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Abstract: The results of direct synthesis of composite powder based on boron nitride (BN) are
considered. Concentrated light heating of the initial boron powder was carried out in a xenon high-
flux optical furnace in a nitrogen flow. Formation of particles of the desired sizes and architecture
highly dependent of the synthesis conditions. The flow of nitrogen separates the particles depending
on their architecture and size. An increase in the distance from the reaction zone leads to the formation
of powder with a wider bandgap, increases the amount of amorphous phase, and decreases the
amount of oxide in the collected composite powder. However, the close distance to the reaction zone
and high temperatures provide a denser packing of the structure on the particle surface and the
disappearance of the BN transition phases. Incorporation of the nickel sulfate hexahydrate to initial
boron contributes to the formation of graphene-like structures.

Keywords: flux synthesis; vapor deposition; nanostructures; boron nitride; optical properties; archi-
tecture of nanostructures; Fourier transform infrared spectroscopy; phase composition

1. Introduction

The behavior of individual atoms and electrons becomes important in nanostructures.
Quantum effects come into play, and these fundamentally alter the optical, electrical, and
magnetic behavior of materials. Nanostructured composite materials based on BN with
a wide bandgap and non-magnetism are expected to show promising electronic, optical,
and magnetic properties, which are essential for optoelectronic devices such as lasers,
photodiodes, and phototransistors [1–3].

Wide-bandgap nitride materials and related compounds being investigated extensively
find their applications in high-speed optoelectronic devices in the visible and ultraviolet
(UV) range of the electromagnetic spectrum. The increasing demand of shorter wavelength
(in the UV range) devices for optical storage, environmental protection, and medical
treatment is driving researchers to explore new materials with bandgaps higher than that
of GaN. One example of wide-bandgap material is hexagonal boron nitride [4].

The recent surge in graphene research has stimulated interest in the investigation of
various two-dimensional (2D) nanomaterials. Two-dimensional hexagonal boron nitride
(h-BN) nanostructures are the isoelectric analogs to graphene structures, which share very
similar structural characteristics along with many physical properties except for the large
bandgap. Analogous to graphene, diatomic B−N pairs in single-layer h-BN are packed in a
honeycomb structure with sp2—hybridized covalent bonding. The bulk h-BN compound
has excellent mechanical and thermal properties and a high chemical stability. In contrast
to semi-metallic graphene, h-BN is a wide direct bandgap insulator, which makes it a
promising electrically insulating substrate for graphene electronics due to the atomic
flatness of h-BN and absence of charge traps on h-BN surface [5]. Quantum-mechanical
simulations show that undergoing dramatic changes in electronic bonding of the pertinent
structures could cause structural transitions of c-BN in films to the corresponding h-BN [6].
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First-principle calculations have demonstrated the effect of stacking behavior of hexag-
onal basal layers on the structure and electronic properties of h-BN. The mixed stacking
behavior in real h-BN crystals is a result of intrinsic stacking faults. Therefore, a large
interlayer spacing of the structures in different BN powder can be explained by a stacking
disorder. The existence of a substable structure and related intrinsic stacking fault in real
h-BN clarify the discrepancy in the nature of the bandgap and the large variation in the
observed bandgap values of h-BN [7].

Electron energy-loss spectroscopy reveals the N-rich h-BN layers with a ratio of
B/N = 0.75–0.85. Angle-resolved X-ray absorption near edge structure of these two N-
rich nanostructures has been compared with that of h-BN microcrystals. The π* transition
in the N K-edge shifts to the lower energy by 0.8–1.0 eV from that of h-BN microcrys-
tals, and the second-order signals of N 1s electrons become significant. It was suggested
that the N enrichment would decrease the bandgap of nanostructures from that of h-BN
microcrystals [8].

The effects of intrinsic defects on the electronic structure of boron–nitrogen nanotubes
were also investigated using the method of linearized associated cylindrical waves. Nan-
otubes with extended defects of substitution N B of a boron atom by a nitrogen atom
and, vice versa (nitrogen by boron B N with an impurity concentration of 1.5 to 5%) are
considered. It was shown that the presence of such defects significantly affects the band
structure of boron–nitrogen nanotubes. A defect band is formed in the bandgap, which
sharply reduces the width of the gap. The presence of impurities has also demonstrated
effects on the valence band: the widths of s, sp, and p π bands change and the gap between s
and sp bands is partially filled. These effects may be detected experimentally by, e.g., optical
and photoelectron spectroscopy [9].

Photoluminescent (PL) and optical absorption spectra of high-yield multi-wall BN
nanotubes (BNNTs) were systematically investigated at room temperature in comparison
with commercial hexagonal BN (h-BN) powder. The direct bandgap of the BNNTs was
determined to be 5.75 eV, just slightly narrower than that of h-BN powder (5.82 eV) [10].

Many methods for synthesis BN were reported [11]. At the industrial scale, its fabri-
cation is made by conventional powder technology requiring nitridation or carbothermal
reaction of boric acid/boric oxide with melamine or urea and use of additives during the
further sintering process [12].

One of the solutions to tailor the nanostructure and architecture of ceramics is de-
velopment of “ceramic through chemistry” concepts [11]. These concepts will give the
opportunity to generate enhanced physical and chemical properties as well as unusual
properties through both the control of the composition at the atomic scale in a molecular or
polymeric precursor, and through their shaping, allow the design of tailored materials from
zero- (0D) to three-dimensional (3D) structures. However, synthesis of a powder based on
BN by direct nitriding of boron will reduce the number of different factors which control
the composition at the atomic scale, and so can be considered as a model process which will
help us to more clearly understand the effect of each of the different experimental factors
on the properties of the resulting powder material [13].

Heating of boron under the effect of concentrated light in an optical furnace in a flow
of nitrogen is a good example of a model process for synthesis of the powder based on BN,
as for as light energy it is one of the cleanest energy sources available. Moreover, an optical
furnace has a number of advantages because this technique is suitable for both conducting
and non-conducting materials. High heating and cooling rates, versatility, and the ability
to adjust the temperature profile along each axis, maximum operating temperatures, and
environmental adaptability are the other important advantages.

Therefore, the study of the influence of the synthesis conditions, the initial boron
powder, and the catalyst on the bandgap, architecture, phase composition, and infrared
spectra of the composite powder based on BN prepared by direct nitriding of boron under
concentrated light will allow us to more clearly see the patterns of phase and structure
formation during nitriding.
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2. Experimental Section

The initial boron powders of a mean particle size—0.05 µm (Figure 1a) and—0.20 µm
(Figure 1b) were used as starting powders. Both boron powders are partially amorphous
(Figure 2). XRD results proved that β-rhombohedral phase is predominant in the initial
boron powder of a mean particle size—0.05 µm (Figure 2a) and is available in the initial
boron powder of a mean particle size—0.20 µm (Figure 2b). Main difference between
two powders comes from the strong residual B2O3 peaks in phase composition of boron
with particle size—0.20 µm (Figure 2b). Negligible impurity of carbon (~B4C) stabilized
tetragonal phase of boron in the initial boron powder of a mean particle size—0.20 µm
(Figure 2b). Vibrational FTIR spectrum of boron powder of a mean particle size of 0.05 µm
confirms its nanostructure, since its transmission over a range 300–1800 cm−1, which
characterizes the individual properties of each powder, is significantly higher than that of
the initial boron powder of a mean particle size of 0.20 µm (Figure 3).
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Heating the surface of the compacted boron powder was carried out in a xenon high-
flux optical furnace [14]. A quartz chamber was employed for synthesis of BN powder
(Figure 4a). The chamber was flowed with purified and dried nitrogen. Cooper chips
heated up to 500 ◦C purified the nitrogen from oxygen and other pollutions. Platelets of
KOH dried the nitrogen from the water. A compacted sample was placed in a focal zone
of three xenon emitters on the water-cooled copper screens in the center of the reaction
zone (Figure 4b) [15]. BN nanostructures were synthesized at the low-density energy in
focal zone of set-up ~0.7 × 104 kW/m2. The time of the experiment was 30 min. Pyrometer
measurements showed that the temperature on the side surface of the sample can reach
1450 ◦C. The temperature in the reaction zone is much higher and can reach above 2000 ◦C.
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Figure 4. A process chamber before heating with a sample inside (a) and its schematic sketch (b).
Where: 1—a left-side water-cooled flange; 2—water-cooled copper screens; 3—a tablet of a compacted
boron powder, which is placed in the center of the reaction zone, 4—a surface of a quartz chamber;
5—a copper tube for water supply; 6—copper tubes for input and output of nitrogen; 7—a right-side
water-cooled flange. The resulting powder material was collected sequentially in 2, 3, 4, 1, and 7
locations in the chamber.

During heating of the surface sample, synthesized powder material was deposited on
the inner walls and copper screens of the process chamber and was picked up at the surface
of the sample, near the reaction zone at the copper screen, at the upper central surface of
the chamber, and at its flanges (Figure 4b).

The initial and resulting powders were analyzed using X-ray diffraction (diffrac-
tometer “DRON-3.0”, radiation of Kα—Cu). The structure of the powders was examined
microstructurally using Superprobe 733, JSM-6490 Scanning Electron Microprobes (JEOL
Ltd., Tokyo, Japan). An intercept method was used to estimate the grain size. Infrared
spectra of the powders were recorded using Fourier transform infrared spectroscopy Nico-
let 6700 FTIR spectrometer equipped with a Thermo Nicole Continuum microscope, a
frequency range of 650–4500/cm (Thermo Fisher Scientific, Waltham, MA USA). A detailed
spectrophotometric study was performed by spectrophotometer “Specord UV-Vis” (Carl
Zeiss Spectroscopy GmbH, Jena, Thüringen, Germany). Exploring the spectral dependence
of an optical absorption was carried out on thin films of powdered material, which was
precipitated on a quartz substrate.

Nickel sulfate hexahydrate NiSO4.6H2O (KHARKOVTORGSERVIS LLC) was chosen
to modify the structure of the composite powder based on BN [16].

3. Results and Discussion

Direct synthesis of the composite powder based on boron nitride from initial boron
powder of a mean particle size—0.05 µm in a xenon high-flux optical furnace in a flow of
nitrogen results in formation mainly of equiaxed (mean particle size of 0.3 µm) or plate-
like particles with thickness of 0.3 µm (mean size of the plate-like surface of a particle
of 2.5 µm) on the surface of a compacted sample in close proximity to the reaction zone
(Figure 5a). Incorporation of NiSO4·6H2O into initial boron powder of a mean particle
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size—0.20 µm—promotes the formation of mainly graphene-like structures and nanostruc-
tures of a mean particle size of 0.80 µm on the surface of a compacted sample in close
proximity to the reaction zone (Figure 5b). The presence of moisture in nickel sulfate
hexahydrate causes the formation of a liquid phase and, as a consequence, the appearance
of graphene-like structures [17] according to the model for the formation of BNs of different
architectures [13–17].
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Figure 5. SEM image of composite powder based on BN produced from initial boron powders of
mean sizes: (a)—0.05 µm and (b)—0.20 µm. The powder material was collected from the surface of a
compacted sample in a close proximity to the reaction zone (Figure 4b, location 3).

As an example, the effect of temperature distribution in the chamber while catalyst-
free synthesis on the formation of the composite powder based on BN from the initial boron
powder with a mean particle size of 0.20 µm was considered (Figure 6a–d), (Table 1). The
plate-like particles of a thickness of 0.01 µm and a mean size of 7.00 µm were revealed
on the upper central surface of the chamber (Figure 6a) (Figure 4b, location 4) and on the
surface of water-cooled copper screens closer to the reaction zone (Figure 6d) (Figure 4b,
location 2) as well as nanoparticles of the mean size of 0.35 µm and 0.15 µm, respectively.
Nanoparticles of a mean particle size of 0.05 µm were formed on a left-side water-cooled
flange (Figure 6b) (Figure 4b, location 1) and on the remote right-side water-cooled flange
(Figure 6c) (Figure 4b, location 7). Such size distribution of the composite particles is due to
the influence of the flow of nitrogen which captures light particles and carries them over
long distances. The continuously ascending flow of boron nitride vapor from the boiling
surface and its rapid cooling on the chamber surface results in the increased mean particle
size of the composite powder that precipitates on the upper central surface of the chamber
up to 0.35 µm (Figure 6a) (Figure 4b, location 4).

Table 1. Formation of composite powders based on BN within the chamber.

Locations of the
Collecting Powders

Water-Cooled Copper
Screens

(Figure 4b, Location 2)

Upper Central Surface
of the Chamber

(Figure 4b, Location 4)

Left-Side
Water-Cooled Flange

(Figure 4b, Location 1)

Right-Side
Water-Cooled Flange

(Figure 4b, Location 7)

Distance from the
reaction zone, mm 20 30 90 210

Mean plate-like particle
size, µm 7 7 - -

Mean nanoparticle size,
µm 0.15 0.35 0.05 0.05
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Figure 6. SEM images of composite powder based on BN prepared using catalyst-free synthesis from
initial boron powder of a mean size—0.20 µm. The powdered material was collected in 3 (a); 4 (b);
1 (c); and 7 (d) locations in the chamber (Figure 4b).

Optical absorption of the powdered material deposited in four parts of the chamber
(Figure 4b, locations: 2, 4, 1, 7) was explored. All films of the powdered material deposited
on a quartz substrate have demonstrated a high visible transparency. The representative
graphs of a square optical absorption coefficient α versus photon energy at room tempera-
ture for various BN films are very different (Figure 7a). However, it is interesting to note
that, regardless of the exact absorption coefficient values, there is a pronounced tendency
for the bandgap to increase with the distance from the reaction zone. It can be concluded
based on extrapolating the square optical absorption coefficient to zero (Figure 7a) that
the highest bandgap is 5.2 eV for the material taken at the most remote part of a chamber
(Figure 4b, location 7). The presence of linear sections in the graph of a square optical ab-
sorption coefficient α versus photon energy for powder material of a mean size of 0.35 µm
collected on the upper central surface of the chamber (Figure 4b, location 4) indicates the
availability of crystalline phases, that have time to form in the largest particles due to their
rapid cooling on the chamber surface in a continuously ascending flow of boron nitride
vapor from the boiling surface.
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XRD data confirm and explain the pattern of change in the bandgap with the distance
from the reaction zone (Figure 8). The appearance of B2O3 and B2O crystalline phases on
the water-cooled copper screens of a chamber (Figure 4b, location 2) and on the surface of
the quartz chamber (Figure 4b, location 4) near the reaction zone can explain the presence
of oxides in the phase composition of the initial boron (Figure 2b), which are a constant
supplier of oxygen when the initial boron is heated in a close proximity to the reaction zone
(Figure 4b, location 2, 4). The presence of two linear sections in the graph of a square optical
absorption coefficient α versus photon energy (Figure 7a, (graph 4)) is also attributed to the
existence of additional oxides with a smaller bandgap. High temperature gradients and
nitrogen flow result in deposition of a nanosized amorphous powder on the remote end of
the chamber (Figure 4b, location 7), since the nanoparticles do not have enough time for
complete crystallization and oxidation.
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The vibrational IR spectra of the powder deposited on the water-cooled copper screens
of the chamber (Figure 4b, location 2) and on the upper central surface of the chamber
(Figure 4b, location 4) disclose the difference in the surface structure of these powders,
caused by the action of the ascending flow of nitrogen and different temperature conditions,
which are determined by the distance to the reaction zone (Figure 9). High temperatures
near the reaction zone on the water-cooled copper screens of the chamber result in changes
in phase composition on the particle surface since there is a disappearance of the bands
at 926, 1024, 1102 cm−1, associated with the transitional phases of BN powder (Figure 4b,
location 2). The main peaks at 708, 1190, 1418, 3195 cm−1 shift to higher values: 770,
1195, 1436, 3202 cm−1 (Figure 9, graf.2) at higher temperatures. Lower values of the
bond lengths for the particles which were deposited on the upper central surface of the
chamber (Figure 4b, location 4) may indicate a denser packing of the surface structure of
these particles.
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4. Conclusions

Joint heating of nitrogen and boron under concentrated light can ensure the formation
of particles of different sizes and architecture depending on the synthesis conditions.
The incorporation of the catalyst in the initial boron promotes the formation of mainly
graphene-like structures and nanostructures of a mean particle size of 0.80 µm.

Under the effect of the flow of nitrogen and the decrease in temperature caused
by increasing the distance to the reaction zone, the powders are separated by size and
architecture. As a result, an amorphous powder with the largest bandgap of 5.2 eV with a
minimum particle size of 0.05 µm and a minimum amount of oxide phase B2O3 precipitates
in the most remote parts of the chamber.

Vibrational FTIR spectra of the deposited powder displayed that a close distance to
the reaction zone and high temperatures ensure the disappearance of bands of 926, 1024,
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and 1102 cm−1, which is associated with the transitional phases of BN. A greater distance
to the reaction zone and lower temperatures lead to lower values of the bond lengths for
the particles which were deposited on the upper central surface of the chamber, and may
indicate a denser packing of the surface structure of these particles.
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