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Abstract: Artificial neural networks have been widely adopted as ansatzes to study classical and
quantum systems. However, for some notably hard systems, such as those exhibiting glassiness and
frustration, they have mainly achieved unsatisfactory results, despite their representational power
and entanglement content, thus suggesting a potential conservation of computational complexity
in the learning process. We explore this possibility by implementing the neural annealing method
with autoregressive neural networks on a model that exhibits glassy and fractal dynamics: the
two-dimensional Newman–Moore model on a triangular lattice. We find that the annealing dynamics
is globally unstable because of highly chaotic loss landscapes. Furthermore, even when the correct
ground-state energy is found, the neural network generally cannot find degenerate ground-state
configurations due to mode collapse. These findings indicate that the glassy dynamics exhibited by
the Newman–Moore model caused by the presence of fracton excitations in the configurational space
likely manifests itself through trainability issues and mode collapse in the optimization landscape.

Keywords: artificial neural networks; neural network trainability; variational neural annealing;
computational complexity; glassy dynamics

1. Introduction

In recent years, the performance of machine learning models has increased consider-
ably in areas such as computer vision or natural language processing. Deep learning [1],
in particular, has surpassed previously known algorithms, improving the performance of
tasks such as object recognition and machine translation, to name a few. Undoubtedly, this
improvement mainly came from artificial neural networks (ANNs), powerful models that
capture intricate correlations present in data. Thanks to their representational power, they
act as very efficient feature extraction machines whose output is meaningful information
obtained from a nonlinear transformation of an input.

Inspired by the successes of ANNs in computer science, physicists have also started to
use them to study problems in various branches of physics [2], such as optics, cosmology,
quantum information, and condensed matter. In the latter, they are used to identify phases
of matter [3–7], increase the performance of Monte Carlo simulations [8–14], and find
precise representations of the ground state of quantum systems [15–18]. A particular
aspect of their capacity to characterize quantum matter [19] is their ability to be used as
parameterized functions to represent the underlying probability distribution of a physical
system. However, it was observed that, for certain hard problems, such as those exhibiting
frustration [20–23] (e.g., due to the infamous sign problem), it was difficult for ANNs
to learn the correct distribution despite their expressiveness, entanglement content, or
symmetries. This observation hints at a possible conservation of computational complexity
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hardness, which manifests itself in the trainability of ANNs. This work investigates this
issue by visualizing the ANNs’ loss landscapes.

Loss landscape visualization is an approach that aims at representing the high di-
mensionality of ANNs in the more intuitive two- or three-dimensional spaces. It has been
successfully used in the machine learning community to study the trainability and gener-
alization of deep neural networks [24]. In particular, it was used to understand why skip
connections in residual neural networks are generalizing better than vanilla convolutional
neural networks. Nowadays, in the quantum computing community, it is more and more
employed to benchmark different quantum circuit architectures over a variety of tasks,
such as quantum optimization or quantum machine learning [25,26]. This paper uses it to
study trainability in the neural annealing paradigm.

Neural annealing is a recent technique that aims at solving hard optimization prob-
lems through the variational simulation of the annealing procedure using ANNs [27].
It was shown to be more efficient than simulated annealing [28] and simulated quantum
annealing [29] in finding the ground state of various spin glasses. In this work, we use it in
both its classical and quantum formulations with autoregressive neural networks, to find
the ground state of the Newman–Moore model on a triangular lattice [30–32]. We choose
the Newman–Moore model as a benchmark because it is exactly solvable and displays sev-
eral exotic features, such as glassiness without disorder, extensive ground-state degeneracy,
and fractal symmetry; the latter proved to have application in quantum memories [33,34].
Furthermore, the fractal symmetry of the Newman–Moore generates immobile excitations
under local Hamiltonian dynamics, which hamper both classical and quantum Monte
Carlo simulations [30,35]. In this work, we show that the neural annealing dynamics of the
Newman–Moore display instabilities due to the highly rugged nature of the loss landscape
geometry, despite the use of ancestral sampling, which was shown to be superior compared
to Metropolis Monte Carlo sampling. Ancestral sampling, also known as autoregressive
sampling, is implemented via recurrent neural networks (RNNs) [36,37], which are known
to be Turing complete [38], and universal function approximators [39]. However, we find
that when the annealing dynamics results in the correct ground-state energy, the sampling
is generally unable to capture the multi-modal distribution of degenerate ground states,
hinting at a possible mode collapse in the training procedure.

The remainder of the article is organized as follows. In Section 2, we describe the
classical and quantum Newman–Moore models. In Section 3, we describe the RNN
ansatz, the neural annealing protocols, and the visualization method used in this work.
Section 4 reports classical and quantum variational annealing results on the Newman–
Moore model, along with the corresponding visualization of the loss landscape during
annealing dynamics. Conclusions are reported in Section 5.

2. The Newman–Moore Model

In order to investigate trainability in the neural annealing method, we use as a test-bed
the two-dimensional (2D) Newman–Moore model on a triangular lattice. Its Hamiltonian
is given by:

H =
J
2 ∑

i,j,k in ∇
σiσjσk, (1)

where σi = ±1 are Ising spins located at the lattice sites i, j, k of a downward-facing triangle
(see Figure 1a). The parameter J > 0 fixes the strength of the interactions of each spin
triplet, and is used as the energy scale of the system. In this work, we set J = 1. We consider
as a computational basis the state σ = (σ1, . . . , σN) of N = L× L spins, where L is the
length of the lattice.
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Figure 1. (a) Structure of the 2D Newman–Moore model. Spins (grey circles) interact via downward-
pointing triangles. The grey-shaded spins represent periodic boundary condition interactions.
(b) Illustration of an RNN autoregressive sampling of the 2D Newman–Moore model. An RNN cell
(green circle) located at lattice site n, m receives two hidden states hn−1,m and hn,m−L in a zigzag
fashion (solid blue lines), as well as their corresponding spin states (not shown). L is the length of the
2D lattice. The autoregressive sampling of new spins is performed sequentially along the blue lines,
with the dashed blue lines indicating sampling continuation to the next row. h0 represents the initial
memory state of the RNN.

One peculiarity of the Newman–Moore model is that its macroscopic behavior strongly
depends on the characteristics of its finite-sized lattice. If one of the sides has a dimension
that can be expressed as L = 2k for some integer k, then the model is exactly solvable and
has a single ground-state configuration, which is the trivial one with all spins pointing
down. For different values of L, the ground state may be degenerate, with a degeneracy
that is a non-analytic function of the lattice size. This is due to the Newman–Moore
model exhibiting a fractal symmetry that acts on some subextensive d-dimensional (d,
the fractal dimension is generally not an integer) subsystem of the whole system [33].
Furthermore, the Newman–Moore model exhibits glassy behavior at low temperatures
and under single-spin-flip dynamics despite having neither randomness nor frustration.
The glassiness causes a loss of ergodicity due to the presence of fracton excitations, thus
hampering sampling in traditional Monte Carlo methods, even when thermal annealing is
implemented [30].

Contrary to the classical Newman–Moore model, which does not have a thermody-
namic phase transition at finite temperature, the quantum Newman–Moore model, in the
presence of the transverse field −Γ ∑N

i=1 σx
i , exhibits a fractal quantum-phase transition

at Γ = 1 [35], with first-order-like fluctuations [32]. However, fracton excitations on the
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Sierpinski triangle still induce restricted mobility, hence impeding the sampling procedure
of quantum Monte Carlo methods in the glassy phase [35].

In the next section, we describe our implementation of the variational classical and
quantum annealing methods with recurrent neural networks.

3. Methods
3.1. The Recurrent Neural Network Ansatz

We use recurrent neural networks (RNNs) to parameterize the Boltzmann probability
distribution of the Newman–Moore Hamiltonian in Equation (1). The joint probability
distribution of a spin configuration σ is modeled with θ parameters as follows:

pθ(σ) = pθ(σ1)pθ(σ2|σ1) · · · pθ(σN |σ<N), (2)

where pθ(σi|σ<i) is a conditional probability given by:

pθ(σi|σ<i) = Softmax(Uhn,m + b) · σi. (3)

The Softmax activation function guarantees that the probability distribution pθ(σ)
is normalized to unity. σi is the one-hot representation of the spin σi, and · denotes the
dot product operation. Note that the index i covers 1, . . . , N. Indices n, m cover 1, . . . , L,
respectively, along the horizontal and vertical sides of the triangular lattice. hn,m is the
RNN hidden state, which encodes information about the previous spins σi′<i. It obeys the
following recurrent relation (see Figure 1b):

hn,m = f (W(h)[hn−1,m; σn−1,m] + W(v)[hn,m−L; σn,m−L] + c), (4)

where f is a non-linear activation function of the RNN cell (green circle in Figure 1b).
In this work, we use the exponential linear unit or ELU activation function. The brackets
[. . . ; . . . ] represent a vector concatenation operation. The parameters U, W(h), W(v) and b, c
in Equations (3) and (4) are, respectively, the weights and biases of the RNN. They are
encompassed in the trainable parameters θ of the RNN ansatz.

The sampling of new spin configurations is performed autoregressively in a zigzag
fashion (along the horizontal blue lines in Figure 1b) to capture the 2D structure of the
lattice [18]. It is employed with the hope of sampling the degenerate ground-state con-
figurations of the Newman–Moore model, provided that the RNN ansatz can capture its
multi-modal distribution. It was shown that this approach was superior to the Markov
chain Monte Carlo sampling in disordered spin glasses [27]. We used the Vanilla RNN
cell in this work as we did not observe substantial improvements in using more powerful
representations such as the Gated Recurrent Unit or GRU cells. We equally maintained a
weight-sharing approach across all the lattice sites for the same reasons. We note, however,
that more powerful representations of RNN cells, such as Tensorized RNN cells [27], could
enhance the representation power of our RNN ansatz.

For the quantum case, we use the RNN ansatz in Equation (2) to model the ground-
state wavefunction amplitude of the Hamiltonian as:

Ψθ(σ) =
√

pθ(σ). (5)

The stochastic nature of the quantum Newman–Moore model allows for representing
the wavefunction amplitudes with real and positive numbers instead of complex ones.
For more details on RNN ansatzes, the interested reader is referred to [18,27].

3.2. Variational Neural Annealing

Variational neural annealing is a recently introduced method used to solve optimiza-
tion problems by representing the instantaneous probability distribution of the system
with neural networks during the annealing procedure [27]. Its classical formulation—
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dubbed Variational Classical Annealing (VCA)—involves training a neural network ansatz to
minimize the variational free energy at temperature T:

F = 〈H〉θ− TS(pθ). (6)

〈H〉θ stands for the ensemble averages of the Newman–Moore Hamiltonian in
Equation (1). It is computed by taking Monte Carlo averages over a finite number of
Ns samples drawn from the RNN probability distribution pθ(σ). Given that pθ(σ) is
normalized by construction, the von Neumann entropy S(pθ) = −〈log pθ(σ)〉θ is equally
estimated at a moderate computational cost. The parameters θ are trained till F con-
verges over a number of Nwarmup steps using gradient-based methods (see warmup step
in Algorithm 1). Note that the variational free energy is regarded as a loss function L to
mimic machine learning jargon. In this work, the Adam method [40] is utilized with the
batch gradient descent method. The gradients of the free energy are computed efficiently
using automatic differentiation, and their noise is mitigated using control-variate methods.

The temperature is slowly reduced during the annealing process according to a user-
defined schedule. As is typical in simulated annealing calculations, we employ a linear
annealing schedule T(t) = T0(1− t) with t ∈ [0, 1]. Transfer learning of parameters θ
between subsequent annealing steps is implemented, as it was shown to help maintain
the stability of the annealing protocol. During the annealing process, the system shifts
from maximizing entropy to minimizing energy, thus finding the ground state of the
Newman–Moore model provided that the rate of annealing is sufficiently slow, the ansatz
is expressive enough, and the loss landscape of the free energy allows for efficient training
of the RNN.

When the neural annealing algorithm is driven by quantum fluctuations instead of
thermal ones, it is referred to as Variational Quantum Annealing or VQA. VQA is based on
the Variational Monte Carlo method, where the RNN wavefunction Ψθ(σ) in Equation (5)
is used to approximate the ground-state wavefunction of the quantum Newman–Moore
model. This is achieved by minimizing the so-called variational energy of the Hamiltonian:

E = 〈Ψθ|Ĥ|Ψθ〉 − Γ〈Ψθ|
N

∑
i=1

σx
i |Ψθ〉, (7)

where Ĥ is the Hamiltonian operator for the Newman–Moore spin model in Equation (1).
E turns out to be an appropriate loss function given that it serves as an upper bound
to the Hamiltonian ground energy. In VQA, the training and annealing procedures are
implemented similarly to VCA, albeit at the difference of using the variational energy E
as a loss function with a linear annealing of the transverse field Γ. Note, however, that
the computational complexity of implementing a gradient descent step is O(N2) for VQA
while being O(N) for VCA. This is due to the off-diagonal term of the transverse field.
Thus, to account for larger computation costs, smaller system sizes will be used when
presenting the VQA results in the next section.

A generic description of the variational neural annealing protocol (including both
VCA and VQA) is displayed in Algorithm 1. More in-depth details of the neural annealing
procedure can be found in Reference [27].
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Algorithm 1 Variational neural annealing

Initialization Step:
Randomly initialize RNN parameters θ
Set T = T0 for VCA ( Γ = Γ0 for VQA)
Set loss function L as Equation (6) for VCA ( Equation (7) for VQA)

Warmup Step:
for t = 1, . . . , Nwarmup do

Generate Ns samples σ from Equation (2)
Update θ by minimizing L

end for

Annealing Step:
do

T ← T − δT (Γ← Γ− δΓ )
for t = 1, . . . , Ntrain do

Generate Ns samples σ from Equation (2)
Update θ by minimizing L

end for
while T 6= 0 (Γ 6= 0)
Generate desired samples σ of Hamiltonian in Equation (1)

3.3. Loss Landscape Visualization

To study trainability in the neural annealing protocol, we employ a technique used
to obtain a qualitative description of the loss landscape geometry in a neighborhood of
the current network parameters θ∗ [24,41]. This involves plotting the loss function L on a
randomly chosen plane given by:

f (α, β) = L(θ∗ + αδ + βη), (8)

where δ and η are vectors of length ||θ∗|| whose entries are N (0, 1). α and β are arbitrary
real numbers defining the 2D scan of the loss landscape. Although this is an arbitrary slice
of the loss function high-dimensional space, it gave insight into deep neural networks’
trainability and generalization properties. As shown in Algorithm 2, for each point in the
vicinity of the current optimal parameters θ∗, new Ns samples are generated to compute the
value of the loss function at that point. This makes the landscape topography dependent
on the number of samples that are used. Ns is therefore fixed to the finite value used
in the neural annealing simulations so that the landscape geometry reflects what the
simulations experience.

Recall that the loss function in Equation (8) is, respectively, the variational free energy
F when VCA is implemented or the variational energy E when it is VQA that is used.
Thus, according to the variational adiabatic theorem introduced in [27], the variational anneal-
ing protocol is guaranteed to be adiabatic, provided that L remains convex in the vicinity
of θ∗ throughout the annealing procedure.

Note that the filter-wise normalization technique of [24] is not implemented here,
given that the RNN ansatz used is not scale-invariant due to the presence of ELU activa-
tion functions. A principal component analysis approach, similar to the one used in the
visualization of variational quantum circuit landscapes, could also be implemented [26].
However, we found the previously described visualization method sufficient to interpret
our results.



Condens. Matter 2022, 7, 38 7 of 15

Algorithm 2 Loss landscape visualization procedure

Initialization:
Set a 2D grid of Npoints × Npoints
Set the magnitude of each point (α, β) in the 2D grid
Set the Gaussian random directions δ and η

for each point (α, β) in the 2D grid do
θ
∗
= θ∗ + αδ + βη

Generate Ns samples σ ∼ p
θ
∗(σ)

Compute L as Equation (6) for VCA (Equation (7) for VQA)
end for
Plot the function f (α, β) in Equation (8)

4. Results and Discussion
4.1. Variational Classical Annealing

In this section, we present the results of implementing the variational classical an-
nealing method to find the ground state of the Newman–Moore model. The system is
firstly equilibrated at a high temperature T0 = 10 to provide enough thermal energy
for exploration in the spirit of simulated annealing. This is done by minimizing the
variational free energy F by training the RNN ansatz over Nwarmup = 1000 warmup
steps. Then, annealing is performed by slowly reducing the temperature linearly over
Nannealing = 10,000 annealing steps. These parameters were used to find the ground-state
energy of the 2D Edwards–Anderson spin glass with 99.999% accuracy on a 40× 40 lat-
tice [27]; thus, we adopt them here. Details on all the hyper-parameters used in this work
can be found in Table A1 in the Appendix B.

Figure 2a shows the instantaneous free energy per spin during the VCA protocol
for lattices of size L = 5, 16 whose ground states are non-degenerate. The red curve in
Figure 2a corresponds to the analytical results for the free energy density, which are exact
for L = 2k [30]. As expected, the variational free energy (dark curve) values are consistently
above the exact result since it acts as an upper bound to the true free energy. However,
it is interesting to observe that the annealing process is not smooth, with F occasionally
deviating from its true value. This phenomenon is even more pronounced for the system
size with 16× 16 spins. This may be caused by the chaotic geometry of the instantaneous
loss landscape, as shown in the next section. Even though, at the end of annealing, i.e., at
T = 0, VCA recovers the correct ground-state energy of the Newman–Moore model (despite
the simulation’s instabilities in the training procedure), we have noticed that this is not
always the case for different initial conditions, even, at times, for small system sizes.

Next, we perform simulations with an increased difficulty level by considering lattice
sizes L for which the ground state has many degenerate solutions. The results of the free
energy for L = 3, 6 are displayed in Figure 2b. They seem to follow the same pattern as their
non-degenerate counterparts, displaying a successful finding of the ground-state energy
despite the somewhat chaotic annealing dynamics. Unfortunately, we have also noticed
that different initializations may end up in excited states.

Furthermore, even for runs where the Newman–Moore ground-state energy is found,
we have observed that the solution is almost always the trivial ground-state configuration.
At the end of annealing, even after sampling a large number of configurations autoregres-
sively, only the trivial ground-state configuration is found. Appendix A shows the only
case where we noticed that the RNN was able to capture the multi-modal distribution of the
ground state. In general, it seems that the model is never able to capture the multi-modal
distribution of the ground-state configurations. In every instance in which VCA was tested,
annealing always concluded with the unique configuration being sampled—regardless of
seeding, system size, or (large) initial temperature. It is difficult to ascertain the exact cause
of this mode collapse. Nonetheless, this preference for sampling a single configuration may



Condens. Matter 2022, 7, 38 8 of 15

parallel the frozen dynamics of conventional Monte Carlo impaired by fracton excitations,
potentially translating into trainability issues in VCA.
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Figure 2. The free energy density as a function of the temperature T during variational classical
annealing (VCA). (a) System sizes L depict Hamiltonians with the trivial ground-state configuration.
The red dashed curve represents the exact analytical solution. (b) System sizes L = 3, 6 that represent
Hamiltonians having, respectively, 4 and 16 degenerate ground-state configurations [35].

4.2. Variational Quantum Annealing

We now investigate the behavior of variational quantum annealing in finding the
ground state of the Newman–Moore model. For comparison purposes with VCA, we
perform simulations on degenerate (L = 3) and non-degenerate lattice (L = 5) sizes for
which exact results are available. The exact results are obtained using the Lanczos algorithm.
We equally use the same rate of annealing as in VCA. This is done by equilibrating the
system at a large value of the transverse field Γ0 = 10 before its linear decrease over
Nannealing = 10,000 annealing steps.

Figure 3 displays the instantaneous variational energy per spin during the annealing
process. It is interesting to note that, in contrast to VCA (see Figure 2), the annealing
dynamics is in general much smoother. As shown in the insets, a significant jump is
observed after the quantum phase transition (Γ < 1); then, the variational energy E falls
back to its exact value a few steps before annealing ends. However, this does not seem
to affect the solution of the optimization problem as we have noticed that, for the same
number of runs, VQA and VCA in general find the ground-state energy the same number of
times. A possible reason for this is could be the fast convergence of directly optimizing the
Newman–Moore model in Equation (1) for the system sizes used in VQA (data not shown).

Note that, despite finding the correct ground-state energy, VQA suffers from the
same mode collapse issues as VCA. It often displays a strong preference for sampling only
the trivial configuration once annealing is completed, regardless of system size, initial
seed, or large initial transverse field (except for the example discussed in Appendix A).
We equally notice that penalizing the trivial ground state does not solve the mode collapse
issue, resulting in another spin configuration’s mode collapse. Again, it seems that the pres-
ence of topological quasi-particle excitations in the configurational space of the quantum
Newman–Moore model, which hinders practical QMC simulations, somehow translates
into the inability of the variational energy loss function to capture the multi-modal distri-
bution of the ground-state configurations.
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Figure 3. The variational energy per spin (black curves) as a function of the transverse field Γ during
variational quantum annealing (VQA). System sizes with one (L = 5) and multiple (L = 3) classical
ground-state configurations are considered. The red dashed curve shows exact ground-state energies
obtained from the Lanczos algorithm. The insets display VQA dynamics after the fractal quantum
phase transition at Γ = 1 [35].

4.3. Loss Landscapes

To further understand the issues encountered during VCA and VQA simulations,
we probe their loss landscapes during their neural annealing process. In Figure 4a, we
show the variational free energy density landscape at the beginning, middle, and end of
annealing of the simulation previously shown in Figure 2a. For each annealing snapshot,
the loss landscape is plotted in the vicinity of the RNN current parameters θ∗, in two
random directions, as elaborated in Section 3.3. A system size of 5× 5 spins is considered.
Note that we have not observed significant qualitative differences between landscapes of
degenerate and non-degenerate lattice sizes. The free energy is rescaled between [−1, 1], as
indicated by the color bar.

A couple of interesting qualitative phenomena are observable here. Before annealing
at T = 10, there is a characteristic bright spot at the center of the panel, indicating that
the current RNN parameters likely represent the global minimum of F. Thus, it points
to a successful implementation of the warmup step. Mid-annealing seems to retain the
same feature, although with a slightly reduced radius of the bright spot. This is somewhat
expected given that, for pθ∗(σ) to represent the Boltzmann distribution at each temperature,
the curvature around the minimum should retain its convexity. Note that some regions of
low free energy separated by barriers of higher free energy are visible. This might explain
the sharp deviation sometimes observed during the annealing dynamics in Figure 2a.
After annealing has been completed, the landscape displays a broad plateau of constant free
energy with a distinctive delimitation with a higher energy plateau and rapidly oscillating
barriers. This corresponds to parameter regimes in which the same configuration is sampled
exclusively and is likely the signature of the strong preference that the network has for
sampling a single configuration at T = 0.

In Figure 4b, loss landscapes corresponding to VQA simulations in Figure 3 (for L = 5)
are displayed. The first two panels’ qualitative behaviors are similar to the ones of VCA.
At mid-annealing, though, we observe a large region of constant low energy close to θ∗,
which may evolve to local minima as the transverse field is reduced. This may explain
why the variational energy sometimes gets excited out of its exact course. The snapshot
at Γ = 0 shows that around θ∗, the variational energy has a local minimum separated
by high-energetic barriers. This feature should be expected for a successful VQA run.
We equally note the presence of another region of low energy, which might point to a
regime of parameters for which low-lying excited states are sampled. However, we note
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that, in general, we did not observe such a trend in other VQA runs; thus, we can only
remain speculative in our observation. Furthermore, it is important to mention that,
from the plots in Figure 4, it is difficult to ascertain why the VCA simulations seem more
chaotic than VQA simulations. Analyzing the low-dimensional optimization trajectories
during annealing might shed more light on this issue and is worth further investigation.
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Figure 4. Loss landscapes of the neural network ansatzes around the optimal parameters at different
snapshots of the variational annealing protocols. α and β are parameters rescaling random directions
around the current optimal parameters. The system has 5× 5 spins. The color bar represents the loss
landscape, which corresponds to (a) the variational free energy density in VCA simulations shown in
Figure 2, and (b) the variational energy per spin for VQA simulations in Figure 3. Both values are
rescaled for comparison purposes.

Next, we look at the loss landscape geometry for larger lattices for which trainability
issues were more pronounced. Figure 5 shows 3D snapshots of the loss landscape during
the VCA simulations of Figure 2a. In the first panel, before the warmup step, we observe
that the free energy landscape has a local minimum around the parameters θ∗. This is
likely a random event, given that the RNN parameters were randomly initialized. After the
warmup, the landscape maintains its shape, except that the variational free energy min-
imum value has now converged close to the exact one at T0 = 10. As the temperature
is reduced, the landscape shape becomes more rugged, with the appearance of sizeable
high-energy plateaus and rapidly changing barriers, eventually leading to the disappear-
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ance of the local minimum into an utterly chaotic landscape at the end of annealing. Thus,
from this standpoint, it is evident that trainability issues are at work here, hindering a
successful application of variational neural annealing.

Æ

°1.0
°0.5

0.0
0.5

1.0
Ø

°1.0

°0.5

0.0

0.5

1.0

L
os

s
fu

n
ct

io
n

°3

°2

°1

0

Free energy before warmup: T0 = 10

Æ

°1.0
°0.5

0.0
0.5

1.0

Ø

°1.0

°0.5

0.0

0.5

1.0

L
os

s
fu

n
ct

io
n

°6

°4

°2

0

Free energy after warmup: T0 = 10

Æ

°1.0
°0.5

0.0
0.5

1.0

Ø

°1.0

°0.5

0.0

0.5

1.0

L
os

s
fu

n
ct

io
n

°5

°4

°3

°2

°1

0

Free energy during annealing T = 8.33: T0 = 10

Æ

°1.0
°0.5

0.0
0.5

1.0

Ø

°1.0

°0.5

0.0

0.5

1.0

L
os

s
fu

n
ct

io
n

°4

°3

°2

°1

0

Free energy during annealing T = 6.67: T0 = 10

Æ

°1.0
°0.5

0.0
0.5

1.0

Ø

°1.0

°0.5

0.0

0.5

1.0

L
os

s
fu

n
ct

io
n

°3

°2

°1

0

Free energy during annealing T = 5.0: T0 = 10

Æ

°1.0
°0.5

0.0
0.5

1.0

Ø

°1.0

°0.5

0.0

0.5

1.0

L
os

s
fu

n
ct

io
n

°2.0

°1.5

°1.0

°0.5

0.0

Free energy during annealing T = 3.33: T0 = 10

Æ

°1.0
°0.5

0.0
0.5

1.0

Ø

°1.0

°0.5

0.0

0.5

1.0

L
o
ss

fu
n
ct

io
n

°0.6

°0.4

°0.2

0.0

0.2

0.4

Free energy during annealing T = 1.67: T0 = 10

Æ

°1.0
°0.5

0.0
0.5

1.0

Ø

°1.0

°0.5

0.0

0.5

1.0

L
o
ss

fu
n
ct

io
n

°0.4

°0.2

0.0

0.2

0.4

Free energy after annealing: T0 = 10

Figure 5. Three-dimensional snapshots of the variational free energy landscape during the VCA
protocol on a 16× 16 lattice. The first two snapshots display the loss landscape before and after the
warmup at T0 = 10. The subsequent ones depict the shape of the landscape as the temperature is
annealed. The annealing dynamics corresponds to the one depicted in Figure 2a. The last snapshot is
the free energy landscape at zero temperature.

5. Conclusions

We have implemented the variational neural annealing method using RNN ansatzes to
find the ground state of the 2D Newman–Moore model on a triangular lattice.
We have observed that, even when the ground-state energy was found, the neural an-
nealing dynamics often displayed strong deviations from the instantaneous free energy for
VCA, and ground-state energy for VQA, the effect being more pronounced in the former
case. Furthermore, we noticed that even when VCA and VQA succeeded in finding the
exact ground-state energy at the end of annealing, they consistently failed to identify the
other ground-state configurations of degenerate lattices, only finding the trivial one (except
for very small system sizes). These results indicate that the glassy dynamics exhibited by
the Newman–Moore model due to the presence of fracton excitations likely manifests as
training issues and mode collapse in neural annealing protocols.

To shed more light on our findings, we analyzed the loss landscape topologies of
the VCA and VQA cost functions using a visualization technique [24] borrowed from
the machine learning community. We noticed that the instabilities during the annealing
protocol were caused by the chaotic geometry of the loss function, thus impeding the
effective training of the RNN parameters. This result points to a potential link between
glassiness in the configurational landscape of the Hamiltonian with trainability issues in the
parameters space of the loss landscape. A more in-depth investigation of this phenomenon
is needed.

Potential directions could be to study the optimization paths during annealing or
the effect of different optimizers (e.g., stochastic reconfiguration [42]), especially those
incorporating knowledge of the loss function curvature (e.g., the Hessian). Using more
representative neural network architectures is also an option, even though we argue that
the expressivity of the RNN ansatz used in this work is enough to represent probability
amplitudes (being Turing complete) and that the simulation issues observed mainly come
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from the complex loss landscapes. However, as skip connections were shown to provide a
smoother landscape in convolutional neural networks [24], this is a possibility that cannot
be completely ruled out. Encoding the symmetries of the Newman–Moore model in the
RNN ansatz could also help to improve the simulations.

With artificial neural networks becoming standard tools to probe condensed matter
systems, it is important to understand their features that contribute to efficient simulations.
Symmetries, entanglement, and expressivity [43,44] are some features that have already
been shown to be important. In this work, we showed that neural network learnability
is also essential. Understanding when, how, and where conservation of computational
complexity occurs is primordial in employing neural networks to tackle complex systems.
It will provide a solid framework for which they might (or not) outperform traditional
methods, which fail on significant condensed matter problems such as non-stochastic
systems [22,23].
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Appendix A

This section provides additional neural annealing results on a degenerate system
size of the Newman–Moore model. In Figure A1, we show results of VCA on a lattice
of size L = 3 (smallest size to have degenerate ground states) corresponding to the end
of annealing in Figure 2b. At the end of annealing, we observed that the 100 number
of training samples are all in one of the four ground-state configurations. For statistics
purposes, in Figure A1a, we show principal component analysis results on 13,222 new spin
configurations sampled autoregressively from the RNN ansatz at the end of annealing.
The color bar represents the Hamming distance between a new spin configuration σ and
the configuration σ∗ where all spins point down. It is given by:

d(σ, σ∗) = ‖σ − σ∗‖1, (A1)

where ‖ . . . ‖1 stands for the L1 norm. We indeed observe that the RNN samples the four
distinct ground-state configurations. The blue dot with Hamming distance zero represents
the trivial ground state. The three other red dots represent the three other ground states,
each one separated from the trivial one by six spin flips. Thus, we show that, for this case,
the RNN model is able to capture the multi-modal distribution of the ground state. Note

www.vectorinstitute.ai/#partners
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that in Figure A1b, the distribution of the ground-state configurations is almost uniform,
with a slight advantage for the first ground state (the trivial one).
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Figure A1. (a) Principal component analysis of 13,222 degenerate ground-state configurations ob-
tained at the end of annealing of Figure 2b for L = 3. The color bar represents the Hamming distance
between the solutions obtained from the RNN ansatz and the trivial ground-state configuration.
(b) Probability distribution of the ground-state configurations.

VQA simulations in Figure 3 also capture the multi-modal ground-state distribution
(data not shown). However, we have noticed that for both VCA and VQA, not all runs
of neural annealing were able to capture all the ground states, with some finding only
the trivial one. We have also observed that penalizing the loss function in VCA and VQA
with the trivial ground-state magnetization often resulted in mode collapse into another
ground-state configuration. It is, however, possible that a more elaborate regularization
function recovers the other configurations. Furthermore, for the larger degenerate system
sizes, such as L = 6 shown in Figure 2b, for successful runs, the simulations always resulted
in the trivial ground-state configuration, even for runs with a more considerable annealing
time, number of training samples, or number of hidden state variables.

Appendix B

Table A1. Hyper-parameters used to perform neural annealing and loss landscape visualization.

Hyper-Parameters Values

Initial temperature T0 = 10
Initial transverse field Γ0 = 10

Number of warmup steps Nwarmup = 1000
Number of training steps Ntrain = 5

Number of annealing steps Nannealing = 10,000
Number of samples Ns = 100

Batch size Nb = 10
Hidden state dimension dh = 40

Learning rate η = 10−4

Number of grid points Npoints = 200
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