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Abstract: Practical mesoscopic devices based on quantum point contacts (QPCs) must function at
operating point involving large internal driving fields. Experimental evidence has accumulated to
display anomalous nonlinear features of QPC response beyond the capacities of accepted tunnelling-
based models of nonlinear quantum transport. Here, we recall the physical setting of three anomalous
QPC experiments and review how, for two of them, a microscopically based nonequilibrium quantum
kinetic description—the correct physical boundary conditions being crucial—has already overcome
the predictive limitations of standard nonequilibrium mesoscopic models. The third experiment
remains a significant challenge to all theorists.

Keywords: anomalous conductance quantization; high-field noise in QPCs; nonlinear Aharonov–
Bohm effect; nonlinear mesoscopic transport; quantum-Boltzmann equation

1. Introduction

Phenomena in quantum transport unique to two-dimensionally constrained elec-
tronic systems, formerly considered exotic, have since become bread-and-butter items
for condensed-matter physics. Already, for some time, in the form of quantum-well-
confined structures, they have been deeply embedded in the design even of prosaic con-
sumer electronics.

Slightly later than the basic two-dimensional breakthroughs of the 1970s came those
at the next level, for structures virtually, if not literally, at one dimension (1D). Their
fundamental exploration is very much a current research focus for the physics of electronic
transport. While one might argue that their truly large-scale applications have some way
to go to outdo the widespread success of their two-dimensional predecessors, it is taken for
granted that this is a basic matter of concerted technical development.

It is the physical underpinning of the 1D device realm that forms the topic in the
following, somewhat condensed, review. Readers who may want more detailed information
on all the accepted methodologies based on the reservoir analogy, as well as background on
our own application of established quantum kinetics, are invited to consult the extended
references in the long survey paper [1] as well as in the more specialized [2–4].

We concentrate on aspects of observed 1D transport behaviour that appear to go
against accepted theoretical models. Both experimentalists and theorists tend to refer to
these laboratory results as “anomalous”, but any consistent departure from experimental
expectations will always be perceived as abnormal—until a tenable explanation emerges.
The question is: “anomalous” relative to what? The answer is: relative to the received
theoretical understanding. Nature entertains no anomalies. It is we as investigators who are
subject to a momentary cognitive dissonance. Anomalous results, by their very presence,
tell us that more is demanded of a quantitative theory than anything in common currency.

Anomalies in nonlinear 1D transport emerged around the turn of this century. The ac-
tual surprise, there, is not their discovery but that they seemed to remain in the “too-hard
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basket”, practically unattended to in the literature. Here, we review two cases that have
now been addressed, and cite a third intriguing instance still defying analysis.

Our first example is excess 1D conductance in a working region where the conduc-
tance quantum e2/πh̄ is supposed to never be exceeded [5,6]; the second is anomalous
hot-electron noise in a 1D wire, or quantum point contact (QPC) [7]. The third striking
example, which we can discuss only in passing, is the nonlinear Aharanov–Bohm ef-
fect [8]. These measurements, largely bypassed by theorists, supply appreciable evidence
for reconsidering the limits of accepted mesoscopic transport models [9].

2. Background

We begin by recapitulating the distinctive transport behaviour of quasi-1D ballistic
channels. Some thirty-five years ago, two measurements [10,11] first demonstrated the
quantization of 1D conductance as a function of device carrier density, in sequential steps
close to the universal quantum G0 = e2/πh̄, termed the Landauer conductance in this field
(the same as the quantum-Hall unit, up to a factor of two). A weighty literature explaining
the quantization [12–15] and its extension to noise [16] was soon established to offer a
readily appealing, seemingly adaptable description.

2.1. Standard Account

Consider two macroscopic metallic electron reservoirs, left and right, at chemical
potentials µL ≥ µR and linked by a long, uniform narrow wire supporting a series of
discrete quantum levels, or channels, produced by the lateral confinement defining the
quasi-1D conductor. The channels are assumed independent, each with its own set of
conductive 1D states able to transmit charge carriers.

In the Landauer current formula [14,15], the reservoirs have equilibrium electron
distributions f (εk − µL) and f (εk − µR) where wave vector k indexes the conductive
states in the 1D band, with εk and vk = h̄−1dεk/dk the band energy and group velocity,
respectively. Phenomenologically, one may argue that the net current should be a difference
of right- and left-moving electron fluxes:

I = JR − JL =
∫ ∞

0
dk
π (−e)vk

(
f (εk′ − µR)T (εk′)(1− f (εk − µL))

− f (εk − µL)T (εk)(1− f (εk′ − µR))
) (1)

where the right-side momentum k′ is defined via εk′ = max{0, εk + µR − µL} and T (ε) a
unitary transmission factor when the wire presents a barrier to coherent transmission. The
equation assumes total statistical decoupling of initial and final state occupancies. As such,
it is a revisiting of older tunnelling prescriptions [17] such as the early one of Bardeen and
of Esaki’s extension to the tunnelling diode.

We remark that tunnelling formulae are appropriate between autonomous reservoirs
communicating solely by overlap of the exponential tails inside the barrier region. The fun-
damentally stochastic coupling of the left- and right-localized carrier distributions, in two
disjoint bands, does not apply to metallic transport. In that case, by contrast, the physics is
dominated by the flux-bearing eigenstates. These states are delocalized across the entire
participating system and support a single distribution (not two) in a unified conduction
band, with a quantum barrier or with none.

At equilibrium, with equal chemical potentials µL = µ = µR, the current given by
Equation (1) is zero. A small driving voltage V applied right to left will raise µL above µR
by eV. Noting that vkdk = dεk/h̄, in the low-temperature limit, the current becomes

I = e
πh̄

∫ ∞
0 dεT (ε)

(
f (ε− µR − qV)− f (ε− µR)

)
= − e2V

πh̄

∫ ∞
0 dεT (ε) ∂ f

∂ε +O(e2V2) → G0T (µ)V
(2)
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in which the conductance quantum now appears. One can repeat the argument for a
number of occupied discrete channels assuming that that they are independent of one
another, excluding any cross-talk in the active region as well as any interaction mediated
by their common lead reservoirs. Under those terms, the total conductance becomes

G =
I
V

= G0 ∑
En<µ

T (µ− En) (3)

with En the discrete energy thresholds for the quantum-confined 1D conduction bands,
or channels. This accounts for the characteristic constancy of conductance as a function of
channel density when this is modulated by altering chemical potential µ, usually by gate
control of the device. Since T (ε) ≤ 1, it follows from Equation (3) that no individual step
can exceed G0, the ideal maximum.

Efforts to generalize the basic formula, Equation (1), to the nonlinear regime have
been made, and keep being made. Few, if any, of the best advertised attempts see fit
even to re-evaluate, let alone leave behind, the idea of tunnelling within an environment
that is clearly metallically conductive. We have discussed elsewhere [1], in more formal
detail, the most popular of these recent approaches: the nonequilibrium Green function
(NEGF) formalism.

In any of a variety of guises [18,19], NEGF computes the self-energy for the putative
interacting Green function (the purely single-particle version that is) within some correlated
electron model in localized form. The result is a locally determined effective transmission
amplitude T (ε) richer than the Landauer version but which nevertheless—based as it is
on a one-body object—is a quasiparticle spectral weight that never exceeds the unitarity
bound in the way already observed experimentally [5,6] and described in the following.
NEGF still does nothing about the imaginative but unfortunately inappropriate boundary
conditions insisting on localized tunnelling inside a fully delocalized, if non-uniform,
integrally metallic medium.

2.2. Difficulties and Remedies

We need not dwell any more on the use of a tunnelling scenario in cases where
the physics of conduction is undoubtedly metallic, for there are two other difficulties
with Equation (3) describing conductance quantization. The more obvious issue is that
conductance implies ohmic resistance, which implies Joule heating. It is immaterial whether
the resistive device is macro-, meso- or nano-scopic. In distilling Equation (1) to get
to (3), there is no appeal to the process of dissipation; coherent quantum transmission is
dissipationless as well as reversible (unlike Joule heating).

The second, less obvious problem, is the assumption of independent conducting
channels. All their carriers are injected from, then received by, bulk metallic leads. It is
inevitable that there must be an interplay between band populations in their transition to
and from the common leads. This is likely to affect the details of the carriers’ distribution as
some level, even if they did not interact in their discrete channels while crossing the active
region. In the next section, we return to this aspect in the context of measurements by de
Picciotto et al. [5,6]. First, we deal with the problem of dissipation.

Loss of electrical energy absorbed from driving fields is a nonequilibrium effect that
impacts directly on the detailed physics of transport. Dissipation always has an immediate
role in any quantitative account of what is, in the end, a case of ohmic conduction. As the
experiments surveyed below show, the problem becomes pressing well away from linear
response where, as is now acknowledged, coherent transmission theory has less to offer in
a systematic way.

A solution already exists within quantum kinetics taken in its its long-wavelength
limit, the quantum-Boltzmann equation, and in the succinct form of the canonical Kubo–
Greenwood relation to which the kinetic equation conforms [20]. We will not reproduce
the full derivation of the quantum kinetic formula that corresponds to Equation (3) [1],
but give some sense of a different philosophy that leads to an equivalent result while fully
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including the physics of dissipation. We start with a single metallic channel. If one takes the
familiar Drude–Sommerfeld conductance formula in the low-temperature limit, expressing
its customary relaxation rates in terms of mean free paths, one has

G =
e2n

m∗uFL
λelλin

λel + λin
. (4)

Parameters are: the operative channel length L; effective mass m∗ and Fermi velocity
uF for a quadratically dispersive conduction band; 1D carrier density n = 2kF/π in terms
of kF, the Fermi wave vector; λel and λin are the elastic and inelastic scattering mean free
paths respectively, the latter responsible for resistive loss and, crucially, for stability of the
steady state [1].

Thus far, the quantitative content is perfectly conventional. The physical reasoning
specific to a quasi-ballistic structure now follows.

Transport within the channel is ballistic and not necessarily coherent. There do exist
finite mean free paths, but these are not set by the usual considerations in the bulk, rather
by the carriers’ interactions with the leads through stochastic injection and extraction. By
the same token, the operational length of the channel is also set by the dynamics of its
interfaces with the leads—for, at mesoscopic scales, the geographic boundary between
channel and leads becomes ill-defined. Conceptually the limiting device boundary L itself
becomes identifiable with the maximum mean free path, the scale beyond which any notion
of ballisticity is lost. (In transmission parlance, this scale is the “coherence length”).

On these assumptions, in Equation (4), we make the replacement L→ max{λin, λel}.
Rationalizing the factor n/m∗uF = 2/πh̄, we arrive at

G =
e2

πh̄

(
2min{λin, λel}

λin + λel

)
≤ G0. (5)

There is no functional difference between this expression and the lossless Equation (3).
Both have the same ideal maximum G0; Equation (5) attains it when the mean free paths
are matched. The latter formula gives dissipation its proper role and avoids the conceptual
confusion of Equation (3), which pits the complete coherence of a fully delocalized trans-
mitted flux against the complete stochasticity of the localized static boundary conditions,
with no rational handle on energy loss. The kinetic basis for Equation (5) also allows a
systematic approach to current noise [21]; more on this below.

We come to the task of resolving the second and more challenging issue presented
by the hypothesis of total independence for discrete channel populations. When discrete
channels are able to interact, the possibility opens up for interband carrier transfer. This
immediately turns the transport calculation into a correlated many-body one, a case in
which unitarity in each channel fails, and a collective description is required.

3. Interacting One-Dimensional Bands

In an investigation of the so-called 0.7 conductance anomaly in a multi-channel QPC,
de Picciotto and co-workers [5,6] went further to present additional measurements of
quantized conductance in a close-to-ideal 1D device, covering the density regime where
the lowest channel’s band was well occupied right up to the threshold of the next-higher
band. When driven beyond weak bias voltages, the surprise was that the size of the step in
G, still essentially flat, increased systematically and substantially with V. Figure 1 shows
their results.

Other than the structures greyed out in Figure 1, the absolutely flat voltage-dependent
plateaux demonstrate that more than single-particle physics is at work. We followed up
the experimenters’ own hypothesis [5,6] that exchanges of carriers between the lower and
upper band could enhance the conductance of the well populated lower band by depleting
it (with no effect on its conductance step size), thereby adding excess carriers to the upper
band in its threshold region where G is quite sensitive to small changes in its band density.
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Figure 1. Quantized differential conductance G measured in a quasi-one-dimensional multi-sub-band
ballistic channel, after de Picciotto et al. [6]. G is plotted in units of the quantum G0 = 77.48 µS, as a
function of control-gate voltage Vg modulating the carrier density within the channel. Beyond the
labile structures (grey box) at the threshold of the ground-state band lies a series of very flat extended
plateaux for different values of bias voltage driving the current. That the system is beyond linear
response is seen in the bias dependence of the conductance. The steps of G above the presumed
upper limit G0 is noteworthy. This shows that effects beyond simple quantum-coherent transmission
dominate the transport physics, adapted from [6]. © IOP Publishing Ltd.

We reasoned that, at higher values of V, the coupling between channels leads to greater
transfer of carriers to the higher level and that, at the same time, these excited carriers
have an increased likelihood of falling back into the lower band, resulting in a steady state
regulated by negative feedback and stabilizing the enhancement of G around the threshold
of the upper band.

One can compare the results of our calculation in Figure 2 [22] with the experimental
data in Figure 1. While the calculated conductances overestimate the measured step
values in our simplified simulation, the robust character of the plateaux and their voltage
dependence are strikingly similar to experiments.

Figure 2. Anomalous enhancement of conductance for a ballistic device model, equivalent to that
of our Figure 1 (after Figure 3a of [6]) at nominal temperature 4K. Axis scales are as for that figure;
G is plotted in units of G0 versus gate voltage Vg sweeping the electron density through the band-
gap regime from the start of the ground-state band to the threshold of the first excited-state band.
Bottom curve: in weak-field response, the quantized conductance matches that for the standard linear
response. Higher curves: as the driving voltage Vsd increases, the conductance acquires a nonlinear
enhancement. The action of interband transitions dynamically redistributes carrier density between
bands. This is responsible for the strong enhancement of the step in G, beyond the upper bound
posited by quantum-transmission models of conductance, adapted from [22]. © IOP Publishing Ltd.
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The calculation involves solving a coupled quantum Boltzmann equation including a
generation–recombination mechanism induced by the interband transition rate. Here, we
set out the schematics of the procedure; for details, see [22]. We restrict the problem to two
channels separated by a given band gap Eg. Since the total density n(µ) over both bands is
constant at global chemical potential µ, conservation enforces

n(µ) = n1(µ1) + n2(µ2 − Eg) (6)

with n1 the density in the lower band and n2 in the upper. The populations out of equilib-
rium are no longer determined by µ but depend on the bias voltage. Therefore, we refer the
separate carrier distributions to a pair of nominal equilibrium states at the effective chemi-
cal potentials µ1 and µ2. We expect the former potential to decrease as the lower channel
depletes, and the latter to rise as the upper channel gains extra carriers. At equilibrium,
both match µ, but, in the driven system, they may not and are nevertheless coupled by the
need to conform to conservation.

To fix µ1 and µ2 uniquely, thus closing the now self-consistent problem, a second
and physically motivated constitutive relation is necessary. In the parameter space of µ1
and µ2, we compute the free energy, plotting its difference with the free energy for totally
independent bands, where µ1 = µ = µ2. When there is no maximum, the solution reverts
to the latter case. If there is a nontrivial maximum in the difference, its locus will intersect
the contours of constant n generated by Equation (6). In either eventuality, one can find the
operating point at a given total density, where the net conductance is calculated. Figure 2 is
the result of our strategy.

The physical motivation for using the free energy is that it carries the overhead of
available electrical energy absorbed from the driving field and momentarily retained
as kinetic energy of the excited carriers—a sort of reservoir in momentum space. It is
reasonable to think that this dynamic overhead builds up to a maximum, depending on
the capacity of inelastic collisions to dissipate it and sustain a steady state. The operating
point will thus arrange itself at the free-energy maximum because the first port of call for
the transferred electrical energy is always the carrier motion, not the heat bath, which is
accessed only via the lossy collisions forming a bottleneck.

4. QPC Noise at High Fields

Kinetic theories, such as the Boltzmann equation, are explicitly structured to respect
microscopic conservation. Subjected to perturbation analysis, the derived equations guar-
antee that the same conservation properties of particle number, momentum, and energy
(the latter in thermodynamic conformity with the dissipation rate) are inherited by the
corresponding fluctuations.

We have extended the kinetic approach to studying thermal current fluctuations
departing from equilibrium and manifesting as dynamical noise in actual devices. Shot
noise, thermodynamically distinct from thermal noise, is also kinetically tractable (other
species such as 1/ f noise require techniques that involve explicit input about the specific
environment). For a general introduction, we direct readers to Kittel [23].

Unlike fluctuations in the power output IV of a conducting structure, routinely probed
in device characterization, current–current fluctuations are not easy to measure and need
specialized methods. A thorough experimental study of high-field current noise in QPC
samples was made by Reznikov et al. [7]. To highlight the anomaly in their experiment
over against commonly anticipated expectations for the density dependence of noise, we
refer to Figure 3 adapted from [7].
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Figure 3. Measured high-field excess current noise in a quantum point contact at 1.5 K (adapted
from [21] after Reznikov et al. [7]) as a function of gate bias at fixed levels of the current. Dotted line:
the most widely adopted theoretical noise model [16] predicts a strictly monotonic noise signal at the
first band threshold. The very strong noise peaks actually recorded at threshold are not anticipated.
© 2004 The American Physical Society.

Figure 3 shows the low-frequency spectral density of excess QPC current noise after
subtraction of the normal Johnson–Nyquist thermal noise floor SJN = 4GkBT at temperature
T. The Reznikov group performed their measurements at fixed levels of current through
the structure, while most other investigators choose to fix the driving voltage only.

According to standard descriptions, at very low gate voltage (thus carrier density)
up to the threshold, the signal should be dominated by classical shot noise, determined
by the Poissonian statistics of electron injection and extraction rather than the fluctuation–
dissipation dynamics underlying SJN. As the carrier density rises within the channel, Pauli
degeneracy starts to suppress the noise, which dies monotonically above the conduction
threshold. This is predicted for any level of the QPC current.

The anticipated uniformly monotonic fall-off of the noise is not seen, however. Against
theoretical expectation, a very strong peak structure develops at the threshold where the
lowest conduction band of the 1D structure begins to populate. In contrast, a kinetically
grounded analysis of the fluctuations in the highly nonequilibrium carrier distribution
provides a straightforward and reasonably quantitative account. Figure 4 displays our
calculation [21].

Lacking scope here for a detailed account, we offer sources [21,24] as resources for
a quantum Boltzmann approach to nonequilibrium current noise. The origin of the peak
structures shown in Figure 4 lies in the interplay of the electrons’ compressibility, which
falls off rapidly on entering the degenerate density regime, and the conductance of the
QPC which decays in the depletion region but rises at the threshold to a constant fraction
of G0 at large occupancy.

At high current, the conductance is degraded by additional inelastic scattering. Roughly
speaking, we can write the excess thermal current noise as

Sxs(I, µ) ∼ SJN
κ(µ)

κ0(µ)

(
G(0+, µ)− G(I, µ)

G0

)b

where the compressibility κ(µ) is scaled to its classical value κ0(µ) = n(µ)kBT, and b is an
exponent of order 0.5. While κ/κ0 decreases rapidly from unity in the threshold range, the
conductance, scaling with exponentially small density below that, rises to its plateau in just
that region. The competition between the two generates the peaks at threshold.
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Figure 4. Computed high-field excess current noise at 1.5 K in a QPC at fixed levels of source-drain
current around its lowest band threshold, matching the conditions for Figure 3, after the experiment
of Reznikov et al. [7]. Our calculation follows a strictly conserving quantum-Boltzmann analysis of
current fluctuations far from equilibrium [21]. Note the quantitative affinity of the calculated peaks
with the experimentally observed first-threshold maxima in Figure 3. Dotted line: corresponding
prediction at a current of 100 nA, according to a quantum-transmission model of QPC current
noise [16], using our associated evaluation of conductance as that model’s phenomenologically
required input. This can be compared with the peak at 100 nA (dot-dashed line) resulting from the
kinetic theoretical calculation. © 2004 The American Physical Society.

We have accounted for the unexplained peak structures in the experimental curves
of Reznikov et al. [8] of Figure 3. Thus far, we have not advanced a similar description
of the shot-noise-like plateaux seen there at gate voltages below −0.8 V, corresponding to
extremely low carrier numbers and high driving fields. In the predicted versus measured
100 nA curves in that figure, standard models [16] overestimate measured levels but contain
no further mechanism to correct the predicted excess. The issue is open to a future explicit
account of the shot-noise aspect, though from a kinetic standpoint.

Finally, it is noteworthy that the compressibility central to our noise theory does not
depend in any way on the size of the current through the QPC; its value is determined by the
global chemical potential alone. This is due to strong metallic screening (and rapid thermal
dissipation) from the large, degenerate population of free electrons in the macroscopic
device leads with the overall device neutrality that follows from it [2].

In physical terms, the total number N of carriers in the working region (metallic
channel plus interfaces), and its mean thermal fluctuation ∆N = kBTδN/δµ, are envi-
ronmentally fixed; the electrostatic boundary conditions constrain N and ∆N to their
equilibrium values set globally by µ irrespective of driving voltage. Any internal redis-
tribution of the driven carriers cannot manifest in the bulk compressibility of the active
structure [2]. This is the direct outcome of the physics of charged Fermi liquids [25]; a
fundamental collective effect insufficiently considered by treatments of 1D fluctuations and
violated by some [3], even to a loss of gauge invariance (charge conservation) [16].

5. Nonlinear Aharonov–Bohm Effect: A Challenge

Our last example presents a fascinating theoretical challenge whose resolution in terms
of standard quantum kinetics remains wide open. The Aharonov–Bohm effect has long
been understood as a demonstration of the physical reality of the vector potential [26]. The
way by which the vector potential enters directly into the wave function of a carrier results
in a relative phase shift when the carrier has the option of passing to one or the other side
of a tubular region, enclosing a magnetic flux.

Even if the magnetic field was screened to vanish outside its confining tube, the
generating vector potential would not be zero, acting differently on the phase of each
branch of the carrier’s wave. This provides a variation on the two-slit interference scenario:
modulating the magnetic flux induces a phase mismatch between branches, causing a
periodic pattern of oscillations in the magnitude of the current.
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In the configuration of Neder et al. [8], the difference of maximum (constructive
interference) and minimum (destructive interference) current magnitudes, as a ratio with
their sum, defines the visibility: this measure lies between one and zero as the magnetic
flux is varied. The investigated structure consisted of two QPCs linked in parallel to make
up a Mach–Zehnder electron interferometer enclosing an area threaded by a magnetic field.
Its flux was modulated by electrostatically modifying one of the QPC branches, altering
both its path length and the enclosed area.

For low driving voltage, the visibility should be constant at fixed magnetic field,
since all currents scale linearly with voltage. Away from the linear region, based on
previous experience with a simpler device, the investigators anticipated a progressive
monotonic decay in visibility owing to loss of quantum coherence through increased
random scattering [8].

The Neder collaboration found, instead, that the visibility as a function of greater
driving voltage first fell rapidly to zero but then recovered and rose substantially, repeating
this behavior with a periodicity strictly correlated with an abrupt change by π in the step-
wise form of the overall phase difference across the interferometer, inferred from the data.
As carefully discussed in their paper [8], the effect contradicts conventional explanations.

At this time of writing, we have no light to shed on this remarkable finding. We are,
however, intrigued by the robust periodicity of the visibility and consider that it well merits
further thought, given that nonequilibrium transport in most cases really should wipe out
such delicate effects. One potential consideration may be relevant: a model of the twin-path
electron interferometer should perhaps not assume ideal, cost-free 50-50 transmission at
its junctions as for, say, half-silvered mirrors in its optical predecessor. Rather, the hole
in the conductive geometry presents a different sort of quantum barrier to an incoming
carrier, not just dividing but severely distorting its wave function. The barrier is not fully
1D but “one-plus-one-dimensional”, calling for detailed simulation to compute how the
wave function negotiates being split, to heal itself after passage.

Calculations show that normal quantum transport through multiply connected struc-
tures results in transmission factors with a complex energy dependence, more so as these
geometries cause states in discrete bands to hybridize, complicating the eigenstate solutions.
Such transmission behaviour, inherent in this topology, would likewise strongly condition
the carrier flux. How this might play out for any of the finer details of the Aharonov–Bohm
phase shift [8], with carriers in different bands possibly coupled self-consistently and
reacting differently to the barrier, is certainly not clear.

6. Conclusions

We have offered a brief recapitulation of several past measurements of anomalous one-
dimensional conductance, and of its closely associated current noise. In their quite different
ways, they have all provided a strong incentive to look for theoretical understandings of
nonequilibrium 1D transport. In order of appearance, we have covered: enhancement of
nonlinear conductance beyond the Landauer bound, in the energy gap of a multi-channel
device; the unexpected noise peak in a strongly driven quantum point contact; and, still not
satisfactorily explained, the remarkable periodic quenching and resurgence of Aharonov–
Bohm current oscillations out of equilibrium.

From all these cases, the message is that, beyond phenomenology, a microscopically
based many-body methodology is needed for nonequilibrium 1D transport; a toolbox
equipped to move, in a controlled way, past single-particle descriptions essentially predi-
cated on tunnelling at linear response. Such approaches have always been possible thanks
to the massive extant literature on quantum kinetic theory [20,25,27–31]. In our own studies,
we have made honest attempts to adapt this solidly founded body of work to the one-
dimensional realm, frequently in simplified models but always respecting conservation.

This brings us to a message gleaned from our own efforts. It is indeed the microscopic
conservation laws, including gauge invariance that shapes the solution to problems of 1D
charge transport both near and far from equilibrium, often to a surprising extent (a notable
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example is the previously unsuspected role of bulk electronic compressibility in high-field
thermal current noise). While not sufficient on their own to solve these problems, they are
absolutely indispensable.

Author Contributions: Both authors have contributed equally. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors have no conflict of interest.

References and Note
1. Das, M.P.; Green, F. Nonequilibrium mesoscopic transport: A genealogy. J. Phys. Condens. Matter 2012, 24, 183201. [CrossRef]

[PubMed]
2. Green, F.; Das, M.P. Coulomb screening in mesoscopic noise: A kinetic approach. J. Phys. Condens. Matter 2000, 12, 5251–5273.

[CrossRef]
3. Thakur, J.S.; Green, F.; Das, M.P. Sum-rule Constraints for Open Mesoscopic Conductors. Int. J. Mod. Phys. B 2004, 18, 1479–1488.

[CrossRef]
4. Das, M.P.; Green, F. Mesoscopic transport revisited. J. Phys. Condens. Matter 2009, 21, 101001. [CrossRef] [PubMed]
5. De Picciotto, R.; Pfeiffer, L.N.; Baldwin, K.W.; West, K.W. Nonlinear Response of a Clean One-Dimensional Wire. Phys. Rev. Lett.

2004, 92, 036805. [CrossRef] [PubMed]
6. De Picciotto, R.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W. The 0.7 structure in cleaved edge overgrowth wires. J. Phys. Condens.

Matter 2008, 20, 164204. [CrossRef]
7. Reznikov, M.; Heiblum, M.; Shtrikman, H.; Mahalu, D. Temporal Correlation of Electrons: Suppression of Shot Noise in a Ballistic

Quantum Point Contact. Phys. Rev. Lett. 1995, 75, 3340–3343. [CrossRef] [PubMed]
8. Neder, I.; Heiblum, M.; Levinson, Y.; Mahalu, D.; Umansky, V. Unexpected Behavior in a Two-Path Electron Interferometer. Phys.

Rev. Lett. 2006, 96, 016804. [CrossRef] [PubMed]
9. For the reader who may wonder at our omission of the “0.7 anomaly”, or blip, in the QPC threshold conductance (as a ratio with

the ideal Landauer value), we have analysed this elsewhere; see Das, M.P.; Green, F. Conductance anomalies in quantum point
contacts and 1D wires Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 023001. Such wide departures in shape, size and location have
been recorded for this notorious effect, and with such broad material dependence, that to ascribe any systematics to these results
does violence to the concept of measuring an “effect”, anomalous or otherwise.

10. van Wees, B.J.; van Houten, H.; Beenakker, C.W.J.; Williamson, J.G.; Kouwenhoven, L.P.; van der Marel, D.; Foxon, C.T. Quantized
conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 1988, 60, 848–850. [CrossRef] [PubMed]

11. Wharam, D.A.; Thornton, T.J.; Newbury, R.; Pepper, M.; Ahmed, H.; Frost, J.E.F.; Hasko, D.G.; Peacock, D.C.; Ritchie, D.A.; Jones,
G.A.C. One-dimensional transport and the quantization of the ballistic resistance. J. Phys. C Solid State Phys. 1988, 21, L209–L214.
[CrossRef]

12. Büttiker, M. Symmetry of electrical conduction. IBM J. Res. Dev. 1988, 32, 317–334. [CrossRef]
13. Stone, A.D.; Szafer, A. What is measured when you measure a resistance? The Landauer formula revisited. IBM J. Res. Dev. 1988,

32, 384–413. [CrossRef]
14. Imry, Y.; Lauer, R. Conductance viewed as transmission. Rev. Mod. Phys. 1999, 71, S306–S312. [CrossRef]
15. Imry, Y. Introduction to Mesoscopic Physics, 2nd ed.; Oxford University Press: Oxford, UK, 2008.
16. Blanter, Y.M.; Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 2000, 336, 1–166. [CrossRef]
17. Frensley, W.R.; Einspruch, N.G. (Eds.) Heterostructures and Quantum Devices, a Volume of VLSI Electronics: Microstructure Science;

Academic Press: San Diego, CA, USA, 1994; Chapter 9.
18. Paulsson, M. Non Equilibrium Green’s Functions for Dummies: Introduction to the One Particle NEGF Equations. 2006. Available

online: https://arxiv.org/abs/cond-mat/0210519 (accessed on 5 August 2022).
19. Cornean, H.D.; Moldoveanu, V.; Pillet, C.A. A Mathematical Account of the NEGF Formalism. Ann. Henri Poincaré 2018, 19,

411–442. [CrossRef]
20. Mahan, G.D. Many-particle Physics, 2nd ed.; Plenum: New York, NY, USA, 1993; pp. 218–221.
21. Green, F.; Thakur, J.; Das, M.P. Where is the Shot Noise of a Quantum Point Contact? Phys. Rev. Lett. 2004, 92, 156804. [CrossRef]

[PubMed]
22. Green, F.; Das, M.P. Anomalous conductance quantization in the inter-band gap of a one-dimensional channel. J. Phys. Condens.

Matter 2018, 30, 385304. [CrossRef] [PubMed]
23. Kittel, C. Elementary Statistical Physics; John Wiley & Sons: New York, USA, 1958; pp. 117–168.
24. Green, F.; Das, M.P. Classical to Quantum Crossover in High-current Noise of One-dimensional Ballistic Wires. Fluct. Noise Lett.

2001, 1, C21–C33. [CrossRef]
25. Pines, D.; Nozières, P. The Theory of Quantum Liquids I; W. A. Benjamin: New York, NY, USA, 1966; pp. 147–268.
26. Baym, G. Lectures on Quantum Mechanics; Westview Press: New York, NY, USA, 1990; pp. 74–79.
27. Martin, P.C. Measurements and Correlation Functions; Gordon and Breach: New York, NY, USA, 1968.

http://doi.org/10.1088/0953-8984/24/18/183201
http://www.ncbi.nlm.nih.gov/pubmed/22508926
http://dx.doi.org/10.1088/0953-8984/12/24/315
http://dx.doi.org/10.1142/S0217979204024938
http://dx.doi.org/10.1088/0953-8984/21/10/101001
http://www.ncbi.nlm.nih.gov/pubmed/21817413
http://dx.doi.org/10.1103/PhysRevLett.92.036805
http://www.ncbi.nlm.nih.gov/pubmed/14753894
http://dx.doi.org/10.1088/0953-8984/20/16/164204
http://dx.doi.org/10.1103/PhysRevLett.75.3340
http://www.ncbi.nlm.nih.gov/pubmed/10059559
http://dx.doi.org/10.1103/PhysRevLett.96.016804
http://www.ncbi.nlm.nih.gov/pubmed/16486497
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://www.ncbi.nlm.nih.gov/pubmed/10038668
http://dx.doi.org/10.1088/0022-3719/21/8/002
http://dx.doi.org/10.1147/rd.323.0317
http://dx.doi.org/10.1147/rd.323.0384
http://dx.doi.org/10.1103/RevModPhys.71.S306
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
https://arxiv.org/abs/cond-mat/0210519
http://dx.doi.org/10.1007/s00023-017-0638-2
http://dx.doi.org/10.1103/PhysRevLett.92.156804
http://www.ncbi.nlm.nih.gov/pubmed/15169306
http://dx.doi.org/10.1088/1361-648X/aadafd
http://www.ncbi.nlm.nih.gov/pubmed/30117435
http://dx.doi.org/10.1142/S0219477501000500


Condens. Matter 2022, 7, 49 11 of 11

28. Frensley, W.R. Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 1990, 62, 745–791.
[CrossRef]

29. Rammer, J. Quantum Field Theory of Non-Equilibrium States; Cambridge University Press: Cambridge, UK, 2007.
30. Röpke, G.; Winkel, M. Green’s Functions Technique for Statistical Ensembles; Rostock University: Rostock, Germany, 2009.
31. Bonitz, M. Quantum Kinetic Theory; Springer International Publishing: Cham, Switzerland, 2016.

http://dx.doi.org/10.1103/RevModPhys.62.745

	Introduction
	Background
	Standard Account
	Difficulties and Remedies

	Interacting One-Dimensional Bands
	QPC Noise at High Fields
	Nonlinear Aharonov–Bohm Effect: A Challenge
	Conclusions
	References

