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Abstract: The physics of many interesting correlated materials can be captured by multiorbital
Hubbard models, where conduction electrons feature an additional orbital degree of freedom. The
multiorbital characteristic is not a mere complication, but it leads to an immensely richer landscape
of physical regimes. One of the key features is the interplay between Hubbard repulsion and Hund’s
exchange coupling, which has been shown to lead to orbital-selective correlations and to the existence
of correlation-resilient metals (usually called Hund’s metals) defying Mott localization. Here, we
show that experimentally available platforms of SU(N)-symmetric ultracold atoms can indeed mimic
the rich physics disclosed by multiorbital materials, by exploiting the internal degrees of freedom of
multicomponent atoms. We discuss in detail the SU(N) version of interaction-resilient Hund’s metal
and some other interesting regimes.

Keywords: SU(N) atoms; multicomponent systems; Mott transition; Hund’s metals

1. Introduction

A large number of materials with conceptual and practical interest require a multior-
bital description, in which different atomic levels must be taken into account. When we
focus on strongly correlated materials, this means that the interaction is not given purely
by the Hubbard interaction U, but it also contains an exchange coupling J, called Hund’s
coupling (see Appendix A). The interplay between these two terms is the key that opens
the path to a wide range of new states and physical regimes. In this manuscript, we
take a broader perspective and we show that similar physics can be realized in a wider
class of multicomponent quantum systems when the Hubbard U competes with other
energy scales.

In the case of solid-state multiorbital models, the U-term penalizes spatial charge
fluctuations (local occupancies different from the average filling), while the J-term favors
high-spin configurations and, to a lesser degree, high orbital angular momentum [1–3].
This competition results in an extremely rich scenario of intriguing quantum phases, such
as orbital-selective Mott phases (where some bands undergo Mott localization, while others
remain metallic) [4–7], orbital-selective superconductors [8] and the so-called “Hund’s
metal” [2,9–12]. These regimes, besides their conceptual interest, have been invoked to
understand the properties of different materials, among which iron-based superconduc-
tors [13,14] and ruthenates [15]. In particular, “Hund’s metal” characterizes the phase
diagram of N−orbital Hubbard models at integer filling different from N, when U and J
are such that J/U ≈ 1/3. This state is rather surprising, since it retains metallic properties
in spite of very large values of U and J, two terms which, individually, would constrain elec-
tron mobility. The mechanism which supports the existence of these interaction-resilient
metals was understood to be the competition between two strongly correlated insula-
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tors [9], namely, a high-spin Mott insulator stabilized by large values of U and a charge-
disproportionated insulator [16], dubbed “Hund’s insulator”, favored by J.

While the direct quantum simulation of a multiorbital Hubbard model with Hund’s
coupling performed by means of cold atomic systems is an extremely hard task, as one
should introduce both an orbital and a spin degree of freedom, SU(N)-interaction-symmetric
Hubbard models can be effectively simulated by means of ultracold 87Sr [17], 173Yb [18]
and 6Li atoms [19,20] loaded in optical lattices [21–29]. Thanks to their peculiar atomic
structure (see Section 2), they offer up to ten nuclear-spin flavors which cannot undergo
recombinations upon scattering events.

In this paper, we show that the interesting physics occurring in multiorbital solid-
state systems can be effectively mimicked by experimentally available multiflavor atomic
platforms. We substantiate this claim by thoroughly investigating the properties of an
SU(3) Hubbard model with a suitable single-particle patterned potential, whose phase
diagram hosts different kinds of strongly correlated insulators, as well as interaction-
resilient metallic regions. We discuss how this scenario mirrors the one disclosed by the
three-orbital Hubbard–Kanamori model with two particles per site (filling factor 〈ni〉 =
2). Furthermore, we argue that the mechanism supporting the existence of persistently
metallic solutions in the atomic platform is identical to the one underlying the emergence
of Hund’s metals.

This manuscript is organized as follows: In Section 2, we present the SU(N) Hubbard
model and discuss its basic properties. In Section 3, we discuss how SU(N) ultracold
platforms can be used to mimic the emergence of Hund’s metals. Section 4 is devoted
to future perspectives on the quantum simulation of multiorbital materials, as well as to
concluding remarks.

2. The SU(N) Hubbard Model: Basic Properties and Some Extensions

The SU(N) generalization of the well-known Hubbard model is usually written as

H = −t ∑
〈i,j〉

N

∑
m=1

(
c†

i,mcj,m + h.c.
)
+

U
2 ∑

i
ni(ni − 1) (1)

where the operator ci,m annihilates a fermion with flavor m at lattice site i, ni := ∑m ni,m :=
∑m c†

i,mci,m is the total number operator at site i and the summation ∑〈i,j〉 runs over
nearest-neighbor lattice sites [30]. This Hamiltonian appropriately captures the low-energy
physics of alkaline-earth or alkaline-earth-like atoms, whose unique atomic structure
(namely, highly decoupled nuclear and electronic spin degrees of freedom) results in SU(N)-
invariant interatomic interactions, since flavor redistribution upon scattering events is
inhibited [21–29]. As an example, 87Sr [17], 173Yb [18] and 6Li atoms [19,20] have nuclear
spin I = 9/2, I = 5/2 and I = 1, respectively; thus, they offer up to ten, six, or three
different nuclear spin states, respectively (henceforth called flavors), although it is common
to select a subset of flavors {m} out of the N = 2I + 1 available [31].

The rich physical scenario exhibited by Hamiltonian (1) originates from the competi-
tion between hopping processes ∝ t and interactions ∝ U. Usually, in experimental setups,
the ratio t/U can be tuned by varying the depth of the optical lattice, while temperature T
can be lowered down to < t/kB [30]. Regarding the ground state of Hamiltonian (1), when
t� U (or away from integer fillings), the system is typically metallic. Conversely, for inte-
ger fillings n = 1, 2, . . . , N and in presence of strong interactions U � t, a Mott-insulating
state can be stabilized. The latter is distinguished by a strong suppression of spatial charge
fluctuations, which would involve an energy cost ≈ U [18].

Hamiltonian (1) can be supplemented by additional processes [32], either in order to
better model a real-world experimental apparatus (e.g., to account for the presence of an
external, often harmonic, trapping potential), or to access even wider and more interesting
physical scenarios, such as the quantum simulation of multicomponent materials. It is in
this spirit that an optical superlattice, i.e., an extra site-dependent single-particle potential,
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is introduced in Section 3. The ensuing model has been shown to effectively mimic the
physics of Hund’s metals in an experimentally accessible ultracold atomic platform [9,11].

In the same spirit, Raman scattering processes can be introduced by means of suitable
laser beams, in order to allow flavors to be redistributed, hence explicitly breaking the
SU(N) symmetry of the system. These processes can be effectively described by introducing
an extra inter-flavor, intra-site tunneling term in Hamiltonian (1). As demonstrated in a
recent study by Tusi et al. [33], the resulting model gives access to the atomic counterpart of
the well-known orbital-selective Mott transition [4,5] occurring in multiorbital solid-state
systems.

3. Mimicking Hund’s Physics via SU(N) Ultracold Atoms

In solid-state physics, the multiorbital Hubbard–Kanamori model is known to describe
the strongly correlated Hund’s metal, i.e., a state that is persistently metallic in spite of
strong interactions and integer fillings [2]. This class of interaction-resilient metals can
be regarded as a bridge between two strongly correlated insulators, a high-spin Mott
insulator and a charge-disproportionated insulator, which goes under the name of Hund’s
insulator (see Ref. [9] for a thorough analysis based on rotation-invariant slave bosons
and Appendix A for a pedagogical introduction based on the exact diagonalization of a
three-site system). In essence, Hund’s metal constitutes the compromise between two
competing insulators and its metallic character is supported by the forced coexistence of
their typical atomic multiplets.

In Ref. [11], we showed that Hund’s metal is just a specific realization of a more general
phenomenon, which can be present in various strongly correlated systems. In particular,
we showed that an SU(3) Hubbard model with patterned single-particle potential can be
engineered in such a way to trigger the emergence of interaction-resilient metallicity. The
Hamiltonian of the model reads

H = −t
L

∑
j=1

3

∑
m=1

(
c†

j,mcj+1,m + h.c.
)
+

U
2

L

∑
j=1

nj(nj − 1) +
L

∑
j=1

µjnj, (2)

which constitutes the one-dimensional three-flavor version of Hamiltonian (1), with the
additional presence of a superlattice of the form

µj =


−µ, if j mod 3 = 1
0, if j mod 3 = 2
−µ, if j mod 3 = 0

(3)

with µ > 0. At global average filling 〈ni〉 = 2, the peculiar pattern of this single-particle
potential favors a charge-ordered state, where lower-energy sites are completely filled
and higher-energy sites are completely empty (see the bottom panel of Figure 1 for a
pictorial representation). In opposition to the tendency of occupying low-energy sites,
the Coulomb interaction U penalizes charge fluctuations in the form of local occupancies
different from 〈ni〉 = 2 (see the top panel of Figure 1). This model and the physics which
it discloses are within the reach of current experimental apparatuses; multicomponent
87Sr [17], 173Yb [18] and 6Li [19,20] fermionic quantum gases can be conveniently prepared
in such a way to realize a balanced mixture of only N = 3 flavors, which can then be
loaded into a suitable optical lattice [21]. In order to realize the single-particle potential
of Equation (3), i.e., a lattice with a three-site unit cell, the atomic gas must be loaded
into a suitable superposition of optical lattices of different spatial periods, such that the
resulting laser intensity reflects the desired pattern. In one dimension [31], for example,
one can interfere laser beams in such a way to make the energy of one site out of three
higher than that of the other sites [34,35]. Similarly, in two dimensions [36], one can
conveniently design triangular [37] or Kagome lattices [38] whose inherently triangular
geometry naturally mirrors the three-site structure of the aforementioned unit cell.
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1

Figure 1. Schematic illustration of the three different classes of insulators. Panel (a): Mott insulator.
Panel (b): intermediate phase. Panel (c): Band insulator. In all panels, the elementary unit cell of
three sites is repeated twice. In panel (a), we drew the potential setting µ→ 0.

It is worth mentioning that Hamiltonian (2) can also be regarded as the three-flavor
three-site-unit-cell version of the ionic Hubbard model [39–47], where a standard Mott
insulator competes with a charge-density-wave insulator. In the associated phase diagram,
these two insulating solutions are known to be separated by a narrow stripe-like region,
where, depending on the system dimensionality, a metallic [48] or a bond-order-wave
phase [49] (featuring staggered kinetic energy on the bonds) can be found.

3.1. Competing Correlated Insulators

As the competition between the Coulomb repulsion U and Hund’s exchange coupling
J results in the emergence of Hund’s metals (see Appendix A) in multiorbital materials, so,
in our SU(3)-symmetric atomic platform, the competition between U and the single-particle
patterned potential µ results in persistently metallic solutions. To illustrate the occurrence
of this phenomenon, we showed that it is possible to focus on a minimal cluster of three
sites [11], which can be regarded as the elementary building block of larger and higher-
dimensional lattices, as well as of more sophisticated quantum cluster theories [50–53].
This choice allowed us to capture the essential physics of the problem and, in parallel,
to develop simple analytical arguments and the exact numerical diagonalization of the
associated Hamiltonian. In the atomic limit (t = 0), one can easily recognize the presence
of three distinct regimes for the ground state, as follows:

1. For 0 < µ/U < 1, the system is a Mott insulator (see top panel of Figure 1), whose
energy is EMI = 3U − 4µ. Due to the strong interaction U and weak on-site potential
µ, spatial charge fluctuations are forbidden and exactly two fermions occupy each site.

2. For 1 < µ/U < 2, there are two degenerate ground states, such that the high-energy
site hosts one fermion, while the low-energy sites host either two or three fermions
(see central panel of Figure 1). The associated energy reads EINT = 4U − 5µ.

3. For µ/U > 2, the large on-site potential µ wins the Hubbard repulsion U and the
system is a charge-disproportionated insulator, where the low-energy sites are com-
pletely filled, while the high-energy site is empty (see bottom panel of Figure 1). This
configuration, whose energy is EBI = 6U − 6µ, constitutes the atomic version of a
band insulator.

We remark that the aforementioned MI state and the BI state respectively mirror the
high-spin Mott insulator and the Hund’s insulator solutions that characterize the phase
diagram of the three-orbital Hubbard–Kanamori model (see Appendix A). As opposed to
the latter model, where the two different insulators are degenerate only along a specific
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line (J/U = 1/3) of the phase diagram, Hamiltonian (2) admits an intermediate solution
for 1 < µ/U < 2, where hopping is possible only between pairs of neighboring low-energy
sites (while high-energy sites constitute insulating barriers). Such a phase intercalates
between the MI and the BI solutions, to which it is degenerate along the lines µ/U = 1 and
µ/U = 2, respectively, since one can verify immediately that EMI = EINT along the line
µ/U = 1 and that EBI = EINT along the line µ/U = 2.

3.2. Interaction-Resilient Metallicity

Moving away from the atomic-limit analysis discussed in the previous section, we an-
alyze the conduction properties of the ground state of Hamiltonian (2) by means of exact
numerical diagonalization. To perform this, we consider the simplest possible closed
circuit, namely, a three-site system with periodic boundary conditions (a ring trimer). In
spite of its very few sites, this system has been shown to be an effective minimal lattice
in the investigation of a number of physical phenomena, for both fermionic [54–57] and
bosonic [58–65] systems. We compute the current flowing therein upon rotating the system
around its axis, in such a way that, working in the rotating frame of reference, the Coriolis
force can induce a particle current in the ring [66–69]. We recall that the effect of the Coriolis
force is formally equivalent to the effect of a magnetic flux Φ threading the ring in the
case of electrically charged particles [70]. As a consequence, one can simply implement
the rotation by performing the Peierls substitution, i.e., replacing the hopping term in
Hamiltonian (2) with

Hhop = −t
L

∑
j=1

3

∑
m=1

(
ei Φ

L c†
j,mcj+1,m + h.c.

)
, (4)

where the Peierls phase Φ is proportional to the Coriolis force. Notice that the interaction
term ∝ U, as well as the single-particle-potential term ∝ µ are left unchanged by the Peierls
substitution. The ground state |ψ′0〉 of the resulting Hamiltonian, H′, is characterized in
terms of the expectation value of the particle current operator [71,72]

I = 〈ψ′0| −
∂H′

∂Φ
|ψ′0〉, (5)

whose magnitude mirrors the degree of metallicity of the system [73]. More specifically, in
the context of electrically charged particles, if the applied magnetic flux is small, the current
I is proportional to the “Drude weight” [68], a quantity which is, in turn, proportional
to the singular part of the DC electrical conductivity. One can thus take advantage of
observable (5) to reconstruct a conductivity-based phase diagram.

The results, reported in Figure 2, confirm the scenario presented in Section 3.1 and
pictorially illustrated in Figure 1; at strong coupling (U/t � 1) and small values of µ/t,
the system is a Mott-insulator and the current is suppressed because of the Coulomb
repulsion which penalizes triple occupancies. On the other hand, when the single-particle
patterned potential µ/t is large and U/t is small, the system is a band insulator and
particle hoppings are suppressed not to pay the energy cost of populating high-energy sites.
In addition to the two aforementioned kinds of insulating solutions, one can recognize
a third insulating region between the lines µ/U = 1 and µ/U = 2, where the overall
conduction is suppressed because charge fluctuations on the high-energy site are quenched.

Interestingly, one can appreciate the presence of two distinct regions where the current
is remarkably large in spite of the strong Coulomb repulsion and of the deep superlattice.
They are two stripes centered about the lines µ/U = 1 and µ/U = 2, which represent the
two degeneracy conditions for the three solutions of the atomic limit, i.e., EMI = EINT
and EINT = EBI , respectively (see Section 3.1). In analogy with the physics of multiorbital
correlated materials [9,11] (see also Appendix A), we find that the competition between
two different correlated insulators gives place to a persistently metallic solution.
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Figure 2. Expectation value of the current operator (see Equation (5)) as a function of U/t and µ/t,
for a system of L = 3 sites, global filling 〈ni〉 = 2 and flux Φ = 0.4π. Black (white) regions correspond
to insulating (highly conductive) states.

3.3. The Key Role of Local Configurations

The presence of interaction-resilient metallicity can be understood in terms of popula-
tions of different local configurations, i.e., pn(j) = ∑ |〈nj|ψ0〉|2, where |ψ0〉 is the ground
state of Hamiltonian (2) and |nj〉 are states with exactly n fermions at site j. In essence, the
competition between µ and U creates situations where neighboring sites host a fluctuating
number of particles, which, being compatible with hopping processes of the type c†

j,mcj±1,m,
can support current flow, hence the metallic properties of the system.

The functional dependence of p̄n = (1/3)∑3
j=1 pn(j), i.e., the weight of the four possi-

ble local configurations mediated over all the three lattice sites, on the control parameter
µ/U is illustrated in Figure 3. In the strongly interacting regime and for µ/U � 1, all sites
essentially host exactly n = 2 fermions because the system is in a Mott-insulating state (see
top panel of Figure 1). Conversely, for µ/U � 2, the system is in a band-insulating state
(see bottom panel of Figure 1), a regime where one-third of the sites are empty (n = 0) and
two-thirds of the sites are filled by n = 3 fermions. Similarly, in the intermediate phase, for
example at µ/U = 1.5, the weights of local configurations with n = 1, 2, 3 are similar and
approximately equal to 1/3.

Figure 3. Population of single-site states as a function of µ/U. Results from the exact numerical
diagonalization of Hamiltonian (2) with L = 3 sites, t = 1, U/t = 22 and 6 particles. Results were
averaged among the three different sites of the unit cell.
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From the discussed scenario, one may expect a metallic solution in the interval
1 < µ/U < 2, as it is well known that a metallic state is usually characterized by large
density fluctuations. As visible in Figure 2, this is not the case, since the current is mani-
festly suppressed in this region of the parameters’ space. The reason lies in the fact that
metallicity occurs only when there are non-vanishing density fluctuations simultaneously
in every lattice site. Therefore, it is instructive to look at the site-resolved distributions of
local populations, shown in Figure 4 and to the site-resolved particle fluctuations

F(j) =
3

∑
n=0

n2 pn(j)−
(

3

∑
n=0

npn(j)

)2

, (6)

which are shown in Figure 5. Remarkably, when 1 < µ/U < 2, there are large density
fluctuations in the low-energy sites, since p2(j) ≈ p3(j) ≈ 1/2 at j = 1, 3; while, in the
high-energy site, the fluctuations are suppressed, since the only non-vanishing probability
is p1(2) ≈ 1. This means that, while tunneling processes between nearest-neighbor low-
energy sites are possible, tunneling process between low-energy and high-energy sites
are still forbidden, the particles cannot overcome the potential barrier and the system is
an insulator. The metallicity condition is instead satisfied when µ/U ≈ 1 and µ/U ≈ 2,
where density fluctuations are simultaneously high in every lattice site. We can thus
introduce minj

√
F(j), which represents the bottleneck of charge fluctuations along the

chain. This quantity is shown in Figure 6 along with the corresponding current. The
comparison between the two quantities reveals the mechanism underlying interaction-
resilient metallicity.

Figure 4. Site-resolved version of Figure 3. The same model parameters and the same color code
were applied. The outer panels correspond to the two low-energy sites, while the central panel
corresponds to the high-energy site.

Figure 5. Site-resolved particle fluctuations (see Equation (6)). Same models parameters of
Figures 3 and 4 were used. The outer panels correspond to the two low-energy sites, while the
central panel corresponds to the high-energy site.
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Figure 6. Comparison between the current flowing in the ring trimer (cut of Figure 2 at U/t = 22)
and the minimum value of the site-resolved charge fluctuation (see Equation (6) and Figure 5).
Both quantities were normalized to their maximum value (in the range 0 ≤ µ/U ≤ 3) for the sake of
comparison.

4. Present and Future Perspectives

Mimicking the physics of Hund’s metals [11] is just one of the many interesting possibil-
ities offered by SU(N) atomic platforms. Tusi et al. [33] have recently demonstrated the pos-
sibility to realize flavor-selective Mott phases in three-flavor systems, whose intrinsic SU(3)
symmetry is explicitly broken by Raman processes of the type Ωm,m′ ∑i

(
c†

i,mci,m′ + h.c.
)

,

which allow flavor redistribution between flavors m and m′ to be obtained. In analogy with
the well-known orbital-selective Mott phases [5–7], where terms breaking the inter-orbital
symmetry (e.g., crystal-field splitting [4]) are known to determine the Mott localization of
electrons in specific orbitals (hence the term “selective”), the authors of [33] showed that
Raman processes which break the SU(3) symmetry of the parent Hamiltonian (1) constitute
the seed of flavor-selective phenomena. More specifically, the authors experimentally
realized the case Ω12 > 0 and Ω23 = Ω13 = 0 and they observed that the combined effect of
inter-flavor Raman coupling and interactions resulted in a phase where the two coupled fla-
vors where less conductive than the uncoupled one. We remark that, both in the simulated
solid-state models and in the simulating ultracold atomic platform, the symmetry-breaking
term is just a seed for the emergence of orbital-selective or flavor-selective phases, which
are, actually, fundamentally driven by interactions.

The possibility of realizing interaction-resilient metals with SU(3)-symmetric atoms
and flavor-selective Mott phases with SU(3)-symmetry-broken atoms are just the first fruits
of the rich harvest offered by suitably engineered ultracold atomic platforms. These results
have shown that the path towards the quantum simulation of multicomponent materials is
open and new spectacular results are expected concerning high-temperature superconduc-
tors [74] and interacting topological insulators [75], as well as magnetic crystals [76].
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MI Mott insulator
BI Band insulator
SU (N) Special unitary group of degree N

Appendix A. Hund’s Metals in a Nutshell

In this Appendix, we briefly review the physics of Hund’s metals in correlated materi-
als, as described by the three-orbital Hubbard–Kanamori model. We refer to Refs. [9,11] and
references therein for an exhaustive discussion. The Hubbard–Kanamori Hamiltonian reads

H = − ∑
ij,ab,σ

tab
ij d†

iaσdjbσ + ∑
j

Hint,j, (A1)

the local interaction term being

Hint,j = U ∑
a

nja↑nja↓ + (U − 3J) ∑
a<b, σ

njaσnjbσ + (U − 2J) ∑
a 6=b

nja↑njb↓

+ J ∑
a 6=b

d†
ja↑d

†
ja↓ djb↓djb↑ − J ∑

a 6=b
d†

ja↑dja↓ d†
jb↓djb↑, (A2)

where the operator d†
jaσ creates an electron with spin σ = {↑, ↓} in the orbital a = {1, 2, 3}

of site j. The parameters U > 0 and J > 0 are, respectively, the standard Coulomb repulsion
and Hund’s exchange coupling; while tab

ij represents the hopping matrix element between

site i orbital a and site j orbital b. In the strong coupling regime (U � tab
ij and J � tab

ij )
and for filling factor 〈n〉 = 2, the physics of this model is ruled by the competition of
two different correlated insulators; for J/U � 1/3, the ground state is a high-spin Mott-
insulating state, while, for J/U � 1/3, it is a charge-disproportionated insulator, dubbed
Hund’s insulator (see Figure A1 for an illustrative representation). The former is stabilized
by a strong Hubbard repulsion which penalizes inter-site charge fluctuations, while the
latter is stabilized by Hund’s exchange coupling, which favors high-spin and high-orbital-
angular-momentum local configurations. In the atomic limit, these two insulators are
degenerate, provided that J/U = 1/3. At this critical value, the system’s ground state, as
well as its low-energy excitations, undergoes a deep structural change, as schematically
illustrated in Figure A2.

Mott
Insulator

Hund
Insulator

Hund
Metal

Figure A1. Pictorial representation of the three notable families of ground states of Hamiltonian (A1)
for a three-site system with periodic boundary conditions and global filling 〈nj〉 = 2. The vertical blue
arrows represent the z-component of the electronic spin. The green ticks (red crosses) are introduced
to pictorially illustrate the (im)possible current flow in the ring trimer upon rotating it around its axis
(see Section 3.2).



Condens. Matter 2022, 7, 18 10 of 13

Figure A2. The first 3500 energy levels of Hamiltonian (A1) with tab
ij = tδabδj,i±1, for L = 3 sites,

6 electrons, t = 1 and U/t = 22, as obtained from the exact numerical diagonalization (central
panel). Each box is associated to an orbital and the vertical arrows represent the z-component of
the electronic spin. For J/U = 0.1, the system’s ground state is a high-spin Mott insulator and its
excitations are essentially local violations of Hund’s rules and, only at higher energy scales, inter-site
charge fluctuations (left panel). For J/U = 0.45, the system’s ground state is a Hund’s insulator
and its lowest-energy excitations are inter-site charge fluctuations (right panel). Interestingly, at
J/U = 1/3, the discussed families of elementary excitations collapse, thus supporting the existence
of an interaction-resilient metallic state, i.e., Hund’s metal.

As discussed in Section 3.2, it is possible to probe the conduction properties of the
ground state of Hamiltonian (A1) by means of the Peierls substitution (i.e., threading the
ring with a magnetic flux), hence reconstructing a conductivity-based phase diagram by
computing the expectation value of the current operator. As illustrated in Figure A3, the
exact diagonalization of a minimal three-site cluster allows one to recognize the Mott-
insulating, the Hund-insulating, as well as the Hund-metal state. These results, that we
obtained in Ref. [11], confirm the ones [9] previously obtained within the dynamical mean-
field theory [77], slave-spin mean-field theory [78] and rotation-invariant slave bosons [79].
The agreement among the presented results and the ones obtained with the aforementioned
techniques is far from being trivial because completely different approximations are implied;
thus, this leads to a cross-confirmation of the different approaches.

Figure A3. Expectation value of the current operator I = 〈ψ0| − ∂H/∂Φ|ψ0〉 as a function of U and J.
The results were obtained by means of the exact numerical diagonalization of Hamiltonian (A1), with
tab
ij = tδabδj,i±1, in the case of a 3-site system, 6 particles, t = 1 and Φ = 0.1π. One can appreciate

a highly conductive stripe (centered about the line J/U = 1/3) separating two distinct insulating
regions, Hund’s metal. The grey-colored region is unphysical in the context of strongly correlated
materials [9].
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