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Abstract: Atoms are proved to be semi-classical electronic systems in the sense of closeness of their
exact quantum electron energy spectrum with that calculated within semi-classical approximation.
Introduced semi-classical model of atom represents the wave functions of bounded in atom electrons
in form of hydrogen-like atomic orbitals with explicitly defined effective charge numbers. The
hydrogen-like electron orbitals of constituting condensed matter atoms are used to calculate the
matrix elements of the secular equation determining the condensed matter electronic structure in the
linear-combination-of-atomic-orbitals (LCAO) approach. Preliminary test calculations are conducted
for boron B atom and diboron B2 molecule electron systems.
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1. Introduction

Earlier author developed so-called quasi-classical theory of substance (QCTS), the
theoretical method for calculating condensed matter electronic structure quantitative char-
acteristics based on quasi-classical parameterization of electron density and electric field
potential distributions in the constituent atoms. Detailed description of the physical theory
one can find, e.g., in [1]. As for the resolution of special mathematical problems of this ap-
proach, they are summarized in [2–4]. Within the initial quasi-classical, i.e., semi-classical,
approximation, QCTS represents electron density and electric field potential distributions
in atoms by the step-like radial functions [5].

Today the QCTS is implemented mainly for elemental boron and boron nitride species:
molecules, clusters, nanostructures, and crystalline modifications. In particular, by this
method the values of ground state (chemical bonds length, molar binding energy, localized
vibration frequencies, etc.) and electronic structure (electronic density-of-states (DoS) max-
ima positions, band gap, impurity energy levels, etc.) parameters were calculated [6–21];
as well as some of isotopic effects in solids were successfully interpreted.

The estimated relative errors of the QCTS in calculating condensed matter energy and
structural parameters are expected to be a few percent, which is acceptable for most of
materials science problems. When calculations are carried out in theory’s semi-classical
limit, there are absent any ambiguous uncertainties in the results. The point is that the
step-like presentations of electron density and electric field potential distributions imply
the strict finiteness of the atomic radii. For this reason, the infinite series expressing the
matrix elements of the secular equation determining electronic structure are converted into
sums of a finite number of nonzero terms without artificial termination.

However, advantage of the QCTS to avoid computation uncertainties turns into its
disadvantage: the lack of expressions of electric charge density and electric field potential
distributions in atoms and their bounded systems, in particular, condensed matter by
continuous functions.
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The new semi-classical method proposed in this paper should be considered as a
higher stage in development of semi-classical approach to the calculation of condensed
matter electronic structure.

It is proved that atoms are semi-classical electronic systems in the sense of closeness
of their exact quantum spectrum of electronic energies with the spectrum calculated in
the semi-classical approximation. On this basis, a semi-classical model of the atom is
introduced, within which the potential of self-consistent electric field acting on given
atomic electron is represented in the Coulomb-like form with corresponding effective
charge number. For chosen electronic configuration of the atom, the consistent set of
atomic potentials effective charge number values can be found explicitly by integrating
combinations of transcendental functions.

Further, that set of effective charge numbers of atomic potentials is used to construct
hydrogen-like atomic orbitals and calculate radii of classical orbits and energies of electrons
filling them.

Then hydrogen-like electron orbitals of atoms constituting the condensed matter under
consideration are used to calculate the matrix elements of the secular equation determining
the condensed matter electronic structure in the linear-combination-of-atomic-orbitals
(LCAO) approach.

2. Multi-Electron Atom Semi-Classical Model

There is given a proper justification of basic assumptions of the semi-classical model,
which is introduced here for the multi-electron atom taking into account a number of
relevant works available in the literature. The assumptions proved are of key importance
for semi-classical atomic orbitals and potential constructed below. For their part, semi-
classical calculations of the electronic structure of any bound system of atoms, including
condensed matter, will be based just on these semi-classical atomic orbitals and potential.

2.1. Stationary State

In atomic nucleus, which is the bounded system of nucleons—protons and neutrons,
the presence of at least one proton is obligatory to have non-zero electric charge. As the
nucleon in ~2000 times exceeds electron by mass, mass of the electron bounded in atom is
almost negligible compared to the total mass of the atomic core, i.e., the bounded system
of nucleus and the rest of atomic electrons. By assuming the nucleus mass infinite the
atom is imagined as a system of positively charged nucleus fixed in the rest and negatively
charged electrons moving around. Each atomic electron is affected by approximately
stationary self-consistent-field (SCF) consisted of stationary electric field of the nucleus
and time-averaged superposition of electric fields of moving in the corresponding atomic
core electrons.

As single-electron wave equation with stationary binding potential leads to discrete
energy eigenvalues, the atomic SCF conception reduces the multi-electron atom problem
to the determination of its electronic structure—single-electron atomic orbitals (AO) and
corresponding electron energy levels.

Thus, the single-electron approximation for multi-electron atoms actually is based on
the huge difference (three to five orders of magnitude) of mass between nuclei and electrons
making the formers behave similar to classical particles. To establish the single-electron
description of the atomic electronic system, one has to start with the exact, i.e., multi-
electron, Hamiltonian and introduce approximations, which lead to set of single-electron-
like equations for electrons in the external potential created by the presence of atomic
nucleus and other electrons [22]. Each electron experiences the presence of other electrons
through an effective potential in an approximate way encapsulating the multi-electron
nature of the real system. In developing the one-electron picture of atoms, one does
not neglect the exchange and correlation effects between electrons but take them into
account in an average way usually referred to as a SCF approximation for the electron–
electron interactions.
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Initially, nonzero relativistic correction to the atomic electron non-relativistic energy
level appears only in the second order with respect to the v/c ratio, where v and c are
electron and light speeds, respectively. The relativistic correction ∼v2/c2 yields so-called
fine-structure of the electronic energy spectrum (see, e.g., [23]). It accounts the first-order
electron-spin effects as well. As for the correction ∼v3/c3, it takes into account the electron
radiation, what is incompatible with assumed stationary motion. Thus, it makes no sense
to take into account relativistic corrections of orders higher than 2.

In this regard, note that according to the general perturbation theory, any second-
order correction to the energy corresponds to first-order correction to the wave function.
In addition, since there are no first-order (∼v/c) relativistic corrections to the atomic
energy levels, it should be completely neglected relativistic corrections to the electron
wave functions.

Studies show that for the bounded structures of heaviest elements the relativity
corrections must be addressed because they strongly affect heavy elements causing complex
shifts in their electronic energy levels. For example, two heavy elements, tennessine Ts
and oganesson Og, with atomic numbers of 117 and 118, respectively, form pentatomic
molecule OgTs4, which, according to the recent relativistic computations, in tetrahedral
geometry is about 1 eV more stable than in square planar geometry [24].

Summarizing, we conclude that the relativistic correction to the atomic electron non-
relativistic energy levels should be taken only into the initial nonzero order, which yields
the electronic energy spectrum fine-structure and accounts the electron-spin effects as well.
As for the relativistic corrections to the electron non-relativistic wave functions, they should
be neglected.

2.2. Spherical Symmetry

In the parlance of modern physics, electron is a truly point-like particle. Can one
consider the nucleus as material point too? If so, the nucleus fixed in a point serves for
source and spherical symmetry center of the Coulomb electric field. As for the intra-atomic
SCF, this is too obvious for electron-orbits in light atoms but has never been proven before
for low-lying electron-orbits in heavy atoms. To prove the spherical symmetry of intra-
atomic SCF in general, we need to evaluate minimum radius of the electron orbits in atom
and compare it with maximum electric charge radius of the corresponding atomic nucleus.

Since electrons in low-lying orbits in heavy atoms move with relativistic velocity,
non-relativistic analysis is insufficient to estimate the minimum radius of the electron
orbits: it is necessary to involve relativistic mechanics. Elsewhere we will give in detail
a relativistic generalization (reported in [25]) of the Bohr semi-classical non-relativistic
model. According to this generalization, electron orbit radius rn, its velocity in orbit vn,
and energy En are found from following relations:

rn

rB
=

n2

Z

√√
1 + βn + 1

2
(1)

vn

c
=

√
1 +

1
βn
−
√

1
βn

(2)

and
En

mc2 =

√√
1 + βn + 1

2
− 1

2

√
βn
(√

1 + βn − 1
)

2
(3)

Here,
n = 1, 2, 3, . . . (4)
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is the principal quantum number, while m is the electron rest mass and Z is the nucleus
charge number. The electron orbit parameter,

βn =
4α2Z2

n2 (5)

is determined by the fine-structure constant,

α =
e2

}c
≈ 1

137.04
(6)

And finally,

rB =
}2

e2m
≈ 0.53 Å (7)

is the non-relativistic Bohr radius.
On the one hand, at given charge number Z the minimum radius corresponds to the

first orbit: n = 1. On the other hand, the radius of the orbit decreases with increasing in Z.
If this number is so large that αZ > 1, i.e., Z > 137, then the solution of the Dirac relativistic
wave equation with the Coulomb potential does not satisfy the physical boundary condition
at the center of the field [26]. Resent model [27] of single-electron ion with high accuracy
average ionization potential also confirms the thesis about last element of the Periodic
Table with Z = 137. Consequently, the values Zmax = 137 and βmax = 4 are the extremely
possible ones for stable atoms. Therefore, we acquire the desired estimate of minimum
radius of the relativistic electron orbit in atom:

rmin ≈
rB

137

√√
5 + 1

2
≈ 0.0049 Å (8)

It is an underestimated value for rmin because the nuclei themselves become unstable
at lower Z.

Due to the almost constant density of nuclear matter, the radius of the nucleus was
found [28] to be approximately proportional to the cubic root of the atomic number A,
the sum of numbers of protons Z and neutrons in the nucleus: R ≈ RA

3
√

A. Here, the
averaged value of the proportionality coefficient is: RA ≈ 0.000012 Å. Note that R is
the root-mean-square charge radius of the nucleus, not its geometric characteristic. For
structurally stable large nuclei A ≈ 2.5 Z (see, e.g., [29]) and, consequently,

R ≈ RZ
3√Z (9)

with RZ ≈ 0.000016 Å. Apparently, the estimated nucleus charge radius maximum corre-
sponds to Zmax = 137:

Rmax ≈ RZ
3√137 ≈ 0.000082 Å (10)

Thus, the ratio of the maximum possible nucleus charge radius to the minimum
electron orbit radius in atoms is much less than 1: Rmax/rmin ≈ 0.017 � 1. Therefore,
even for an extremely heavy nucleus, its charge radius turns out to be significantly smaller
compared with the characteristic distance to electron in lowest-lying orbit. For the over-
whelming majority of electron-states in atoms with stable nuclei, similar conditions are
fulfilled in much better.

The representation of the nucleus as a fixed point electric charge means that the intra-
atomic electric SCF is of spherical symmetry with the center at nucleus. The contribution
from the nucleus Coulomb-like field directly satisfies this condition. However, as is known
the spherical symmetry is not characteristic for electronic contributions. The fact is that the
AOs themselves, which are found by solving wave equation with radial potential, are not
spherically symmetric: in addition to the radial factor they also contain angular factors.
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Therefore, to achieve self-consistency, it is necessary that when calculating the atomic SCF
the partial electron densities be averaged over directions.

2.3. Semi-Classical Approximation

The semi-classical approximation to quantum mechanics appeared simultaneously
with quantum mechanics itself. As early as in his seminal work [30–32] Bohr wrote: “ . . .
the dynamical equilibrium of the systems in the stationary states can be discussed by help
of the ordinary mechanics . . . assumption seems to present itself; for it is known that the
ordinary mechanics cannot have an absolute validity, but will only hold in calculations of
certain mean values of the motion of the electrons. On the other hand, in the calculations of
the dynamical equilibrium in a stationary state in which there is no relative displacement of
the particles, we need not distinguish between the actual motions and their mean values”.

According to the standard quasi-classical, i.e., Wentzel–Kramers–Brillouin (WKB),
approximation, in general the particle’s potential energy U(r) in a stationary radial field
has to vary slowly over a distance comparable with its de Broglie wavelength at all the
points, where potential energy is negligible in comparison with particle’s total mechanical
energy E. This criterion certainly cannot be satisfied near the classical turning points,
which are determined as roots of the equation: U(r) = E. In the initial, i.e., semi-classical,
approximation it leads to so-called connection problem [33], which means searching for the
optimal linear combination of semi-classical wave functions well approximating precise
one in different regions of the space.

As for atomic potentials, they definitely contradict the mentioned WKB criterion
because of Coulomb singularity at the origin and electron-shell structure yielded in the
oscillatory radial dependences of electron density and, consequently, potential. For this
reason, at first glance the success of the Bohr’s simple semi-classical model giving exact
electron energy spectrum for hydrogen-like atoms seems to be partially accidental. The fact
is that the electric field bounding single electron with atomic nucleus is purely Coulomb-
like and then corresponding wave equation can be solved exactly. In addition, not only for
the attracting Coulomb [34], but also for all solvable spherically symmetric potentials [35]
application of the standard leading-order in } WKB quantization rule to the wave equation
reproduces exact energy spectrum. It also has been argued [36] that contrary to widespread
belief, Bohr’s model is consistent and can be interpreted to support the moderate and
selective version of the realistic description.

For example, Potapov reported [37] on so-called dipole–shell model of the atom,
which can be considered as a neoclassical development of the Bohr’s semi-classical shell-
model. In such a way, atom is represented as a classical object—set of nested each in other
quasi-spheres or shells formed by circular/elliptical electron orbits. The conceptual basis
of this model consists in using the Gauss theorem to reduce the multi-charge problem to
the two-charge one. In connection with this work, it must be emphasized that we strongly
disagree with author’s claim that a purely classical description, completely neglecting
any quantum effects, can give the exhaustive explanation of all the observed atomic
phenomena. Potapov’s approach itself being purely classical does not contain any Planck
constant dependent quantum correction to the electronic energy levels in atom. Its errors
can be revealed in the quantum consideration, namely, by the asymptotic expansion of
the electronic energy spectrum showing that even the initial term corresponding to the
semi-classical approximation, in the general case, depends on the Planck constant (see
below). In [38], for two-electron or helium-like atoms it was demonstrated how to extract
useful information about the light atoms electronic structure from their classical study by
numerical methods.

Direct extending of the Bohr’s simple semi-classical model to helium-like, i.e., two-
electron, atomic systems [39] leads to the renormalization of the nuclear charge number.
Obtained in this way ground state energies differ from the experimental ones only in
a few percent. Review [40] discussed the modified semi-classical concepts and their
application to two-electron atoms offering the viewpoint complementary to numerical
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quantum-mechanical approach. Interpretations of approximate quantum numbers and
rules are given in terms of key periodic orbits of the classical three-body Coulomb problem.
The focus lies on the periodic orbit trace formulas able to resolve quantitatively resonances
and bound states from the ground state across the two-body fragmentation thresholds.

Bohr-type semi-classical analytical models’ suitability was demonstrated for electron
trajectories in small neutral molecules and molecular ions with two or three electrons [41].
In particular, the classical description of periodic motion was shown to be not neces-
sarily limited to cases with }→ 0 . Other simple extension of the Bohr’s semi-classical
molecular model [42] gives a clear physical picture of how electrons create chemical
bonds and provides surprisingly accurate ground-state potential energy curves for light
diatomic molecules.

To simulate the many-electron systems such as heavy atoms, multi-atomic molecules,
and condensed matter, the semi-classical approximation should be combined with statis-
tical one. Even the simplest Thomas–Fermi model [43,44] gives the intra-atomic electron
density distribution, which is suitable as initial approximation when interpreting the elec-
tromagnetic waves scattering in condensed matter. Based on Thomas–Fermi semi-classical
model, a special methodology allows [45] to find single-electron densities even beyond elec-
trons classical turning points in atom and use them for revealing shell-effects characteristic
of many-electron quantum systems.

Further development of the semi-classical/statistical approach leads to the class of
modified or generalized Thomas–Fermi equations (see, e.g., [46]), which take into account
various quantum and statistical corrections introduced by adding corresponding terms in
the atom electron system total energy expression. Emphasize that non-relativistic Thomas–
Fermi model admits direct relativistic generalization as well.

Perhaps, the most complete and consistent generalization of the Thomas–Fermi model
was given by the Magomedov radial-statistical model [47], in which radial electron orbitals
corresponding to the semi-classical SCF are introduced for spherical bound multi-electron
system such as atom. This approach is equivalent to the Thomas–Fermi model only in the
limit of infinite number of electrons in the system. Magomedov model has revealed the
loss of the major, first order, correction to Thomas–Fermi model [48], the origin of which
is purely statistical. It is associated with the replacement of summation over quantum
numbers by integration, when considering them for continuous variables.

The second order correction basically is a statistical one as well because mainly is
caused by the Dirac’s electron–electron exchange correction. There are von Weizsacker’s
quantum and also so-called shell corrections of the same parametric smallness, but with
much smaller numerical coefficients. The introduction of the Amaldi’s third order correc-
tion is related to the necessity to exclude the nonphysical effect of electron self-action, i.e., it
again is related to the statistical approximation. Thus, errors of the Thomas–Fermi-type
approaches are predominantly of statistical origin, not semi-classical one.

Density functional theory (DFT) is the most modern formulation of statistical modeling
of multi-electron bounded systems. The density of the total kinetic energy of the electron
jellium as a function of electron density permits systematic decomposition into quasi-
classical series [49], the initial, semi-classical, approximation of which corresponds to
so-called local density approximation (LDA). The well-known success of the LDA once
again confirms the suitability of the semi-classical approach to atoms and systems of
bounded atoms such as molecules and condensed matter.

As it was mentioned in the Introduction, the errors of the QCTS in semi-classical
calculating of condensed matter electron energy and structural parameters do not exceed a
few percent.

What is the reason for the successful practice of applying various semi-classical
approaches to the problem of isolated atoms and bounded systems of atoms? The key
to understanding the semi-classical nature of physical systems seems that in the wave
equation the small parameter, Plank constant }, stands at highest derivative. Both in
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non-relativistic and relativistic cases, this allows the asymptotic finding of an approximate
solution [50].

Let us consider the motion of a quantum particle along the x-axis and assume that
its stationary potential energy U(x) satisfies the following conditions: (1) the spectrum
of the corresponding one-dimensional Schrödinger equation near the energy E is purely
discrete; (2) there exists a region with U(x)− E < 0, the simply connected part of which
is bounded by the points x1(E) and x2(E) representing the simple zeros of the difference
U(x)− E; and (3) the function U(x) is infinitely differentiable. For these conditions that
are usually satisfied by physical potentials, Maslov proved theorem [51] on the possibility
to represent discrete energy eigenvalues Ei of the stationary one-dimensional Schrödinger
equation with a binding potential by asymptotic series in powers of }2:

Ei = ∑k=∞
k=0 }2kE(k)

i (11)

where,
i = 1, 2, 3, . . . (12)

denotes the number of discrete energy levels. It is obvious that the index i is equivalent to
a certain set of quantum numbers. Emphasize that, in general, the coefficients E(k)

i here
are not independent of the small parameter }. Formally, above expression is similar to
the series obtained by the perturbation theory. The fundamental difference between the
conditions of applicability of asymptotic expansion and perturbation theory is that in the
first case a small parameter is contained in the kinetic part of the Hamiltonian, while in the
second case it is in the potential one.

The energy E(0)
i is determined in the semi-classical approximation—by the standard

semi-classical Bohr–Sommerfeld quantization rule. As for the members of higher orders,
they are determined by recursive relations. For the terms not only of zero, but also first
and second orders, the formulas are obtained in a simple closed form.

Obviously, this theorem can also be extended to the three-dimensional radial Schrödinger
equation, if so-called effective potential energy Ueff(r) is introduced by adding the centrifu-
gal part to the physical one [23]:

Ueff(r) = U(r) +
}2l(l + 1)

2mr2 (13)

Here m is the mass of the particle and l is its orbital quantum number.
If U0 denotes the characteristic value of the potential energy, and r0 is the characteristic

distance of its significant change in magnitude, then one can enter the small dimensionless
parameter [23],

η =
}2

2mU0r2
0

(14)

by help of which and on the basis of the asymptotic expansion in powers of }2, the semi-
classicality condition of the discrete energy spectrum of a bounded non-relativistic particle
can be formulated as,

η � 1 (15)

We call this condition the Maslov criterion.
It should be emphasized that, in general, the discrete energy spectrum semi-classicality

condition (15) is not equivalent to standard WKB condition for the wave functions semi-classicality.
It is interesting to find out the semi-classicality criteria for a relativistic bounded

particle as well. Note that in the single-particle Hamiltonian, the Planck constant appears
only in the particle momentum operator,

→̂
p = −i}

→
∇ (16)
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Therefore, the semi-classical decomposition of a relativistic Hamiltonian in powers of
squared Planck constant }2 is essentially equivalent to its quasi-relativistic decomposition

in powers of squared momentum operator
→̂
p

2
. We arrive at the conclusion that the

stated above semi-classicality condition for the Schrödinger equation is preserved for
the Dirac equation as well. In this case, m should be understood as the rest mass of a
relativistic particle.

Now we can evaluate the Maslov semi-classicality criterion fulfillment specifically for
atoms. Since atom is a spherically symmetric bounded system, it is possible to introduce
some finite atomic radius ra. In general, the concept of “atomic radius” is not strictly
defined. It is a characteristic distance from the nucleus, beyond which the electron density
is almost zero. Using this parameter, the potential energy Ua(r) of given electron in the field
of the corresponding atomic core can be represented in the Hartree form (see, e.g., [52]):

Ua(r) = −
e2Z
ra

f (r/ra)

r/ra
(17)

where,
0 ≤ f (r/ra) ≤ 1 (18)

is the screening factor of the positively charged nucleus field by the negatively charged
cloud of core electrons. Obviously, for the atomic potential,

r0 ≈ ra (19)

and then,

U0 ≈
e2Z
ra

(20)

Consequently, semi-classicality parameter ηa of the atom is,

ηa =
1

2Z
rB

ra
(21)

The finiteness of atomic radii is theoretically argued both by first-principle calculations
and statistical models. First-principle calculations reveal the fast (exponential) decrease in
the electron density at large distance from nucleus, and statistical models of the neutral
atom, in which the non-physical effect of the electron self-action is correctly eliminated,
explicitly lead to the finite radius.

As for the experimental atomic radii, they are found from the interatomic distances
in their structures. Therefore, depending on corresponding interaction nature so-called
van der Waals, metal, covalent, and ionic radii can be defined. For the problem under
consideration, it is advisable to use the first of them since the van der Waals interaction
implies almost only physical contact between the outer electron shells of the neighboring in
the structure atoms excluding chemical bonding through valence electrons collectivization
or interatomic exchange and transfer. Table 1 shows the van der Waals radii of some
atoms [53] together with the corresponding semi-classicality parameter estimates.

Table 1. Semi-classicality parameter of neutral atoms.

Atom Nucleus Charge Number, Z Van der Waals Radius ra, Å Semi-Classicality Parameter, ηa

H 1 1.10 0.240
He 2 1.49 0.095
B 5 1.92 0.028
C 6 1.70 0.026
N 7 1.55 0.024
O 8 1.52 0.022

Na 11 2.27 0.011
Fr 87 3.48 0.001



Condens. Matter 2021, 6, 46 9 of 28

For hydrogen H atom having the smallest radius, the semi-classicality criterion is not
very well satisfied. However, it does not matter since the Coulomb potential is exactly
solvable and, therefore, its semi-classical electron energy spectrum perfectly coincides with
the exact one. As for the next element, helium He, mentioned criterion is satisfied much
better. For francium atom Fr with largest radius among all the chemical elements, the
satisfaction of semi-classicality criterion is too good. In addition to these extreme cases,
Table 1 shows the parameters of atoms B, C, N, O, and Na, the bounded structures of
which were semi-classically calculated within the QCTS. It can be seen that for them the
semi-classicality condition is fulfilled quite satisfactorily.

Summarizing we conclude that atoms are semi-classical electronic systems in the
sense of Maslov criterion. From above numerical estimates, the typical relative differences
between semi-classical and exact electron energy spectra for light atoms are <3% and even
less for heavy atoms. Thus, the expected accuracy of semi-classical electronic structure
calculations for bound system of atoms—molecules and condensed matter—seem to be
acceptable in some specific cases.

2.4. Construction of Semi-Classical Atomic Orbitals and Potential

Below, the term “atom” is understood not only as isolated neutral atom or atomic
ion, but also as any atom-like particle, i.e., bounded system of a nucleus and one or more
electrons constituting some bounded system of atoms—molecule or condensed matter.

Consider the atom containing nuclei with charge number of Z and N electrons. Num-
ber electrons by the index i:

i = 1, 2, 3, . . . , N (22)

which is equivalent to the set of atomic quantum numbers:

(i) = (ni, li, mi) (23)

Here ni, li, and mi are electron i-state principal, orbital, and magnetic quantum num-
bers, respectively. Denote the corresponding discrete electron energy levels by E±i with E+

i
and E−i standing for two different orientations of the electron spin.

Since electrons motion in the atom can be assumed to be semi-classical, most of the
time given i-electron should be near the surface of the sphere with certain radius ri. In other
words, it is possible to assume that its radial coordinate r is a nearly constant quantity:

r ≈ ri (24)

By the Gauss theorem, the stationary radial electric field on the spherical surface
equals to Coulomb field created by point charge located at the center, the value of which
is determined by the sum of electric charges inside this sphere. Therefore, the semi-
classical potential energy Ui(r) of an atomic electron can be approximated in the Coulomb-
shaped form:

Ui(r) ≈ −
e2Zi

r
(25)

where for i-electron the relation,

Zi = Z− 4π ∑i 6=k=N
i 6=k=1

∫ ri

0
drr2ρk(r) (26)

determines the effective charge number Zi of the nucleus shielded by all other atomic
electrons. Here functions ρi(r) are the radial distributions of partial electron densities in
atom. Sum does not contain term with index k = i to avoid inclusion of the i-electron
self-action non-physical effect.

Approximating the electric field potentials acting on atomic electrons in the Coulomb-
like form is too convenient because Coulomb potential is exactly solvable and, therefore,
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it is possible to find analytical expressions for partial electron density functions ρi(r),
parameters ri and E±i and, in this way, finally calculate the effective charge numbers Zi.

As mentioned above, within the SCF approach electron orbits radii and energy levels
should be determined in non- and quasi-relativistic approximations, respectively [23]:

ri =
}2n2

i
e2mZi

(27)

and

E±i = −
e4mZ2

i
2}2n2

i
−

e8mZ4
i

2}4c2n3
i

 1∣∣∣li ± 1
2

∣∣∣+ 1
2

− 3
4ni

 (28)

The corresponding explicit semi-classical electron AOs ψi(
→
r ) are:

ψi(
→
r ) = Yi(θ, ϕ)Ri(r) (29)

where radius 0 ≤ r ≤ ∞, and azimuthal 0 ≤ θ ≤ π and polar 0 ≤ ϕ ≤ 2π angles are the
spherical coordinates.

In general, angular part of the wave function corresponding to a spherically symmetric
potential is expressed as a spherical harmonic Yi(ϑ, ϕ) normalized by the condition:∫ π

0
dθ sin θ

∫ 2π

0
dϕ|Yi(θ, ϕ)|2 = 1 (30)

Consequently, wave functions radial parts,

Ri(r) =
2Zi

n2
i rB

√
(ni − li − 1)!
(ni + li)!

Zi
rB

exp
(
− Zir

nirB

)(
2Zir
nirB

)li
L2li+1

ni−li−1

(
2Zir
nirB

)
(31)

which are the real functions expressed by generalized Laguerre polynomials L2li+1
ni−li−1(2Zir/nirB),

have to satisfy the following normalization condition:∫ ∞

0
drr2R2

i (r) = 1 (32)

Then, the averaged on full solid angle 4π partial electron densities are:

ρi(r) =
R2

i (r)
4π

(33)

As for the effective charge numbers, now they take the form,

Zi = Z−∑i 6=k=N
i 6=k=1

∫ ri

0
drr2R2

k(r) (34)

Let us introduce the new variable,

x =
2Zir
nirB

(35)

which at r = ri equals to,
xi = 2ni (36)

Thus, the squared semi-classical radial orbital R2
i (r) can be rewritten as,

R2
i (r) =

4Z3
i

n4
i r3

B

(ni − li − 1)!
(ni + li)!

exp(−x)x2li
(

L2li+1
ni−li−1(x)

)2
(37)
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We come to the effective charge numbers,

Zi = Z−∑i 6=k=N
i 6=k=1

(nk − lk − 1)!
2nk(nk + lk)!

∫ 2ni

0
dx exp(−x)x2(lk+1)

(
L2lk+1

nk−lk−1(x)
)2

(38)

Electron configuration chosen for the atom should be considered as stable if all the
charge numbers found in this way are physically meaningful, i.e., positive: Zi > 0.

In the full atomic radial potential in sense of potential energy of an electron in
atomic SCF,

UZ Z1···ZN (r) = UZ(r) + UZ1···ZN (r) (39)

the nucleus’ Coulomb potential,

UZ(r) = −
e2Z

r
(40)

is added with electron cloud potential UZ1···ZN (r) determined by the Poisson’s equation,

1
r2

d
dr

(
r2 dUZ1···ZN (r)

dr

)
= −e2 ∑i=N

i=1 R2
i (r) (41)

or in the integral form,

UZ1···ZN (r) = −∑i=N
i=1

e2Zi
rB

(ni−li−1)!
n2

i (ni+li)!

∫ dr
r2

∫
dr exp

(
− 2Zir

nirB

)(
2Zir
nirB

)2(li+1)(
L2li+1

ni−li−1

(
2Zir
nirB

))2
(42)

As the effective charge number Zi of a multi-electron atom nucleus for i-electron is
determined by the sum self-consistent charge density distribution of other atomic electrons,
it takes into account electron–electron exchange and correlation effects. It is why in the
semi-classical approach (in contrast with, e.g., Hartree–Fock method) there is no need to
introduce a correction for electron correlations.

3. Formulation of LCAO Method with Semi-Classical AOs

In the condensed matter, only a part of electrons of constituting atoms called as
valence electrons are actually involved in the formation of interatomic bonds, whereas
the rest of electrons called as core electrons together with nuclei remain in states almost
indistinguishable from their states in corresponding isolated atoms. Therefore, atoms
largely retain their individuality within the condensed matter and its treatment as a
structure of atom-like systems is acceptable.

This fact explains the successful examples of theoretical description of the condensed
matter electronic structure by the LCAO method—see, e.g., [54] (for the origins see [55,56]),
which is looking for the electronic subsystem wave function as a linear combination of
atom-like orbitals. Both the accuracy and range of applicability of the LCAO method are
greatly dependent of effective expression of the set of constituent atoms electronic orbitals
used in the trail. Since the standard first principle quantum-chemical methods give AOs in
numerical form, the matrix elements of the secular equation determining the condensed
matter electronic structure in the LCAO approach usually have to be found by numerical
integration as well.

In the previous section, semi-classical electron orbitals are obtained analytically—in
form of hydrogen-like atomic orbitals as combinations of generalized Laguerre polynomials
and spherical harmonics. Thus, the LCAO method version using hydrogen-like semi-
classical atomic orbitals for basis set is expected to determine crystal electronic structure
with a good accuracy.

In this section, for simplicity the LCAO method with basic set of semi-classical AOs is
introduced for crystals. Formulation can be easily extended to finite clusters or disordered
condensed matter by restricting with a single unit cell or substituting periodic lattice by
some non-periodic infinite distribution of atomic sites, respectively.
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3.1. Formulation of LCAO Method for Semi-Classical Crystal Potential

Crystal single-electron wave functions Ψn(
→
k ,
→
r ) are determined by the stationary

Schrödinger equation,

Ĥ(
→
r )Ψn(

→
k ,
→
r ) = En(

→
k )Ψn(

→
k ,
→
r ) (43)

with non-relativistic Hamiltonian,

Ĥ(
→
r ) = −}2∆

2m
+ U(

→
r ) (44)

Here
→
r and

→
k are the electron radius- and wave-vectors, respectively; and m is the

electron mass.
So-called band approximation means that crystal potential U(

→
r ) invariant for all

the crystal symmetry transformations is a given periodic function of the radius-vector
→
r . Here n numbers the electron energy bands En(

→
k ), which are periodic functions of the

wave-vector
→
k .

In general, three factors determine the applicability of the single-electron approxima-
tion to the crystal multi-electron system [57]: (1) range of the electron–electron interactions,
(2) electron density, and (3) degree of localization of the constituent electrons. This ap-
proximation works better to justifiably construct the single-electron potential for crystals
containing a high concentration of significantly delocalized electrons with long-range inter-
actions. In addition, there are two physically different first principles SCF approaches to
the single-electron approximation used to arrive at crystal potential: Hartree–Fock method
and DFT. First of them considers the electronic wave function, while the second the electron
density as primary quantities to be determined.

Solutions can be always written in the form of Bloch functions:

Ψn(
→
k ,
→
r ) =

1√
N

∑
→
τ

exp (i
→
k
→
τ )Wn(

→
r −→τ ) (45)

where sum is over lattice translations vector
→
τ . Wn(

→
r −→τ ) indicate Wannier functions

localized on corresponding unit cell and N is the total number of unit cells in the crystal. In

turn, Wannier functions are expressed by sums over wave vectors
→
k of the Brillouin zone:

Wn(
→
r −→τ ) = 1√

N
∑
→
k

exp (−i
→
k
→
τ )Ψn(

→
k ,
→
r ) (46)

Wannier functions form an orthonormal set:∫
d3→r W∗n′(

→
r −→τ

′
)Wn(

→
r −→τ ) = δn′nδ→

τ
′→
τ

(47)

Let ψiµµ(
→
r −

→
d µ) indicates the atomic-like (neutral atom or atomic ion) electron orbital

with quantum numbers iµ for the atom located in position
→
d µ of the unit cell. AOs of any

atom form an orthonormal set of basic functions:∫
d3→r ψ∗i′µµ(

→
r −

→
d µ)ψiµµ(

→
r −

→
d µ) = δi′µiµ (48)

Define the corresponding Bloch sum of wave-vector
→
k as:

Φiµµ(
→
k ,
→
r ) =

1√
N

∑
→
τ

exp (i
→
k
→
τ )ψiµµ(

→
r −

→
d µ −

→
τ ) (49)
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Since any Wannier function Wn(
→
r −→τ ) can be presented as a LCAO, the crystal wave

function can be expressed as linear combination of Bloch sums, i.e., a complete basic set of
functions, with same wave-vector:

Ψn(
→
k ,
→
r ) = ∑

µ
∑
iµ

Ciµµ(
→
k )Φiµµ(

→
k ,
→
r ) (50)

Constant coefficients Ciµµ(
→
k ) are determined by requiring that these expansions

satisfy the Schrödinger equation. The last is transformed into the secular equation by
minimizing the expectation value of the crystal Hamiltonian with respect to coefficients.

Sets of expansion coefficients, which are equivalent to single-electron wave functions,
and corresponding electron energies E can be obtained, respectively, as eigenvectors and
eigenvalues of the matrix, whose determinantal compatibility equation is

det
(〈

Φi′
µ′µ
′(
→
k ,
→
r )
∣∣∣∣(Ĥ(

→
r )− E(

→
k )
)∣∣∣∣Φiµµ(

→
k ,
→
r )
〉)

= 0 (51)

This secular equation determining the crystal electronic structure contains matrix
elements dependent on crystal potential.

It should be noted that, in general, the eigenvalues En(
→
k ) for electronic states Ψn(

→
k ,
→
r )

depend to a large extent on the symmetry properties of the crystal potential U(
→
r ) used

and are not too sensitive to small deviations in its magnitude. This is why in many
cases LCAO calculations are qualitatively successful dispute potential’s approximations
involved. However, to obtain quantitative results the crystal potential U(

→
r ) should be

constructed properly.
For a good initial approximation to the crystal potential U(

→
r ) usually it is consid-

ered superposition of centered at lattice sites spherically symmetric atom-like potentials

Uµ(|
→
r −

→
d µ −

→
τ |), which are derived from self-consistent potentials of corresponding

atoms in their free states:

U(
→
r ) ≈∑→

τ ∑
µ

Uµ(|
→
r −

→
d µ −

→
τ |) (52)

To obtain most accurate presentation for crystal potential, in electron state calculations
attempts are made to achieve self-consistency by successively and iteratively recomputing
the crystal potential from the multi-electron wave function of the crystal.

In previous section, it has been calculated the semi-classical atom-like radial potentials
providing good accuracy for crystal potential constructed as their superposition.

3.2. Calculation of Semi-Classical Matrix Elements

Historically, one had to choose a set of basic functions so that to obtain meaningful
results with a small number terms in the expressions. In the tight binding approximation
(see, e.g., [58]), the crudest version of the LCAO method, interactions only between near-
est neighbor and next to nearest neighbor atoms are taken into account. However, for
today computers, the calculation of arising, for example, in the LCAO approach quantum-
chemical integrals with the required accuracy is not a principal problem [59]. Though,
band structural calculations remain generally quite laborious.

The semi-classical atomic orbital ψiµµ(
→
r −

→
d µ −

→
τ ) satisfies Schrödinger equation,

Ĥ(
→
r )ψiµµ(

→
r −

→
d µ −

→
τ ) = − }2

2m
d2ψiµµ(

→
r −
→
d µ−

→
τ )

d
→
r

2 −
e2Ziµ

|→r −
→
d µ−

→
τ |

ψiµµ(
→
r −

→
d µ −

→
τ ) = E±iµ ψiµµ(

→
r −

→
d µ −

→
τ ) (53)
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It makes possible matrix element decomposition into two terms:〈
Φi′

µ′µ
′(
→
k ,
→
r )
∣∣∣∣(Ĥ(

→
r )− E(

→
k )
)∣∣∣∣Φiµµ (

→
k ,
→
r )
〉

=

=

〈
Φi′

µ′µ
′(
→
k ,
→
r )

∣∣∣∣∣
(

U(
→
r ) +

e2Ziµ

|→r −
→
d µ−

→
τ |

)∣∣∣∣∣Φiµµ (
→
k ,
→
r )
〉
+

(
E±iµ − E(

→
k )
)〈

Φi′
µ′µ
′(
→
k ,
→
r )
∣∣∣∣Φiµµ (

→
k ,
→
r )
〉 (54)

The second, simpler, term is proportional to the overlap integral between two Bloch sums:

Ii′
µ′ iµ

=

〈
Φi′

µ′µ
′(
→
k ,
→
r )
∣∣∣∣Φiµµ (

→
k ,
→
r )
〉

=

= 1
N ∑
→
τ

∑
→
τ
′
exp

(
i
→
k (
→
τ −→τ

′
)

) ∫
d3→r ψ∗i′

µ′µ
′(
→
r −

→
d µ′ −

→
τ
′
)ψiµµ(

→
r −

→
d µ −

→
τ ) =

= ∑
→
τ

exp (i
→
k
→
τ )
∫

d3→r ψ∗i′
µ′µ
′(
→
r −

→
d µ′)ψiµµ(

→
r −

→
d µ −

→
τ )

(55)

Here summation over translations vector
→
τ
′
cancels the factor 1/N. This term contains

one- and two-center integrals. The one-center integrals are simply 1 or 0 because orthonor-
mal properties of atomic orbitals set. As for the two-center integrals at given interatomic
distances, they are reducible to a smaller number if independent ones. In semi-classical ap-
proximation, overlap matrix elements are expressed through special functions—spherical
harmonics and generalized Laguerre polynomials—integrals.

The first, more complex, term,

Ui′
µ′ iµ

=

〈
Φi′

µ′µ
′(
→
k ,
→
r )
∣∣∣∣(U

iµµ
→
τ
(
→
r )
)∣∣∣∣Φiµµ(

→
k ,
→
r ) =

= 1
N ∑
→
τ

∑
→
τ
′
exp

(
i
→
k (
→
τ −→τ

′
)

) ∫
d3→r ψ∗i′

µ′µ
′(
→
r −

→
d µ′ −

→
τ
′
)

U(
→
r ) +

e2Ziµ∣∣∣∣→r −→d µ−
→
τ

∣∣∣∣
ψiµµ(

→
r −

→
d µ −

→
τ ) =

= ∑
→
τ

exp (i
→
k
→
τ )
∫

d3→r ψ∗i′
µ′µ
′(
→
r −

→
d µ′)

U(
→
r ) +

e2Ziµ∣∣∣∣→r −→d µ−
→
τ

∣∣∣∣
ψiµµ(

→
r −

→
d µ −

→
τ )

(56)

is the matrix element between two Bloch sums of crystal potential minus semi-classical
potential acting on electron in given atomic state:

U
iµµ
→
τ
(
→
r ) = U(

→
r ) +

e2Ziµ

|→r −
→
d µ −

→
τ |

(57)

It contains two- and three-center integrals. Here the three-center integrals, similar
to the two-center integrals, for given interatomic distances can be reduced to a smaller
number of independent ones. In semi-classical approximation, potential matrix elements
are expressed through same special functions integrals.

4. Test Calculations

The numerical realization of the introduced semi-classical method needs a number of
further studies: (1) Computing and tabulating of effective nucleus charge numbers for semi-
classical electron orbitals and corresponding radii of electron orbits and electron energy
levels in stable neutral atoms and atomic ions in their isolated states; (2) Constructing of
semi-classical atomic (ionic) potentials; (3) Reducing of the semi-classical secular equation
matrix elements to the linear combinations of irreducible one-, two-, and three-center
overlap and potential energy integrals expressed analytically in special functions; and (4)
Solving the secular equation to determine electron energy spectrum and electron density
distribution of substances—bounded system of atoms.

Here we aim to conduct only a preliminary numerical testing of the proposed semi-
classical method. In addition, to simplify its procedure as possible, we make several
additional assumptions:
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- Consider elemental substance, namely boron B, not a compound of two or more
chemical elements.

- Consider smallest—diatomic molecule B2, not a crystalline modification of boron.
- Include into the LCAO basis only higher valence electron orbitals.
- Conduct calculations in the non-relativistic limit.

To imagine the introduced additional (to proposed semi-classical approach) calculation
errors, characterize these assumptions in brief.

As boron is light chemical element, electron orbitals in boron atoms possess low
quantum numbers. For common versions of the semi-classical approximation, it is a critical
case. In this regard, testing on an all-boron system should provide a quite good evaluation
of the accuracy expected for proposed semi-classical method.

Analyzing electronic structure of a small molecule does not affect the calculations
accuracy. Furthermore, B2 molecule or isolated B–B bond is of academic interest because it
is considered as “building block” of important boron 3D allotropes and also nanostructures,
in particular, boron monoatomic sheet–borophene, which is a new prospective 2D material
with properties in many aspects supplementary to that of the well-known and widely
used graphene.

As for the restriction with only higher valence-electron orbitals basis in LCAO calcula-
tions, it definitely reduces their accuracy. Usually, such a basis includes all the completely
or partially occupied valence electron orbitals and some of adjacent (in energy axis) unoc-
cupied excited, as well as completely occupied atomic core electron orbitals.

Non-relativistic approximation seems to be quite acceptable as quasi-relativistic cor-
rections to electron energy levels are significant for low-lying levels in heavy atoms, not
light ones such as B.

4.1. Semi-Classical Electron Orbitals of Boron Atom

The charge number of boron B atom nucleus equals to Z = 5. In the neutral state, it
contains N = 5 electrons. Ground-state electron configuration of boron neutral atom is
1s22s22p. Table 2 presents the semi-classical parameters of boron atom electronic structure
calculated in this work in comparison with some available experimental data.

Table 2. Semi-classical parameters of neutral boron B atom electron orbitals occupied in ground-state.

Orbital i ni li Zi ri, Å −Ei, eV EIP
i , eV

1s 1 1 0 4.69 0.113 299 –
1s 2 1 0 4.69 0.113 299 259
2s 3 2 0 2.76 0.770 25.9 –
2s 4 2 0 2.76 0.770 25.9 25.2
2p 5 2 1 1.48 1.430 7.45 8.30

Here index,
i = 1, 2, 3, 4, 5 (58)

numbers the orbitals occupied by electrons. ni and li are their principal and orbital quantum
numbers, respectively. Zi is the nucleus effective charge number for i-electron. ri and Ei
are the semi-classical non-relativistic electron orbitals radii and energies:

ri
rB

=
n2

i
Zi

(59)

and
Ei
EB

= −
Z2

i
n2

i
(60)

Here rB ≈ 0.529 Å and EB ≈ 13.6 eV are Bohr radius and energy, respectively. Note
that Z1 = Z2 and Z3 = Z4, as well as r1 = r2 and r3 = r4. Furthermore, in the non-
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relativistic limit corresponding electron energy levels are indistinguishable as well: E1 = E2
and E3 = E4. In addition, EIP

i are the experimental electron ionization potentials.
Five unknown parameters Zi satisfy the system of five equations,

Zi = 5−∑i 6=k=5
i 6=k=1

∫ ri

0
dr r2R2

k(r) (61)

where hydrogen-like radial wave functions Rk(r) are expressed via,

qk(r) =
2Zk
nk

r
rB

(62)

dimensionless variables:

R1(q1(r)) =

√(
Z1

rB

)3
2 exp

(
− q1(r)

2

)
(63)

R2(q2(r)) =

√(
Z2

rB

)3
2 exp

(
− q2(r)

2

)
(64)

R3(q3(r)) =

√(
Z3

rB

)3 1
2
√

2
(2− q3(r)) exp

(
− q3(r)

2

)
(65)

R4(q4(r)) =

√(
Z4

rB

)3 1
2
√

2
(2− q4(r)) exp

(
− q4(r)

2

)
(66)

R5(q5(r)) =

√(
Z5

rB

)3 1
2
√

6
q5(r) exp

(
− q5(r)

2

)
(67)

Thus, the integrals Iik representing effective charge numbers can be rewritten in
following forms:

Iik =
∫ ri

0
dr r2R2

k(r) =
n3

k
8

∫ 2n2
i Zk

nk Zi

0
dq q2Q2

k(q) (68)

Here q is the integration variable with higher limit at,

qk(ri) =
2n2

i Zk

nkZi
(69)

As for Qk(q) functions, corresponding Rk(q(r)) functions differ from them only by√(
Zk
rB

)3
. pre-factors.

Let’s start with calculating Ii1 integrals:

Ii1 =
n3

1
8

∫ 2n2
i Z1

n1Zi
0 dq q24 exp(−q) = n3

1 −
(

n3
1 +

2n2
i n2

1Z1
Zi

+
2n4

i n1Z2
1

Z2
i

)
exp

(
− 2n2

i Z1
n1Zi

)
(70)

Taking into account that n1 = 1 we acquire,

Ii1 = 1−
(

1 +
2n2

i Z1

Zi
+

2n4
i Z2

1

Z2
i

)
exp

(
−

2n2
i Z1

Zi

)
(71)

And as n2 = 1 as well,

I21 = 1−
(

1 +
2Z1

Z2
+

2Z2
1

Z2
2

)
exp

(
−2Z1

Z2

)
(72)
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However, Z1 = Z2 and then,

I21 = 1− 5 exp(−2) (73)

As n3 = n4 = n5 = 2, for remaining integrals we have:

I31 = 1−
(

1 +
8Z1

Z3
+

32Z2
1

Z2
3

)
exp

(
−8Z1

Z3

)
(74)

I41 = 1−
(

1 +
8Z1

Z4
+

32Z2
1

Z2
4

)
exp

(
−8Z1

Z4

)
(75)

I51 = 1−
(

1 +
8Z1

Z5
+

32Z2
1

Z2
5

)
exp

(
−8Z1

Z5

)
(76)

Integrals Ii2 can be easily obtained from integrals Ii1 by the indices replacement 1↔ 2 :

I12 = 1− 5 exp(−2) (77)

I32 = 1−
(

1 +
8Z2

Z3
+

32Z2
2

Z2
3

)
exp

(
−8Z2

Z3

)
(78)

I42 = 1−
(

1 +
8Z2

Z4
+

32Z2
2

Z2
4

)
exp

(
−8Z2

Z4

)
(79)

I52 = 1−
(

1 +
8Z2

Z5
+

32Z2
2

Z2
5

)
exp

(
−8Z2

Z5

)
(80)

Now calculate the Ii3 integrals:

Ii3 =
n3

3
8

∫ 2n2
i Z3

n3Zi
0 dq q2 1

8 (2− q)2 exp(−q) = n3
3

8 −
(

n3
3

8 +
n2

i n2
3Z3

4Zi
+

n4
i n3Z2

3
4Z2

i
+

n8
i Z4

3
4n3Z4

i

)
exp

(
− 2n2

i Z3
n3Zi

)
(81)

However, n3 = 2 and then one finds,

Ii3 = 1−
(

1 +
n2

i Z3

Zi
+

n4
i Z2

3

2Z2
i

+
n8

i Z4
3

8Z4
i

)
exp

(
−

n2
i Z3

Zi

)
(82)

As n1 = n2 = 1, from this relation we have,

I13 = 1−
(

1 +
Z3

Z1
+

Z2
3

2Z2
1
+

Z4
3

8Z4
1

)
exp

(
−Z3

Z1

)
(83)

I23 = 1−
(

1 +
Z3

Z2
+

Z2
3

2Z2
2
+

Z4
3

8Z4
2

)
exp

(
−Z3

Z2

)
(84)

n4 = 2 and, consequently,

I43 = 1−
(

1 +
4Z3

Z4
+

8Z2
3

Z2
4

+
32Z4

3

Z4
4

)
exp

(
−4Z3

Z4

)
(85)

However, Z3 = Z4 and then,

I43 = 1− 45 exp(−4) (86)
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n5 = 2 as well and,

I53 = 1−
(

1 +
4Z3

Z5
+

8Z2
3

Z2
5

+
32Z4

3

Z4
5

)
exp

(
−4Z3

Z5

)
(87)

Integrals Ii4 can be directly obtained from integrals Ii3 by the indices replacement
3↔ 4 :

I14 = 1−
(

1 +
Z4

Z1
+

Z2
4

2Z2
1
+

Z2
4

8Z4
1

)
exp

(
−Z4

Z1

)
(88)

I24 = 1−
(

1 +
Z4

Z2
+

Z2
4

2Z2
2
+

Z2
4

8Z4
2

)
exp

(
−Z4

Z2

)
(89)

I34 = 1− 45 exp(−4) (90)

I54 = 1−
(

1 +
4Z4

Z5
+

8Z2
4

Z2
5

+
32Z2

4
Z4

5

)
exp

(
−4Z4

Z5

)
(91)

And finally calculate the Ii5 integrals:

Ii5 =
n3

5
8

∫ 2n2
i Z5

n5Zi
0 dq q2 1

24 q2 exp(−q) = n3
5

8 −
(

n3
5

8 +
n2

i n2
5Z5

4Zi
+

n4
i n5Z2

5
4Z2

i
+

n6
i Z3

5
6Z3

i
+

n8
i Z4

5
12n5Z4

i

)
exp

(
− 2n2

i Z5
n5Zi

)
(92)

or,

Ii5 = 1−
(

n3
5

8
+

n2
i Z5

Zi
+

n4
i Z2

5

2Z2
i

+
n6

i Z3
5

6Z3
i

+
n8

i Z4
5

24Z4
i

)
exp

(
−

2n2
i Z5

n5Zi

)
(93)

as n5 = 2. Due to values n1 = n2 = 1 and n3 = n4 = 2, we acquire:

I15 = 1−
(

1 +
Z5

Z1
+

Z2
5

2Z2
1
+

Z3
5

6Z3
1
+

Z4
5

24Z4
1

)
exp

(
−Z5

Z1

)
(94)

I25 = 1−
(

1 +
Z5

Z2
+

Z2
5

2Z2
2
+

Z3
5

6Z3
2
+

Z4
5

24Z4
2

)
exp

(
−Z5

Z2

)
(95)

I35 = 1−
(

1 +
4Z5

Z3
+

8Z2
5

Z2
3

+
32Z3

5

3Z3
3
+

32Z4
5

3Z4
3

)
exp

(
−4Z5

Z3

)
(96)

I45 = 1−
(

1 +
4Z5

Z4
+

8Z2
5

Z2
4

+
32Z3

5

3Z3
4
+

32Z4
5

3Z4
4

)
exp

(
−4Z5

Z4

)
(97)

Because of constrains Z1 = Z2 and Z3 = Z4, from 5 unknowns only 3 are independent.
Choose for them charge numbers with odd indices: Z1, Z3 and Z5. Their values can be
found form the following system of 3 equations:

Z1 = 5− I12 − I13 − I14 − I15 = 5− I12 − 2I13 − I15 (98)

Z3 = 5− I31 − I32 − I34 − I35 = 5− 2I31 − I34 − I35 (99)

Z5 = 5− I51 − I52 − I53 − I54 = 5− 2I51 − 2I53 (100)

It is the system of transcendental equations,

Z1 = 1 + 5 exp(−2) +
(

2 + 2Z3
Z1

+
Z2

3
Z2

1
+

Z4
3

4Z4
1

)
exp

(
− Z3

Z1

)
+

(
1 + Z5

Z1
+

Z2
5

2Z2
1
+

Z3
5

6Z3
1
+

Z4
5

24Z4
1

)
exp

(
− Z5

Z1

)
(101)

Z3 = 1 + 45 exp(−4) +
(

2 + 16Z1
Z3

+
64Z2

1
Z2

3

)
exp

(
− 8Z1

Z3

)
+

(
1 + 4Z5

Z3
+

8Z2
5

Z2
3
+

32Z3
5

3Z3
3
+

32Z4
5

3Z4
3

)
exp

(
− 4Z5

Z3

)
(102)
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Z5 = 1 +
(

2 + 16Z1
Z5

+
64Z2

1
Z2

5

)
exp

(
− 8Z1

Z5

)
+

(
2 + 8Z3

Z5
+

16Z2
3

Z2
5

+
64Z4

3
Z4

5

)
exp

(
− 4Z3

Z5

)
(103)

not solvable analytically, but only numerically, e.g., by the method of iterations.
With accuracy of three significant digits (as we will see below, it makes no sense to

carry out more accurate calculations) the solutions are Z1 ≈ 4.69, Z3 ≈ 2.76 and Z5 ≈ 1.48.
Consequently, Z2 ≈ 4.69 and Z4 ≈ 2.76.

Corresponding semi-classically calculated electron energy levels−E2 ≈ 299,−E4 ≈ 25.9
and −E5 ≈ 7.45 eV can be compared, but not identified, with boron 4th, 2nd and 1st exper-
imental ionization potentials IPIV ≈ 259, IPII ≈ 25.2 and IPI ≈ 8.30 eV, respectively [53].
For boron, in average, the relative deviations of quasi-classically calculated electron energy
levels from empirical ionization potentials consist of +3%. It seems to be quite acceptable
because measured ionization potentials do not include corrections for relaxation following
the ionizing excitation of the atomic multi-electron system.

Now we can construct semi-classical electron atomic orbitals for boron atom in form
of hydrogen-like wave functions with nuclei effective charge numbers. Their principal and
orbital quantum numbers are: n1 = n2 = 1, n3 = n4 = n5 = 2 and l1 = l2 = l3 = l4 = 0,
l5 = 1, respectively. As for magnetic quantum numbers not affecting electron energies, it is
convenient to choose all of them equal to zero: m1 = m2 = m3 = m4 = m5 = 0. 1s and 2p
pairs of states with equal quantum numbers distinguish by spin two different orientations
denoted, e.g., by + and− signs, respectively. So, in case of boron we need only two different
normalized spherical harmonics Yi(ϑ, ϕ) to represent the angular wave functions:

Y1(ϑ, ϕ) = Y2(θ, ϕ) = Y3(θ, ϕ) = Y4(θ, ϕ) =
1√
4π

(104)

and

Y5(ϑ, ϕ) =

√
3

4π
|cos θ| (105)

One can see that all of them are independent of polar angle ϕ and only 2p state angular
wave function depends on azimuthal angle θ.

Finally, there are found the semi-classical electron atomic orbitals ψi(
→
r ) for boron atom:

ψ1(
→
r ) =

√
1
π

(
Z1

rB

)3
exp

(
−Z1r

rB

)
(106)

ψ2(
→
r ) =

√
1
π

(
Z2

rB

)3
exp

(
−Z2r

rB

)
(107)

ψ3(
→
r ) =

1
2

√
3

2π

(
Z3

rB

)3

|cos θ|
(

1− Z3r
2rB

)
exp

(
−Z3r

2rB

)
(108)

ψ4(
→
r ) =

1
2

√
3

2π

(
Z4

rB

)3

|cos θ|
(

1− Z4r
2rB

)
exp

(
−Z4r

2rB

)
(109)

ψ5(
→
r ) =

1
2

√
1

2π

(
Z5

rB

)3

|cos θ|
(

Z5r
2rB

)
exp

(
−Z5r

2rB

)
(110)

Here Z1 = Z2 ≈ 4.69, Z3 = Z4 ≈ 2.76 and Z5 ≈ 1.48.

4.2. Semi-Classical Potential of Boron Atom

The full atomic radial potential of boron atom with nucleus charge number of Z = 5 in
sense of electron potential energy in atomic electric field is sum of nucleus’ Coulomb potential,

U5(r) = −
5e2

r
(111)
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and electron cloud potential UZ1Z2Z3Z4Z5(r) determined by the Poisson’s equation,

1
r2

d
dr

(
r2 dUZ1Z2Z3Z4Z5(r)

dr

)
= −e2

(
R2

1(r) + R2
2(r) + R2

3(r) + R2
4(r) + R2

5(r)
)

(112)

containing parameters Z1 = Z2 ≈ 4.69, Z3 = Z4 ≈ 2.76 and Z5 ≈ 1.48.
First of all, we should calculate the indefinite integrals:

Ik(r) =
∫

dr r2R2
k(r) =

n3
k

8

∫
dq q2

k Q2
k(qk) (113)

where integration variable r is transformed into dimensionless ones,

qk =
2Zkr
nkrB

(114)

At k = 1 we have n1 = 1 and q1 = 2Z1r
rB

and the integral I1(r) equals to,

I1(r) = I1(q1) =
1
8

∫
dq1q2

1Q2
1(q1) =

1
2

∫
dq1q2

1 exp(−q1) =

= − 1
2
(
2 + 2q1 + q2

1
)

exp(−q1) + C1 = −
(

1 + 2Z1r
rB

+
2Z2

1r2

r2
B

)
exp

(
− 2Z1r

rB

)
+ C1

(115)

Here C1 is a yet indefinite constant. Analogously, we find the I2(r) integral:

I2(r) = −
(

1 +
2Z2r

rB
+

2Z2
2r2

r2
B

)
exp

(
−2Z2r

rB

)
+ C2 (116)

with other indefinite constant C2. By introducing designations Z12 ≡ Z1 = Z2 ≈ 4.69 and
C12 ≡ C1 = C2, both of above integrals can be represented by the common formula:

I12(r) ≡ I1(r) = I2(r) = −
(

1 +
2Z12r

rB
+

2Z2
12r2

r2
B

)
exp

(
−2Z12r

rB

)
+ C12 (117)

At = 3, n3 = 2 and q3 = Z3r
rB

and the integral I3(r) is,

I3(r) = I3(q3) =
∫

dq3q2
3Q2

3(q3) =
1
8

∫
dq3q2

3(2− q3)
2 exp(−q3) =

= − 1
8
(
8 + 8q3 + 4q2

3 + q4
3
)

exp(−q3) + C3 = −
(

1 + Z3r
rB

+
Z2

3r2

2r2
B
+

Z4
3r4

8r4
B

)
exp

(
− Z3r

rB

)
+ C3

(118)

with an indefinite constant C3. Similarly, integral I4(r) is obtained in the form,

I4(r) = −
(

1 +
Z4r
rB

+
Z2

4r2

2r2
B

+
Z4

4r4

8r4
B

)
exp

(
−Z4r

rB

)
+ C4 (119)

containing an one more indefinite constant C4. As above, introducing designations
Z34 ≡ Z3 = Z4 ≈ 2.76 and C34 ≡ C3 = C4 allows expressing these two integrals by
the common formula:

I34(r) ≡ I3(r) = I4(r) = −
(

1 +
Z34r
rB

+
Z2

34r2

2r2
B

+
Z4

34r4

8r4
B

)
exp

(
−Z34r

rB

)
+ C34 (120)
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And finally, as at i = 5, n5 = 2 and q5 = Z5r
rB

the integral I5(r) equals to,

I5(r) = I5(q5) =
∫

dq3q2
5Q2

5(q5) =
1
24

∫
dq5q4

5 exp(−q5) =

= − 1
24
(
24 + 24q5 + 12q2

5 + 4q3
5 + q4

5
)

exp(−q5) + C5

= −
(

1 + Z5r
rB

+
Z2

5r2

2r2
B
+

Z3
5r3

6r3
B
+

Z4
5r4

24r4
B

)
exp

(
− Z5r

rB

)
+ C5

(121)

with an indefinite constant C5.
Now the Poisson’s equation takes form,

dUZ12Z34Z5 (r)
dr ≡ dUZ1Z2Z3Z4Z5 (r)

dr = − e2

r2 (I1(r) + I2(r) + I3(r) + I4(r) + I5(r))

= − e2

r2 (2I12(r) + 2I34(r) + I5(r)) == e2

r2 (

(
2 + 4Z12r

rB
+

4Z2
12r2

r2
B

)
exp

(
− 2Z12r

rB

)
+

(
2 + 2Z34r

rB
+

Z2
34r2

r2
B

+
Z4

34r4

4r4
B

)
exp

(
− Z34r

rB

)
+

(
1 + Z5r

rB
+

Z2
5r2

2r2
B
+

Z3
5r3

6r3
B
+

Z4
5r4

24r4
B

)
exp

(
− Z5r

rB

)
− C )

(122)

with C for an indefinite constant:

C = 2C12 + 2C34 + C5 (123)

Thus, electron cloud radial potential of boron atom in the semi-classical approach is
found as:

UZ12Z34Z5(r) =
Ce2

r +

+e2
∫ dr

r2 (

(
2 + 4Z12r

rB
+

4Z2
12r2

r2
B

)
exp

(
− 2Z12r

rB

)
+

(
2 + 2Z34r

rB
+

Z2
34r2

r2
B

+
Z4

34r4

4r4
B

)
exp

(
− Z34r

rB

)
+

(
1 + Z5r

rB
+

Z2
5r2

2r2
B
+

Z3
5r3

6r3
B
+

Z4
5r4

24r4
B

)
exp

(
− Z5r

rB

)
) =

= Ce2

r + e2
∫ dr

r2

(
2 + 4Z12r

rB
+

4Z2
12r2

r2
B

)
exp

(
− 2Z12r

rB

)
+

(
2 + 2Z34r

rB
+

Z2
34r2

r2
B

+
Z4

34r4

4r4
B

)
exp

(
− Z34r

rB

)
+

(
1 + Z5r

rB
+

Z2
5r2

2r2
B
+

Z3
5r3

6r3
B
+

Z4
5r4

24r4
B

)
exp

(
− Z5r

rB

)
)= Ce2

r + e2

rB
( J12(r) + J34(r) + J5(r) )

(124)

Here are introduced the indefinite integrals,

J12(r) = J12(p12) = 2Z12

∫
dp12

(
2

p2
12

+
2

p12
+ 1

)
exp(−p12) (125)

J34(r) = J34(p34) = Z34

∫
dp34

(
2

p2
34

+
2

p34
+ 1 +

p2
34
4

)
exp(−p34) (126)

J5(r) = J5(p5) = Z5

∫
dp5

(
1
p2

5
+

1
p5

+
1
2
+

p5

6
+

p2
5

24

)
exp(−p5) (127)

with dimensionless integration variables,

p12 =
2Z12r

rB
(128)

p34 =
Z34r
rB

(129)

p5 =
Z5r
rB

(130)

Integration leads to the results:∫
dp
(

2
p2 +

2
p
+ 1
)

exp(−p) = −
(

2
p
+ 1
)

exp(−p) + c12 (131)
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∫
dp
(

2
p2 +

2
p
+ 1 +

p2

4

)
exp(−p) = −

(
2
p
+

3
2
+

p
2
+

p2

4

)
exp(−p) + c34 (132)

∫
dp
(

1
p2 +

1
p
+

1
2
+

p
6
+

p2

24

)
exp(−p) = −

(
1
p
+

3
4
+

p
4
+

p2

24

)
exp(−p) + c5 (133)

where c12, c34 and c5 stand for indefinite constants. By introducing their combination,

c =
e2

rB
(2Z12c12 + Z34c34 + Z5c5) (134)

we acquire,

UZ12Z34Z5(r) =

= Ce2

r − e2(
(

2
r +

2Z12
rB

)
exp

(
− 2Z12r

rB

)
+

(
2
r +

3Z34
2rB

+
Z2

34r
2r2

B
+

Z3
34r2

4r3
B

)
exp

(
− Z34r

rB

)
+

(
1
r +

3Z5
4rB

+
Z2

5r
4r2

B
+

Z3
5r2

24r3
B

)
exp

(
− Z5r

rB

)
) + c

(135)

As is known, potential is determined up to an arbitrary constant term. Choice of
the bare nucleus potential in Coulomb form means that the electron cloud potential at
infinity, r → ∞ , also should tend to zero: UZ12Z34Z5(r)→ 0 . However, this is the case
when choosing,

c = 0 (136)

The full radial potential of boron atom at the origin r → 0 should tend to the bare
boron nucleus Coulomb potential − 5e2

r . In this regard, note that this boundary condition
of the Poisson equation is satisfied solely by electron cloud potential UZ12Z34Z5(r), if fix,

C = 0 (137)

Thus, full radial potential of boron atom in the semi-classical approach is found as,

U5 Z12Z34Z5(r) = −e2(
(

2
r +

2Z12
rB

)
exp

(
− 2Z12r

rB

)
+

(
2
r +

3Z34
2rB

+
Z2

34r
2r2

B
+

Z3
34r2

4r3
B

)
exp

(
− Z34r

rB

)
+

(
1
r +

3Z5
4rB

+
Z2

5r
4r2

B
+

Z3
5r2

24r3
B

)
exp

(
− Z5r

rB

)
)

(138)

4.3. Semi-Classical Evaluation of Lower Electron Term for Diboron Molecule

The positions of constituent atoms in diboron B2 molecule are convenient to describe
with respect to a coordinate system, the origin of which coincides with one of atoms and
the z-axis is directed along the B–B chemical bond with length of a (Figure 1).
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Semi-classical single-electron Hamiltonian of this system is,

Ĥ→
a
(
→
r ) = −}2∆

2m
+ U(

→
r ) + U→

a
(
→
r ) (139)
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where,
U(
→
r ) = U5 Z12Z34Z5(r) (140)

and
U→

a
(
→
r ) = U(

→
r →

a
) (141)

are the constituent boron atoms potentials and,

→
r →

a
=
→
r −→a (142)

Obviously, variable electron radius-vector
→
r displacement by the constant vector

→
a

does not change the differential operator ∆:

∆ = ∆→
a

(143)

So, introducing the constituent atoms Hamiltonians,

ĥ(
→
r ) = −}2∆

2m
+ U(

→
r ) (144)

and

ĥ→
a
(
→
r ) = −

}2∆→
a

2m
+ U→

a
(
→
r ) (145)

we can transform the molecular Hamiltonian in two more equivalent forms:

Ĥ→
a
(
→
r ) = ĥ(

→
r ) + U→

a
(
→
r ) (146)

and
Ĥ→

a
(
→
r ) = ĥ→

a
(
→
r ) + U(

→
r ) (147)

According to the law of cosines,

r→
a
=
√

r2 − 2ar cos θ + a2 (148)

while according to the law of sines,

sin θ→
a

sin θ
=

sin
(

π − θ→
a

)
sin θ

=
r

r→
a

(149)

and, consequently,

cos θ→
a
=

r cos θ − a
r→

a
=

r cos θ − a√
r2 − 2ar cos θ + a2

(150)

For simplicity, let us restrict ourselves with only higher valence-electron, i.e., 2p-
orbitals basis in semi-classical LCAO calculations:

ψ(
→
r ) = ψ5(

→
r ) =

1
2

√
1

2π

(
Z5

rB

)3

|cos θ|
(

Z5r
2rB

)
exp

(
−Z5r

2rB

)
(151)

and

ψ→
a

(→
r
)
= ψ5

(→
r →

a

)
= 1

2

√
1

2π

(
Z5
rB

)3∣∣∣cos θ→
a

∣∣∣( Z5r→
a

2rB

)
exp

(
−

Z5r→
a

2rB

)
=

= 1
2

√
1

2π

(
Z5
rB

)3 Z5|r cos θ−a|
2rB

exp
(
− Z5

√
r2−2ar cos θ+a2

2rB

) (152)
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These orbitals satisfy the following eigenvalue equations,

ĥ(
→
r )ψ(

→
r ) = E5ψ(

→
r ) (153)

and
ĥ→

a
(
→
r )ψ→

a
(
→
r ) = E5ψ→

a
(
→
r ) (154)

where E5 is the energy level corresponding 2p-state in boron atom:

E5

EB
= −

Z2
5

4
(155)

Furthermore, both orbitals are the real functions normalized according to the relations,∫
d3→r ψ2(

→
r ) =

∫
d3→r ψ2

→
a
(
→
r ) = 1 (156)

In formal analogy with well-known problem of hydrogen molecular ion H2
+ also

containing one electron and two identical sources of attractive radial electric field, we can
write down energy spectrum,

E±a =
C(a)± R(a)

1±O(a)
(157)

and corresponding molecular orbitals,

Ψ±→
a
(
→
r ) =

ψ(
→
r )± ψ→

a
(
→
r )√

2(1±O(a))
(158)

for the electron system under consideration.
Here are introduced Coulomb, resonance and overlap integrals:

C(a) =
∫

d3→r ψ(
→
r )Ĥ→

a
(
→
r )ψ(

→
r ) =

∫
d3→r ψ→

a
(
→
r )Ĥ→

a
(
→
r )ψ→

a
(
→
r ) = E5 +

∫
d3→r ψ2

→
a
(
→
r )U(

→
r ) ≡ E5 + c(a) (159)

R(a) =
∫

d3→r ψ(
→
r )Ĥ→

a
(
→
r )ψ→

a
(
→
r ) = E5O(a) +

∫
d3→r ψ(

→
r )U(

→
r )ψ→

a
(
→
r ) ≡ E5O(a) + r(a) (160)

O(a) =
∫

d3→r ψ(
→
r )ψ→

a
(
→
r ) (161)

respectively.
For their complexity, the reduced Coulomb c(a) and resonance r(a) integrals will not

be calculated here, but evaluated their combination,

r(a)− c(a)O(a) ≈ U(a)O(a) (162)

based on the constituent boron atom potential function value U(a) at center of another atom.
As for the overlap integral, for new variables of integration,

y = cos θ (163)

and
ρ =

Z5r
rB

(164)

it can is converted into the form:

O(a) =
∫ ∞

0 dr r2
∫ 2π

0 dϕ
∫ π

0 dθ sin θψ
(→

r
)

ψ→
a

(→
r
)
=

= 1
16

∫ ∞
0 dρ ρ2

∫ +1
−1 dy |ρy(ρy− α(a))| exp

(
− ρ+
√

ρ2−2α(a)ρy+α2(a)
2

)
≈ a2

4r2
5

∫ ∞
0 dρ ρ2 exp(−ρ) = a2

2r2
5

(165)
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Here are introduced the designations,

α(a) =
Z5a
rB

(166)

and
r5 =

4rB

Z5
(167)

where r5 is the semi-classical radius of the 2p-orbit. In the integrand we have approximated
y ∼ α(a)

2ρ since the main contribution to the overlap integral is made by the regions of
space whose points are approximately uniformly distant from the centers of atoms r ∼ r→

a
.

Emphasize that obtained in this way result approximates only numerical value of the
integral, not its parametric dependence.

It is expedient to convert above expression for energy levels into the form,

E±a = E5 +
c(a)± r(a)
1±O(a)

(168)

yielding the energy difference,

∆E±a = E−a − E+
a =

2(c(a)O(a)− r(a))
1−O2(a)

≈ −2U(a)O(a)
1−O2(a)

(169)

Table 3 shows results of our numerical estimations together with available on diboron
molecule experimental data: bond lengths a in ground and lowest excited molecular states
and term Te of corresponding transition [60].

Table 3. Semi-classical parameters of diboron B2 molecule outer shell electron states.

Orbital a, Å O(a) Ψ±→
a

−U(a), eV ∆E±a , eV Te, eV

Bonding 1.59 0.618 0.556ψ(
→
r ) + 0.556ψ→a (

→
r ) 1.82 3.64

3.79
Antibonding 1.63 0.650 1.195ψ(

→
r )− 1.195ψ→a (

→
r ) 1.62 3.65

Thus, semi-classically evaluated differences between electron energies in bonding and
antibonding 2p-states 3.64 and 3.65 eV in diboron molecule B2 are deviated by about 4%
from experimentally obtained term of 3.79 eV. Accuracy seems to be acceptable, if take into
account some simplifications utilized in addition to semi-classical approximation itself.

Underestimation of the term energy can be also related to the assumption that in
process of electron transition B–B bond length remains unchanged. More detailed cal-
culations are needed to find not only energy differences at fixed bond lengths, but also
electron energy levels for both bond lengths corresponding ground and first excited states
of the molecule. Then experimental term should be compared with difference between
energies calculated for antibonding orbital of excited molecule and bonding orbital in its
ground state.

5. Concluding Remarks

Thus, a method of semi-classical type is proposed to calculate condensed matter
electronic structure.

The novelties achieved in this approach can be summarized as follows:

- There is constructed the multi-electron atom semi-classical model, which is based on
three key assumptions: (1) atomic electrons are moving in stationery self-consistent
electric field; (2) intra-atomic electric field affecting electrons is spherically symmet-
ric; and (3) atoms are semi-classical electron systems in sense of Maslov criterion,
i.e., proximity of the semi-classical electron energy spectrum of atoms with exact one.
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- Electric field potential acting on atomic electron, in the vicinity of its semi-classical
orbit, is approximated by Coulomb potential with effective charge number of the
nucleus shielded by all other atomic electrons. Accordingly, semi-classical electron
orbitals are obtained in form of effective charge number dependent hydrogen-like
atomic orbitals, i.e., as analytic combination of special functions—spherical harmonics
and generalized Laguerre polynomials. The set of equations determining effective
charge numbers for Coulomb-like fields acting on atomic electrons is written down in
explicit form.

- On the basis of constituent atoms semi-classical electric fields, there is constructed
initial approximation to the semi-classical crystal potential.

- The LCAO method, which is looking for the condensed matter electronic subsystem
wave function as a linear combination of atom-like orbitals, is formulated with semi-
classical electron orbitals in constituent atoms.

- For the LCAO secular equation determining crystal electronic structure—electron
energy bands and electron density distribution in the crystal, there are found gen-
eral expressions of matrix elements (overlap and electron potential energy integrals)
between Bloch sums of semi-classical AOs.

Test calculations are conducted for simple electron systems such as boron atom B and
diboron molecule B2. The boron atom electronic structure is semi-classically parameterized
and on the basis of this in analytical form is constructed the semi-classical potential of
boron. In these specific cases, mean deviation of semi-classically evaluated electron energy
levels of atomic orbitals and energy difference of molecular orbitals from corresponding
atomic ionization potentials and molecular term are about a few percent.

As for the full practical realization of the introduced semi-classical method, it needs
some further studies:

- Effective nucleus charge numbers for semi-classical electron orbitals of stable neutral
atoms and atomic ions in their isolated states, as well as corresponding radii of electron
orbits and electron energy levels, should be computed and tabulated.

- The semi-classical matrix elements of the secular equation should be reduced to
linear combinations of a smaller number of one-, two-, and three-center overlap and
potential energy integrals expressed analytically in special functions.
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