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Abstract: The total scattering method, which is based on measurements of both Bragg and diffuse
scattering on an equal basis, has been still challenging even by means of synchrotron X-rays. This is
because such measurements require a wide coverage in scattering vector Q, high Q resolution, and
a wide dynamic range for X-ray detectors. There is a trade-off relationship between the coverage
and resolution in Q, whereas the dynamic range is defined by differences in X-ray response between
detector channels (X-ray response non-uniformity: XRNU). XRNU is one of the systematic errors
for individual channels, while it appears to be a random error for different channels. In the present
study, taking advantage of the randomness, the true sensitivity for each channel has been statistically
estimated. Results indicate that the dynamic range of microstrip modules (MYTHEN, Dectris,
Baden-Daettwil, Switzerland), which have been assembled for a total scattering measurement system
(OHGI), has been successfully restored from 104 to 106. Furthermore, the correction algorithm has
been optimized to increase time efficiencies. As a result, the correcting time has been reduced from
half a day to half an hour, which enables on-demand correction for XRNU according to experimental
settings. High-precision X-ray total scattering measurements, which has been achieved by a high-
accuracy detector system, have demonstrated valence density studies from powder and PDF studies
for atomic displacement parameters.
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1. Introduction

The two words for experimental uncertainties, “precision” and “accuracy”, are used
with different meanings in measurement science, as shown in Figure 1 [1]. Accuracy means
a bias from the true value or a systematic error, whereas precision refers to a deviation
from the mean value or a random error. The present work has aimed at developing a
high-“accuracy” detector system for high-“precision” X-ray total scattering measurements.
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Total scattering refers to all coherent scattering such as Bragg and diffuse scattering,
which originate from crystalline and amorphous materials, respectively [2]. In most materi-
als, crystalline domains coexist with amorphous domains such as lattice defects. Therefore,
Bragg and diffuse scattering should be measured on an equal basis. However, such total
scattering measurements have been still challenging, even by using synchrotron X-rays.
Bragg scattering, which gives rise to high and sharp peaks, has been measured with a high
Q (the magnitude of scattering vector) resolution setup [3]. On the other hand, diffuse
scattering, which gives rise to lower, broader peaks, has been measured with a wide Q
range setup [4]. To measure both scattering simultaneously, it is necessary to meet three
requirements of total scattering data collected with a single setup: the maximum Q value
(Qmax) of 30 Å−1, a Q step of 10−3 Å−1, and a precision of 0.1%. Detector systems in
general have a trade-off between the Qmax and Q step values. In order to solve the trade-off
problem, multiple silicon microstrip modules (MYTHEN, Dectris) [5] have been assembled
at BL44B2 of SPring-8, which is referred to as the overlapped high-grade intelligencer
(OHGI) [6]. The arrangement of fifteen modules in a curve without gap in 2θ has made it
possible to cover 150◦ at intervals of 0.01◦ in 2θ at the same time. Provided that the incident
X-ray energy is set at 30 keV, it is possible to meet the two requirements for Qmax and Q step.
However, it was virtually impossible to achieve a precision of 0.1% due to inaccuracy in the
microstrip modules, which is caused by differences in X-ray response between microstrips
(X-ray response non-uniformity: XRNU).

Here, we report on how accuracy can be improved in X-ray detectors for high-precision
total scattering measurements.

2. Materials and Methods

Our approach to correct scattering data for XRNU is based on the fact that XRNU
appears to be a random error between microstrips [6]. Let us explain the approach using
the simplest case in Figure 2. First, X-rays scattered from an object (any object can be
used in principle) is measured using a detector. Next, the detector is shifted by half of its
length, and then scattered X-rays are measured under the same condition. Ideally, the first
scattering intensities at 2θ should be consistent with the second intensities at the same 2θ,
measured with different channels within the Poisson noise. In practice, there are significant
inconsistencies between the two intensities, which are caused by XRNU. Our approach
takes an average between the two intensities to statistically estimate the reference intensities
for the XRNU correction. From the ratio of the reference intensity to the raw intensity,
the correction factor for each channel can be calculated. Accordingly, the reliability of the
statistical approach is determined by the statistics of the reference intensities.
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On the basis of the straightforward approach mentioned above, however, it took
about half a day to achieve a precision of 0.1%. XRNU in detectors varies with experi-
mental settings, such as X-ray energy, threshold energy, and atmospheric temperature.
To overcome the time efficiency problem, the approach has been improved in terms of
the algorithm for the correction factor calculations [7]. Let us explain the difference be-
tween the straightforward and improved algorithms using a one-dimensional detector
with 8 microstrips in Figure 3a,b where a horizontal line corresponds to a detector. Eight
scattering measurements of an object are performed, shifting the detector by one channel.
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Figure 3. Comparison between the straightforward and improved algorithms to calculate correction
factors. (a) The straightforward algorithm; (b) the improved algorithm; (c) the precision as a function
of correcting time, which was estimated from total scattering data of amorphous SiO2 measured
with OHGI.

In the straightforward algorithm, only one vertical line is used to calculate the cor-
rection factor for each channel. The reference intensity, y2θ , at 2θ can be estimated as
the arithmetic mean of eight intensities y2θ(i) measured by eight channels (i = 1–8) at 2θ,
as follows:

y2θ =
∑8

i=1 y2θ(i)
8

(1)

The correction factor c(i) for each channel i can be found as the ratio of the reference
intensity, y2θ , to the measured intensity, y2θ(i), as follows:

c(i) =
y2θ

y2θ(i)
(2)

From Figure 3a, it is found that the number of blocks used for estimating reference
intensity is 8, whereas the number of those that are unused is 56.

On the other hand, in the improved algorithm, all vertical lines, except for both ends,
can be used for correction factors. From each vertical line, “local” correction factors can be
obtained based on the straightforward algorithm. Subsequently, multiple local correction
factors for each channel are averaged using the statistical weight to obtain “global” factors.
In other words, the straightforward algorithm has been improved to calculate the average
of correction factors. The “local” correction factor ck(i) for channel i can be estimated
based on the reference intensity at 2θk in the same way as the straightforward algorithm,
as follows:

c1(i) =
∑2

j=1 y2θ1(j)

2
1

y2θ1(i)
, 1 ≤ i ≤ 2 (3)

c2(i) =
∑3

j=1 y2θ2(j)

3
1

y2θ2(i)
, 1 ≤ i ≤ 3 (4)

c3(i) =
∑4

j=1 y2θ3(j)

4
1

y2θ3(i)
, 1 ≤ i ≤ 4 (5)
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c4(i) =
∑5

j=1 y2θ4(j)

5
1

y2θ4(i)
, 1 ≤ i ≤ 5 (6)

c5(i) =
∑6

j=1 y2θ5(j)

6
1

y2θ5(i)
1 ≤ i ≤ 6 (7)

c6(i) =
∑7

j=1 y2θ6(j)

7
1

y2θ6(i)
, 1 ≤ i ≤ 7 (8)

c7(i) =
∑8

j=1 y2θ7(j)

8
1

y2θ7(i)
, 1 ≤ i ≤ 8 (9)

c8(i) =
∑8

j=2 y2θ8(j)

7
1

y2θ8(i)
, 2 ≤ i ≤ 8 (10)

c9(i) =
∑8

j=3 y2θ9(j)

6
1

y2θ9(i)
, 3 ≤ i ≤ 8 (11)

c10(i) =
∑8

j=4 y2θ10(j)

5
1

y10(i)
, 4 ≤ i ≤ 8 (12)

c11(i) =
∑8

j=5 y2θ11(j)

4
1

y11(i)
, 5 ≤ i ≤ 8 (13)

c12(i) =
∑8

j=6 y2θ12(j)

3
1

y12(i)
, 6 ≤ i ≤ 8 (14)

c13(i) =
∑8

j=7 y2θ13(j)

2
1

y13(i)
, 7 ≤ i ≤ 8 (15)

The “global” correction factor, c(i), for channel i can be estimated as the weighted
mean of the multiple “local” correction factors ck(i), as follows:

c(1) =
∑7

k=1 wk(1)ck(1)

∑7
k=1 wk(1)

(16)

c(2) =
∑8

k=1 wk(2)ck(2)

∑8
k=1 wk(2)

(17)

c(3) =
∑9

k=2 wk(3)ck(3)

∑9
k=2 wk(3)

(18)

c(4) =
∑10

k=3 wk(4)ck(4)

∑10
k=3 wk(4)

(19)

c(5) =
∑11

k=4 wk(5)ck(5)

∑11
k=4 wk(5)

(20)

c(6) =
∑12

k=5 wk(6)ck(6)

∑12
k=5 wk(6)

(21)

c(7) =
∑13

k=6 wk(7)ck(7)

∑13
k=6 wk(7)

(22)

c(8) =
∑13

k=7 wk(8)ck(8)

∑13
k=7 wk(8)

(23)
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where wk(i) is the weight for ck(i) expressed by 1/σk(i)
2, and σk(i) is the standard deviation

of ck(i). From Figure 3b, it is found that the number of blocks used for estimating reference
intensity is 62, whereas the number of those which are unused is 2.

The improved algorithm has been optimized for OHGI, which has 1280 × 15 microstrips.
Figure 3c shows a comparison between the two algorithms in terms of time efficiency. The
straightforward and improved algorithms reach a plateau in half a day and half an hour,
respectively. Moreover, the precision based on the improved algorithm is better than that
based on the straightforward algorithm. For that reason, the improved algorithm has been
referred to as a data-driven approach to the XRNU correction.

Figure 4 shows the data precision as a function of scattering intensity, which was
estimated based on the standard deviation and the mean intensity from total scattering
data of amorphous SiO2. In the ideal case, the precision improves with scattering intensity
in accordance with the Poisson distribution. Without our correction, however, the precision
reaches a plateau at about 1%, which is equivalent to a dynamic range of 104. Even though
the manufacturer-supplied, flat-field correction factors were applied to the uncorrected
data, the precision has not been improved. In contrast, the data-driven approach has
successfully improved the precision from 1.0% to 0.1%, which is equivalent to a dynamic
range of 106.
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correction using the improved algorithm.

3. Results and Discussion

Figure 5 shows structure functions Q[S(Q)−1] of amorphous SiO2 measured with
OHGI in different times, which were reduced from total scattering data with intensity
from 103 to 106 counts at high Q. Without the XRNU correction, there seems to be no
significant improvement in statistics at high Q even by increasing scattering intensity. In
contrast, a systematic improvement in the corrected data has been observed in accordance
with photon statistics. The results indicate that the XRNU correction has enabled us to
observe diffuse scattering with lower and broader peaks.

Figure 6 focuses on Bragg reflections of crystalline Si measured with OHGI. The 2 2 2
reflection from Si crystal is a forbidden reflection; nevertheless it is possible to observe the
reflection due to anharmonicity of Si atoms. In fact, the reflection has been observed by
using synchrotron X-ray powder diffraction [8]. However, the precision of the integrated
intensity is lower than that of fundamental reflections. Figure 6b shows that the data-
driven approach has considerably improved the precision. Figure 6c shows higher order
reflections at high Q, which are four orders of magnitude lower than the highest reflection
1 1 1 in Figure 6a. These reflections were not observed due to the XRNU noise. The
XRNU correction has successfully brought the quite weak reflections into “relief” against
the background. That is why the data-driven approach has been referred to as ReLiEf
(response-to-light effector) [7].
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Figure 6. Uncorrected and corrected total scattering data of crystalline Si. (a) The whole range in Q;
(b) the forbidden reflection at low Q; (c) higher-order reflections at high Q.

Let us discuss why the dynamic range in microstrip modules used for OHGI has been
improved from 104 to 106 without the cost of Q resolution, resulting in observation of
both Bragg and diffuse scattering. The specifications of the detector state a dynamic range
of 107 [5]. In the strict sense, however, this value means the dynamic range not for the
system but for each microstrip. In other words, the effective dynamic range has been limited
by the XRNU noise. It should be emphasized that the ReLiEf method has just restored the
dynamic range of the microstrip module, which enables total scattering measurements.

Atomic displacement parameters (ADP), which are estimated from Debye–Waller
factors, is one of the most important parameters for structural analysis. Table 1 lists ADPs
of Si obtained by different experimental techniques. Among others, inelastic neutron
scattering is recognized to yield the most accurate and precise value (59.4(2) × 10−4 Å2) [9].
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In the present study, the pair distribution function (PDF) analysis of total scattering data
shows that the ADP is estimated to be 59.5(1) × 10−4 Å2 [10], which is agreement with the
reference value within the estimated standard deviation. The results clearly indicate that
our total scattering data are both accurate and precise.

Table 1. Atomic displacement parameters (ADP) U obtained by different experimental techniques.

TS-PDF 1 SXRD 2 PND 3 INS 4 CBED 5

Probe X-rays X-rays Neutrons Neutrons Electrons
Sample Powder Single crystal Powder Single crystal Single crystal

T/K 298 293–298 284–293 293 300
U/(10−4 Å2) 59.5(1) 58.7(1) 59(3) 59.4(2) 58.6

1 Total-scattering pair distribution function (present study) [10]. 2 Single-crystal X-ray diffraction [11]. 3 Powder
neutron diffraction [12]. 4 Inelastic neutron scattering [9]. 5 Convergent-beam electron diffraction [13].

It remains challenging for powder X-ray diffraction to study valence densities of
organic compounds due to lower scattering power and crystal symmetry. In fact, valence
density studies have been performed using single crystals [14]. To evaluate the quality of
Bragg reflections reduced from total scattering data, inorganic and organic compounds
have been analyzed by the multipole refinement method [15]. Figure 7 illustrates the static
deformation and the residual densities of xylitol, obtained by our powder method, which
are compared to those by a reference single crystal method. The results from powders are
comparable to those from single crystals. The consistency between the two results is due to
the XRNU correction of the OHGI data.
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Figure 7. Valence densities obtained by powder X-ray diffraction (present study) [15] and single-
crystal X-ray diffraction [14] of xylitol. (A,B) Static deformation densities from powder; (C,D) static
deformation densities from single crystal; (E,F) residual densities from powder; (G,H) residual
densities from single crystal.

4. Conclusions

In the present study, we achieved a precision of 0.1% in total scattering data by
improving accuracy or XRNU in microstrip detectors, which leads to valence density
studies from powders [15] and PDF studies for ADPs [10]. Consequently, the integration
of hardware (OHGI) [6] into software (ReLiEf) [7] has received a positive comment, as
“Nothing trumps good data” [16].
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