(t)−
ω1√

2
Û′0(t). (22)

As a result, the modified Schrodinger equation (in terms of Îz and Îx) will become

i∂tÛ′(t) = {−(ω0 + ωz) Îz −ω1 Îx}Û′(t). (23)

Hence, the modified quantum mechanical time-independent Hamiltonian (in angular
frequency units) for the spin-1 nuclei placed in an external magnetic field consisting of
a static field, B0 along the z-axis and a weak radio frequency (r.f) field, of amplitude B1 ,
polarized along the x-axis will be

Ĥ′ = {−(ω0 −ω) Îz −ω1 Îx} (24)

Note that we are considering the case where the oscillating r.f field is rotating along with
the precessing spin (clockwise direction, ωz = −ω) and will partake in resonance.

The solution to Equation (23) will be

Û′(t) = Û′(0)e−iĤ′t = e−iĤ′t =⇒ Û(t) = e−iωzt Îz e−iĤ′t (25)

where for unitary operator Û(t = 0) = Û′(t = 0) = 1l.
Physically, Equation (24) states that in the rotating frame, the moment acts as though

it effectively experienced a static magnetic field, Heff. The moment therefore precesses in a
cone of fixed angle θ about the direction of Heff at an angular frequency γHeff. The situation
is illustrated in Figure 1 for a magnetic moment initially oriented along the z-direction.

Figure 1. The precession of the nuclei spin under the effective field.

From Equation (23) we understood that the time-dependence of the externally applied
radio frequency field, B1(t), or its Hamiltonian, Ĥ1(t), has been eliminated. In fact, we
recognize it as representing the coupling of the nuclei spin with an effective field, Beff. So
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the nuclei spin acts as though it experiences effectively a magnetic field Beff which can be
defined mathematically as

Beff = Ω =

√
B2

1 + (B0 −
ω

γ
)2. (26)

The angle θ can be obtained from the components of the effective field as

θ = tan−1(
B1

(B0 − ω
γ )

). (27)

As a result, the corresponding effective energy operator, Ĥ′, can be expressed in terms of
θ as

Ĥ′ = −γΩ( Îz cos θ + Îx sin θ). (28)

This is the polar form representation of the modified Hamiltonian, Ĥ′; where θ is an angle
between the effective field and the axis of rotation (z-axis).

Now, by substituting this form of Ĥ′ in Equation (28) into Equation (25) one can obtain
the full time evolution operator, Û(t), in matrix form as

Û(t) =

eiωzt 0 0
0 1 0
0 0 e−iωzt

eiαM̂ (29)

where we have used α = γΩt and M̂ = Îz cos θ + Îx sin θ. The operator M̂ satisfies the
conditions: M̂ = M̂2n+1 and M̂2 = M̂2n. Whenever this is true, a direct Taylor series
expansion of e−iĤ′ = eiαM̂ where α is a constant, gives

eiαM̂ = 1̂ + iM̂ sin α− (1− cos α)M̂2. (30)

Then, after solving for the matrix form of M̂, and M̂2 and substituting their value in
Equation (30) one can obtain the full time evolution operator, ˆU(t), as

Û(t) =

 ν(t) −e−iωztυ∗(t) −χ∗(t)
−υ∗(t) 1− 2e−iωztχ(t) υ(t)
−χ(t) eiωztυ(t) ν∗(t)

. (31)

where we have defined

ν(t) = e−iωzt
{ sin2 θ

2
+

(
1− sin2 θ

2

)
cos α + i cos θ sin α

}
; (32a)

υ(t) =
sin θ√

2

(
cos θ(1− cos α) + i sin α

)
; (32b)

χ(t) = eiωzt
( sin2 θ

2
(1− cos α)

)
. (32c)

To obtain a better physical interpretation of Equation (31), let us consider the situa-
tion where the system initially starts in the pure state (eigenstate) |1, 1〉 of Îz. Then, the
probability that after a time ’t’ the system will be found in state |1, 0〉 will be

Prob.|+1〉→|0〉 =
∣∣∣〈1, 0|U(t)|1, 1〉

∣∣∣2
= υ(t)υ∗(t) =

∣∣∣υ(t)∣∣∣2. (33)
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Then, by substituting for υ(t) from Equation (32) we obtain

Prob.|+1〉→|0〉 = sin2 θ(1− cosα)− sin4 θ

2
(1− cosα)2. (34)

Similarly, the probability that the system of spin-1 nuclei that was in state |1, 1〉 will
be found in state 〈1,−1| can be given as

Prob.|+1〉→|−1〉 =
∣∣∣χ(t)∣∣∣2 =

sin4 θ

4
(1− cos α)2. (35)

Moreover, the unitary condition

U†(t)U(t) = 1l. (36)

implies that |ν(t)|2 + |υ(t)|2 + |χ(t)|2 = 1. This further gives |ν(t)|2 = 1 − {|υ(t)|2 +
|χ(t)|2}, which represents the probability that no transition occurs. From Equation (32)
we have seen that ν(t), υ(t), χ(t) are all the functions of sin θ. Therefore, this attributes a
physical meaning to the angle θ, defined in Equation (27) as representing the transition
probability.

In fact, at resonance, where ωz = −γB0 or ω = γB0 we have: sin θ = 1 and cos θ = 0.
Hence, at resonance Equation (32) can be rewritten as:

ν(t) =
e−iωzt

2
[1 + cos α] =⇒ ν∗(t) =

eiωzt

2
[1 + cos α] (37a)

υ(t) =
i√
2

sin α =⇒ υ∗(t) =
−i√

2
sin α (37b)

χ(t) =
eiωzt

2
(1− cos α) =⇒ χ∗(t) =

e−iωzt

2
(1− cos α) (37c)

For further discussion of the dynamics taking place as the nuclei of spin-1 interact
with external magnetic field, having obtained the initial density matrix, ρth, and the full
time-evolution operator, Û(t), it is necessary to study spin polarization. The evolution of
any observable A is given as

〈A〉th = tr{Û†(t)AÛ(t)ρth}. (38)

4. Dynamics of the Spin-One System

In this study, the strong static magnetic field, B0ẑ, is used to split the energy of the
nuclei into three energy levels, the energy-level diagram for a spin-1 nucleus I (as shown in
Figure 2), therefore, has three energy levels, spaced evenly by ω0 = γB0 in natural units, if
the quadrupole interaction is ignored.

Figure 2. The representation of energy levels of spin-1 nuclei.
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To illustrate the physics behind Equation (31), let us examine the time evolution of
〈 Îx〉, 〈 Îy〉, 〈 Îz〉. The evolution of the mean polarization of the nuclei of the spin-1 system
can be calculated following Equation (38) as

〈 Îi〉 = tr{U†(t) ÎiU(t)ρth}. (39)

where ρth is the thermal density matrix (Equation7) and Û(t) is the time evolution operator
(Equation (31)). For instance, we can compute the evolution of the mean polarization
components 〈 Îi〉, where i = x, y, z. All calculations are reduced to the multiplication of
3× 3 matrices. Accordingly, the mean polarization component in the z-direction will be

〈 Îz〉 = tr{U†(t) ÎzU(t)ρth}

=
4 f

3 + f 2

(
|ν|2 − |χ|2

)
=

4 f
3 + f 2

{
1− sin2 θ(1− cos Ωtγ)

}
. (40)

In the same manner, the mean polarization along the x and y-axis will be

〈 Îx〉 =
4 f sin θ

(3 + f 2)

{
cos θ cos ωzt(1− cos α)− sin α sin ωzt

}
. (41)

〈 Îy〉 =
4 f sin θ

(3 + f 2)

{
cos θ cos ωzt(1− cos α) + sin α sin ωzt

}
. (42)

At resonance, where sin θ = 1, they become

〈 Îz〉 =
4 f

3 + f 2 cos(Ωtγ). (43)

〈 Îx〉 =
−4 f

(3 + f 2)

{
sin α sin ωzt

}
. (44)

〈 Îy〉 =
4 f

(3 + f 2)

{
sin α sin ωzt

}
. (45)

These equations (Equations (43)–(45)) describe a parametric curve in a sphere of radius,
R = 4 f

3+ f 2 , which is the initial magnetization.

5. Properties of Work Distribution

In the first Section 5.1, we evaluate the nine possible work distributions and their
corresponding probabilities. In Section 5.2, using P(W), the average work is evaluated and
its behavior is studied under different conditions. Lastly, the average work as a function of
time is explored in Section 5.3.

5.1. The Work Distribution

The work performed in the non-equilibrium transformation process is the difference
between the energy measurements made at final and initial states

W = E f − Ei. (46)

For our specific case of spin-1 nuclei, which is the three-state system, we figure
out the possible work values in energy transformation. At the first instance of time (t
= 0), the Hamiltonian was Hi = −ω0 Îz which further tells us that the initial energy
eigenvalues were Ei

−1 = ω0 in the state | − 1〉, Ei
0 = 0 in the state |0〉 and Ei

+1 = −ω0
in the state | + 1〉. Then, after some arbitrary time ’t’ the Hamiltonian became H f =

−ω0 Îz + B1(cos θ Îx + sin θ Îy). This gives the final instantaneous energy eigenvalues of

E f
± = ∓

√
B2

0 + B2
1(t) in states | ± 1〉, and E0 = 0 in state |0〉. However, since B1 � B0,
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the final eigenvalues are very similar to the initial eigenvalues. Consequently, the three
values of W are very close to zero. To simplify the discussion, let us suppose that the radio
frequency field B1(t) = B1 (cos ωzt, sin ωzt, 0) always changes by a full period. That is, we
assume that the final protocol time τ is given by

τ =
2πl
ω

, l = 1, 2, 3, · · ·. (47)

Physically, this tells us that for ω being a very fast frequency, we measure the work
W after a certain amount of complete cycles. In this case, H f = Hi, which further implies
that both the two measurements (the initial and final) may have the same energy spectrum:
E± = ∓ω0 and E0 = 0 in their respective states. Thus, we can obtain seven possibilities of
work distributions for spin-1 nuclei in an effective magnetic field. These are:

(1) W = E+1 − E−1 = −2ω0 =⇒ |− 1〉 |+ 1〉
(2) W = E−1 − E+1 = 2ω0 =⇒ |+ 1〉 | − 1〉
(3) W = E0 − E+1 = ω0 =⇒ |+ 1〉 |0〉
(4) W = E+1 − E0 = −ω0 =⇒ |0〉 |+ 1〉
(5) W = E−1 − E0 = ω0 =⇒ |0〉 | − 1〉
(6) W = E0 − E−1 = −ω0 =⇒ |− 1〉 |0〉
(7) W = 0 =⇒ |0〉 |0〉or|+ 1〉 |+ 1〉or| − 1〉 | − 1〉.

(48)

As we can understand from this illustration, the work required to flip the nuclei spin
from its initial state of | − 1〉 to |+ 1〉 is equal to −2ω0 while the work required to flip in the
reverse is 2ω0. On the other hand, the work performed to flip the nuclei spin from initial
states of |0〉 to the final state of |+〉 is equal to −ω0 and that performed in the reverse is ω0.
Likewise, the work performed to flip the spin from initial states of | − 1〉 to the final state of
|0〉 is equal to −ω0 while that performed in the reverse is ω0. The last three distributions
(7, 8, 9) correspond to the case where there is no flip at all. So, here in our consideration
of the spin-1 system there are seven possibilities of the work distribution unlike that of
reference [19].

Now, the probability of these work distributions can be readily computed by using

P(W) = ∑ p0
n pτ

m|nδ
(

W − (Eτ
m − E0

n)
)

. (49)

Accordingly, using Equations (7) and (32) the probabilities for the work distributions in
Equation (48) are obtained as

(1) P(W = −2ω0) =
1− 2 f + f 2

3 + f 2 |χ(t)|2 =⇒ |− 1〉 |+ 1〉

(2) P(W = 2ω0) =
1 + 2 f + f 2

3 + f 2 |χ(t)|2 =⇒ |+ 1〉 | − 1〉

(3) P(W = ω0) =
1 + f
3 + f 2 |υ(t)|

2 =⇒ |+ 1〉 |0〉 or |0〉 | − 1〉

(4) P(W = −ω0) =
1− f
3 + f 2 |υ(t)|

2 =⇒ |0〉 |+ 1〉 or | − 1〉 |0〉

(5) P(W = 0) =
(1− f 2)

3 + f 2 s(t) =⇒ |0〉 |0〉

(6) P(W = 0) =
(1 + f 2)

3 + f 2 |ν(t)|
2 =⇒ |+ 1〉 |+ 1〉 or | − 1〉 | − 1〉.

(50)

where s(t) =
(

1 + 4|χ(t)|2 − 2e−iωztχ(t)− 2eiωztχ∗(t)
)

.
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If ω0 > 0 it is more likely that the spin will be aligned parallel to the field. In such a
case, f > 0 and this further adds P(W = 2ω0) > P(W = −2ω0) and P(W = ω0) > P(W =
−ω0). This implies that it is more likely that the field will promote a flip from |+ 1〉 to
| − 1〉 or from |+ 1〉 to |0〉 (and from |0〉 to | − 1〉) than the other way around.

5.2. The Average Work

Since we already explicitly obtained P(W), it is possible to compute the average work,
〈W〉, from the definition

〈W〉 = ∑
w

wP(W = w). (51)

Thus, for the work distribution given in Equation (48) and the corresponding probability
distributions given in Equation (50), the average work will be

〈W〉 = 2ω0 f
3 + f 2

{
υ(t)|2 + |χ(t)|2

}
. (52)

In cases where P(W) is not explicitly known, the average work performed during the
transformation can be computed by using

〈W〉 = 〈Ĥ f 〉t=τ − 〈Ĥi〉t=0. (53)

In computing the expectation values of quantities related to the energy of the system,
we may always use the unperturbed case (where a nucleus of spin-1 is only in the static,
strong and uniform magnetic field, B̂0), for the reason that we expect the result, which we
match with what we know from measurements in the unperturbed condition. Particularly,
in our case of the spin-1 system in a strong static magnetic field, B0 (applied in the direction
of the z-axis) and where a weak alternating magnetic field, B1,, is applied along the
perpendicular direction to the axis of rotation (z-axis) we use Ĥ0 = −ω0 Îz as a Hamiltonian
operator in unperturbed conditions.

Accordingly, the mean value of the Hamiltonian in this case will be

〈Ĥ0〉 = 〈−ω0 Îz〉 = −ω0〈 Îz〉. (54)

Then, by solving for 〈 Îz〉 at initial measurement (t = 0) and at final measurement (t = τ),
the average energy at any instant of time can be simply given as

〈W〉 = 〈Ĥ0〉t=τ − 〈Ĥ0〉t=0

=
4 f ω0

3 + f 2 sin2 θ
{

1− cos(Ωτ)
}

. (55)

Now, by substituting for sin θ = B1
Ω , the average work at a time ’t’ will be given as

〈W〉 = 4 f ω0

3 + f 2
B2

1
Ω2

{
1− cos(Ωτ)

}
. (56)

The average work, therefore, oscillates indefinitely with frequency, Ω. This is the
consequence of the fact that the evolution operator is unitary.

The amplitude multiplying the average work is proportional to the initial magnetiza-

tion, R = f
3+ f 2 , and to the ratio, B2

1
Ω2 . This looks like the known Lorentzian function, and it

represents a sharp peak at the resonance frequency (ω = ω0), which becomes sharper for
smaller value of B1. The maximum possible work, therefore, occurs at resonance and has
the value

〈W〉 = 4ω0 f
3 + f 2 . (57)
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Now, by using the assumption in Equation (47), the average work in Equation (56) can
be expressed as:

〈W〉 = 4 f ω0

3 + f 2
B2

1
Ω2

{
1− cos(

2πl
ω

Ω)
}

. (58)

This result is something which is similar to the result obtained in the case of spin-half

studied in reference [19], despite the additional multiplicative term of
{

1− cos( 2πl
ω Ω)

}
.

By substituting for Ω =
√
(ω− B0)2 + B2

1 and rearranging terms, the full expression of the
mean work in Equation (58) will be given as:

〈W〉
4RB0

=
(K1

K3

)2{
1− cos(

2πlK3

K2
)
}

. (59)

where we have used the notations:

K1 =
B1

B0
; K2 =

ω

B0
; k3 =

√
(K2 − 1)2 + K2

1; R =
f

3 + f 2 . (60)

This result in Equation (60) is further illustrated in Figure 3 for different values of l and
for the fixed ratio of the externally applied fields, B1

B0
. The resonance condition is achieved

when K2 = ω
B0

= 1. As it is possible to understand from the figure, the dependence of 〈W〉l
on the angular frequency ω is quite complicated, but it depends in a meaningful manner
on the duration l of the protocol implemented. In general, the work performed (conducted)
increases sharply as it approaches the resonance condition.

For small values of l (see Figure 3a–e), the average work tends to increase (as a function
of angular frequency, ω) to reach the resonance value, but soon it begins to smoothly
decrease to reattain the initial equilibrium condition before it reaches the resonance value.
On the other hand, for a large value of l the average work sharply increases near resonance
value, ω

B0
= 1, and soon attains its maximum at resonance. This is explicitly shown in

Figure 3f for l = 1000. In such a case, the oscillation becomes very fast as ω is varied.
Taking the energy relaxation time of the system to be of the order of 3 s one can estimate

the upper bound in the number of repeated cycles for the radio frequency (rf) oscillations
to perform without violating the approximation of the ‘isolated system’. Assuming the rf
oscillations to have a period as large as 1 ms, repeating the number of cyclic oscillations a
thousand times will take a span of 1 s. This is definitely less than 3 s of time making our
operation on the safe side [24,25].

Now, we can deduce the free energy of the system of spin-1 nuclei as follows. For our
choice of time τ in Equation (47), since H f = Hi the change in free energy becomes ∆F = 0
and this further implies that the free energy is a function only of the Hamiltonian, measured
either at the initial state or final state. In such a case, Equation (59) is in agreement with
W ≥ ∆F, which now reads 〈W〉l ≥ 0. Therefore, the average work is always greater than
the free energy as expected. However, we must be careful of the individual realizations of
the work distribution. For example, the cases such as W = −ω and W = −2ω do not fulfill
the condition above (W ≥ ∆F). This further indicates that individual realizations may very
well violate the second law, but the average work does not.
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Figure 3. Average work 〈W〉
4RB0

vs. ω
B0

computed using Equation (59) for fixed value B1
Bz

= 0.01. The
average work, 〈W〉l , depends sensibily on the duration ’l’ of the protocol. For small values of ’l’ (see
(a)–(c)) it may be very small at resonance. But, for relatively large values of ’l’ it increases close to
resonance (see (d,e)). When ’l’ is very large (l = 1000) a maximum is obtained exactly at resonance
(see (f)). Note that the scales are different for each image.

5.3. The Average Work as a Function of Time

For completeness, we can also discuss the average work as a function of time, without
making the assumption in Equation (47). The general formula for 〈W〉t is the difference
between the average energy at time t (at which the protocol is switched off) and that of
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the average energy at the initial time, t = 0 (just before the protocol was implemented).
Therefore, by using Equations (10) and (54) the average work as a function of time will be

〈W〉t = 〈H(t)〉t − 〈H0〉t=0

= −B0〈Iz〉t − B1{〈Ix〉 cos ωt + 〈Iy〉 sin ωt} − (−B0〈Iz〉t=0). (61)

Now, by substituting for 〈Iz〉, 〈Ix〉, and 〈Iy〉 from Equations(40, 41 and 42), respectively,
and simplifying the equation, we will have

〈W〉
4RB0

=

(
K1

K3

)2
{(

1− cos(B0K3t)
)
− K2 − 1

K3
cos ωt

(
1− cos(B0K3t)

)
(cos ωt + sin ωt)

+ sin(B0K3t) sin ωt
(

sin ωt− cos ωt
)}

. (62)

This result is illustrated in Figure 4 for different values of our work parameter, B1(t)
and the angular frequency, ω, by which the spin is precessing around the resonance value,
ω = ω0. As we can see from the figure, the average work oscillates with two characteristic
periods: a fast oscillation of frequency ω and a slow oscillation of frequency ω1 = B1. The
closer the oscillation is to ω0 the higher is the performance of the average work performed.
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Figure 4. Average work computed by using Equation (62)
(
〈W〉
4RB0

vs. B0t
)

for different values of B1
B0

and ω
B0

.

6. Characteristic Function and Distribution of Work

The response of a quantum system (the nuclei of spin-1) to the perturbation by the
external magnetic field can be further characterized by the change of energy contained in
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the total system. Therefore, the characteristic function of the work distribution, which may
comprise all aspects of the statistics of the work would be given as [17]

G(r) = tr{Û†(τ)e−irω0 Îz Û(τ)eirω0 Îz ρth}. (63)

By substituting for Û(t) from Equation (31) and for ρth from Equation (7) into Equation (63)
and going through long mathematical derivation of the characteristic function of work in a
more simplified form is

G(r) =
1

3 + f 2

{
2|ν|2(1 + f 2) + s(t)(1− f 2) + 2|υ|2eirω0(1 + f )

+2|υ|2e−irω0(1− f ) + |χ|2e2irω0(1 + 2 f + f 2) + |χ|2e−2irω0(1− 2 f + f 2)

}
. (64)

From the definition of the characteristic function we have that

G(r) = 〈eirW〉 =
∫ ∞

−∞
P(W)eirWdW. (65)

Then, the power series expansion of this characteristic function, G(r), can be expressed in
terms of the statistical moments of work are as follows

G(r) = 〈eirW〉 = 1 + ir〈W〉+ (ir)2

2!
〈W2〉+ (ir)3

3!
〈W3〉+ · · ·. (66)

where

〈Wn〉 = (−i)n ∂nG(r)
∂rn |r=0. (67)

In particular, the first moment of the work would be

〈W〉 = (−i)
∂G(r)

∂r
|r=0

=
ω0

(3 + f 2)

{
2|υ|2(1 + f )− 2|υ|2(1− f ) + 2|χ|2(1 + 2 f + f 2)− 2|χ|2(1− 2 f + f 2)

}
.

Further simplification of this equation will yield

〈W〉 =
4 f ω0

(3 + f 2)

{
|υ|2 + 2|χ|2

}
. (68)

Then, by substituting for υ and χ from Equation (32) the first moment of the work
will become

〈W〉 =
4 f ω0

(3 + f 2)
sin2 θ(1− cos α). (69)

Again, substituting for α = Ωt, ω0 = B0 and sin θ = B1
Ω it can be rewritten as

〈W〉 =
4 f B0

(3 + f 2)

B2
1

Ω2

(
1− cos(Ωt)

)
. (70)

This is what we have already obtained in Equation (56)
The second moment of work, 〈W2〉, can also be calculated as

〈W2〉 =
∂2G(r)

∂r2 |r=0 = (−i)
∂〈W〉

∂r
|r=0

=
4ω0

2

(3 + f 2)

(
|υ|2 + 2|χ|2(1 + f 2)

)
. (71)
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Again, substituting for υ and χ from Equation (32) we would have

〈W2〉 =
4ω0

2

(3 + f 2)
sin2 θ(1− cos α) +

4ω0
2 f 2

(3 + f 2)

(
sin4 θ

2
(1− cos α)2

)
. (72)

From the first moment of work obtained in Equation (69) one can find its mean square,
〈W〉2, as

〈W〉2 =
16 f 2ω2

0
(3 + f 2)2 sin4 θ(1− cos α)2. (73)

As a consequence, the variance of the work distribution becomes

Var(W) = 〈W2〉 − 〈W〉2

=
4ω0

2

(3 + f 2)

{
sin2 θ(1− cos α) + f 2 ( f 2 − 5)

2(3 + f 2)
sin4 θ(1− cos α)2

}
. (74)

Finally, we compute the full distribution of work in terms of the work probability distribu-
tion, P(W), by using the characteristic function, G(r), given in Equation (66). The probability
distribution function is the inverse Fourier transform of the characteristic function, G(r)

P(W) =
1

2π

∫ ∞

−∞
drG(r)e−irW . (75)

Thus, by substituting for G(r) from Equation (64) into Equation (75) and by using the Dirac
delta function of the form

1
2π

∫ ∞

−∞
eir(a−b)dr = δ(b− a) (76)

the work probability distribution can be expressed as

P(W) =
1

3 + f 2

{
2|ν|2(1 + f 2)δ(W) +

(
1 + 4|χ|2 − 2χe−iωzt − 2χ∗eiωzt

)
(1− f 2)δ(W)

+2|υ|2(1 + f )δ(W −ω0) + 2|υ|2(1− f )δ(W + ω0) (77)

+|χ|2(1 + 2 f + f 2)δ(W − 2ω0) + |χ|2(1− 2 f + f 2)δ(W + 2ω0)

}
.

Hence, the work interpreted as a random variable takes the following five distinct
values: W = 0, W = −ω0, W = ω0, W = −2ω0, and W = 2ω0.

7. Summary and Conclusions

In this work, we took a very weakly interacting spin-1 magnetic system subjected to a
strong static external magnetic field while in contact with a thermal bath. A predefined
protocol was imposed on the system for a finite amount of time where its energy was
recorded both at the start and finish times. Even though the interaction between the system
and that of the measuring apparatus was unavoidable in a real system measurement
scheme, here in this study, we used the method of the two-point measurement scheme [11].
Enough data enabled us to extract its statistical behavior such as work distributions and
find the energy difference between the final and initial equilibrium energy values. In
conclusion, we suggest that we take a collection of deuterium atomic nuclei subjected to
undergo a cyclic process similar to what we have proposed, carry out the experiment and
compare the result with our prediction.
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