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Abstract: The objective of this paper is to investigate the convergence of coupling-parameter
expansion-based solutions to the Ornstein–Zernike equation in liquid state theory. The analyti-
cally solved Baxter’s adhesive hard sphere model is analyzed first by using coupling-parameter
expansion. It was found that the expansion provides accurate approximations to solutions—including
the liquid-vapor phase diagram—in most parts of the phase plane. However, it fails to converge in the
region where the model has only complex solutions. Similar analysis and results are obtained using
analytical solutions within the mean spherical approximation for the hardcore Yukawa potential.
However, numerical results indicate that the expansion converges in all regions in this model. Next,
the convergence of the expansion is analyzed for the Lennard-Jones potential by using an accurate
density-dependent bridge function in the closure relation. Numerical results are presented which
show convergence of correlation functions, compressibility versus density profiles, etc., in the single
as well as two-phase regions. Computed liquid-vapor phase diagrams, using two independent
schemes employing the converged profiles, compare excellently with simulation data. The results
obtained for the generalized Lennard-Jones potential, with varying repulsive exponent, also compare
well with the simulation data. Solution-spaces and the bifurcation of the solutions of the Ornstein–
Zernike equation that are relevant to coupling-parameter expansion are also briefly discussed. All
of these results taken together establish the coupling-parameter expansion as a practical tool for
studying single component fluid phases modeled via general pair-potentials.

Keywords: Ornstein–Zernike equation; coupling-parameter expansion; thermodynamic perturbation
theory; adhesive hard-sphere model; liquid-vapor phase transition; generalized Lennard-Jones potential

1. Introduction

Liquid state theory deals with correlation functions, such as the pair-distribution func-
tion, to describe the structural and thermodynamics properties of fluids [1]. The correlation
functions also form the basis of the modern theory of phase transitions in fluid systems [2].
The Ornstein–Zernike equation (OZE), which relates the direct and total correlation func-
tions, is known to have excellent predictive power when supplemented with appropriate
closure relations. The latter, as the name suggests, relates the two correlation functions
and the interaction pair-potential. Although there are no exact closure relations, very
accurate relations available in the literature provide results which compare excellently with
those from computer simulations for homogeneous fluids [3]. There are also approaches
wherein empirically introduced parameters in closure relations are tuned so as to impose
thermodynamic consistency [4].

For realistic interaction potentials and accurate closure relations, the OZE is a highly
non-linear integral equation, which is numerically solved using Newton’s method [5].
This approach works quite effectively for the case of purely repulsive interaction poten-
tials [6]. However, a number of investigations show that the situation is quite different
below the liquid-vapor phase transition temperature, which arises whenever there is an
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attractive component in the potential. Even simple models show the occurrence of multiple
solutions and ‘no-real-solution-region’ in the liquid-vapor coexistence region [7]. This
feature is most clearly illustrated in Baxter’s analytical solution of the adhesive hard sphere
(AHS) model [8], which shows multiple solutions even with the diverging pair distribution
function. The model employs the Percus–Yevick (PY) closure for hard spheres with adhe-
sion. The proper solution branch from multiple solutions is easily selected so as to satisfy
the ideal gas limit and spatial convergence of the pair distribution function. However,
the model shows the emergence of a density domain in the two-phase region where all
solutions are complex. It also shows the absence of a true spinodal line on the vapor side
of the phase plane. Numerical methods also show similar features for the Lennard-Jones
(LJ) potential and several important closure relations [9]. However, by using a different
numerical technique with the PY closure, unique real solutions in the stable and metastable
regions and multiple real solutions in the unstable (spinodal) region are also obtained [10].
It is difficult to enumerate all solution branches with any numerical scheme. On the other
hand, analytical solutions within the mean spherical approximation (MSA) for the hardcore
Yukawa (HCY) potential show the occurrence of two real and two complex solutions in the
entire phase-plane. More specifically, it was found that there is a domain in the two-phase
region where all solutions are complex. The model shows proper spinodal-lines on the
vapor and liquid sides [11], as in van der Waals model and other mean field theories. Fortu-
nately, the ‘no-real-solution-region’ in all models occurs inside the liquid-vapor coexistence
dome, and careful strategies can be designed to map out the boundaries of the dome from
numerical solutions of OZE [12].

An alternate approach to obtain useful approximations to fluid correlation functions
is the thermodynamic perturbation theory (TPT) [13]. Here, the basic idea is to use the
known (or accurately calculable) solutions for a reference potential and to incorporate the
effects of perturbing potential via correction terms. Perturbation theories based purely on
the fluid free energy mostly use the hard sphere model as the reference system [14]. This
is because of the availability of simulation data on hard sphere systems in very accurate
parameter forms [13]. While first order correction terms are easily computed by using the
pair distribution function of the hard sphere system, three and four particle correlation
functions are required even for second order term. Thus, the conventional TPT is restricted
to low orders. The possibility of using OZE in higher order perturbation theory avoids the
requirement of complicated correlation functions; however, it requires the computation of
higher order derivative terms of the correlation functions [15]. A systematic development
of this approach, called coupling-parameter expansion (CPE), to arbitrary high orders has
provided good results for model systems in comparison to simulation data [16]. One of
the most appropriate divisions of molecular potentials to reference and perturbing parts
is based on the Weeks–Chandler–Andersen (WCA) prescription [17]. Recently, the CPE
that employs this division and also incorporating density-dependent bridge functions
is developed as a general method, making use of efficient Newton–Armijo and Krylov
space-based solvers [18]. It has also been applied to compute phase diagrams of metallic
fluids using effective pair-potentials derived from cohesive energy curves. However, there
remains an important issue related to convergence of the CPE.

The main objective of the paper is to obtain results on the convergence of CPE, in
particular, the two-phase region where OZE shows the occurrence of multiple and complex
solutions. In what follows, CPE is first described briefly. Subsequently, its convergence is
analyzed by using the analytical solutions for AHS and MSA-HCY systems. Important
conclusions on convergence are obtained in this manner. Then, numerical results are
obtained by using the general scheme for the LJ potential, which show convergence near
the critical isotherm, and even in the two-phase region. A phase diagram of the LJ system
is obtained via two independent schemes. Finally, the method is applied to generate the
phase-diagrams for the general LJ(n,6) potentials and compared with simulation data.
Important issues related to solution-spaces and bifurcation of solutions of OZE, which
are relevant to coupling-parameter expansion, are also briefly discussed. The overall
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conclusion emerging from this analysis is that CPE is a practical approach for obtaining
thermodynamic properties of one-component fluids interacting via general potentials.
Thermodynamic models of fluid properties, particularly in the two-phase region, are
essential in applications involving equations of state of liquid metals [19,20], which are
important in high pressure physics. It is expected that CPE will find good use in generating
the equations of state data [21] in the fluid domain.

2. Coupling-Parameter Expansion—General

The first step in introducing the general CPE [18] is to divide the inter-particle potential
U(r) into a reference (purely repulsive) and perturbation (purely attractive) components
employing the WCA prescription [17]. These components are given by the following.

U0(r) = U(r)−Umin , r ≤ rmin ,

= 0 , r > rmin ,

Ua(r) = Umin , r ≤ rmin ,

= U(r) , r > rmin . (1)

Here, Umin denotes the potential-minimum at position rmin. The purely repulsive part
U0 determines the structure of dense liquids while the attractive perturbing component
Ua gives rise to cohesion and phase changes [17]. When the coupling-parameter λ is
introduced into the potential, it reads as U(r, λ) = U0(r) + λUa(r). The magnitude of λ,
which varies over 0 ≤ λ ≤ 1, determines the strength of the perturbation; thus, U(r, 0)
is the reference part and U(r, 1) the full potential. Now, all correlation functions which
determine the structure and thermodynamic properties of the fluid are also to be considered
as functions of λ. In TPT, these functions are expanded as Taylor’s series in λ about their
reference part. For example, the pair distribution function g(r, λ) is expanded as follows.

g(r, λ) =
∞

∑
n=0

1
n!

λngn(r) . (2)

Here, g0(r) is the reference system’s pair distribution function and gn(r) (1 ≤ n < ∞)
denotes the nth derivatives of g(r, λ) at λ = 0. Similarly, Taylor’s series expansions are also
assumed for other correlation functions: the direct correlation function c(r, λ), the total correlation
function h(r, λ) = g(r, λ)− 1, and the indirect correlation function y(r, λ) = h(r, λ)− c(r, λ).
The subscript 0 in these functions denotes their corresponding functions for the reference system.
The basic assumption in CPE is that these expansions converge and the series can be truncated at
a suitable order. Thus, the main idea is that the contributions from the perturbing part of potential
are accurately accounted for via the derivatives such as gn(r). While traditional perturbation
theory is limited to the first two orders [13], the general formulation of CPE can incorporate quite
higher order derivatives by taking recourse to the OZE.

The OZE defines the consistency relation between the short ranged direct correlation
function c(r, λ) and the long ranged total correlation function h(r, λ). Similar to the pair-
potential, both these functions tend to zero for large r. For one-component systems modeled
using spherically symmetric potentials, the OZE is written as follows:

h(r, λ) = c(r, λ) + ρ
∫

c(|~r−~r′|, λ) h(r′, λ) d~r′ , (3)

where ρ is the number density of fluid particles. This is one equation in two unknowns,
and it needs to be supplemented with a closure relation involving h(r, λ) and c(r, λ) and
the pair-potential U(r, λ). An exact closure is unfeasible; however, several approximate
forms are available [1]. All the closures are generally expressed concisely in terms of a
‘bridge function’ B(r, λ) in the following form:

c(r, λ) = exp[−βU(r, λ) + y(r, λ) + B(r, λ)]− y(r, λ)− 1 , (4)
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where β = (kBT)−1, kB is Boltzmann’s constant, and T denotes absolute temperature. Ap-
proximate forms of B(r, λ) generate different closures; for instance, B(r, λ) = ln[1+ y(r, λ)]−
y(r, λ) yields the PY closure while the hypernetted-chain closure (HNC) is obtained with
B(r, λ) = 0. A bridge function applicable to general potentials [22] is as follows:

B(r, λ) =
√

1 + 2 ω(r, λ)−ω(r, λ)− 1 ,

ω(r, λ) = y(r, λ)− λρ∗βUa(r) , (5)

which will be used throughout the present paper. Here and throughput the paper, ρ∗ = ρσ3

is a dimensionless number density. This function has been shown to provide accurate
thermodynamic properties for hard sphere as well as LJ systems .

2.1. Method of Solution

The solution of integral equation Equation (3) with a displacement kernel in Fourier
space is easily expressed as follows:

ȳ(k, λ) =
ρc̄2(k, λ)

1− ρc̄(k, λ)
, (6)

where the Fourier transform (denoted with a ‘bar’ throughout) and its inverse, for any
function q(r), are defined as the following.

k q̄(k) = 4π

∞∫
0

sin(kr) r q(r) dr ,

r q(r) = (2π2)−1
∞∫

0

sin(kr) k q̄(k) dk . (7)

The algebraic equations Equations (4) and (6), although the first is defined in r-space
and the second in k-space, define a closed non-linear system within the integral equation
formalism. Different implementations of Newton’s method to solve this system are now
well developed [23]. However, they all have to deal with the problems mentioned earlier
related to the ‘no-real-solution-region’ in the two-phase region.

In CPE, the Newton–Armijo solver is employed only for determining correlation func-
tions of reference part. Starting with an initial guess y0 (hence, c0, c̄0, and ȳ0), a correction
∆y is obtained by solving the following linear integral equation [18].

∆ȳ = ρ
2c̄0 + ȳ0

1− ρc̄0

[
(h0 + g0Λ0)∆y

]
+
[
ρ

c̄2
0

1− ρc̄0
− ȳ0

]
. (8)

Here, Λ0 = [1 + 2y0]
−1/2 − 1 is the derivative ∂B/∂y of the bridge function B(r, λ),

defined in Equation (5), at λ = 0. Fourier transforms and inverses are computed by using
FFT (fast-Fourier-transform) algorithms. The linear integral equation implicitly defined in
Equation (8) is best solved with Krylov space-based methods such as CGNR (Conjugate
Gradient to Normal equations to minimize Residual) or GMRES (Generalized Minimum
Residual). This is because it is possible to perform matrix-vector products via two Fourier
transform operations. The Armijo scheme is used to limit the correction ∆ȳ to ξ∆ȳ with
0 < ξ < 1 in case error reduction does not occur at any iteration.

The derivatives of correlation functions are obtained from the solutions of the system
of lineal integral equations.

ȳn = [s̄0
2 − 1]

[
(h0 + g0Λ0)yn

]
+ [s̄0

2 − 1]w̄n + q̄n , n ≥ 1 . (9)
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Here, s̄0 = [1− ρc̄0]
−1 denotes the structure factor of the reference system. By denoting

the derivatives of the bridge function also as Bn = Λ0yn + B∗n, the source terms, viz., wn
and q̄n, are given by the following.

wn = −g0βUaδn 1 + g0B∗n +
n−1

∑
m=1

Cn−1
m [−βUaδn−m, 1 + yn−m + Bn−m] [ym + cm] , n ≥ 1 ,

q̄n = s̄0

n−1

∑
m=1

Cn
m c̄n−m ρ[ȳm + c̄m] , n ≥ 1. (10)

Here, Cn
m denotes the binomial coefficient. Note that the terms on right side involve

only lower order derivatives, and, hence, are known at the nth order. Furthermore, the lin-
ear operator in Equation (9) (for all orders) is identical to that in Equation (8). Finally,
the derivatives B∗n are expressed as follows.

B∗n = −Λ0ρ∗βUaδn 1 − (1 + Λ0)
n−2

∑
m=0

Cn−1
m Om+1On−1−m , n ≥ 1 ,

On = (1 + Λ0)yn + B∗n , n ≥ 1. (11)

As the summation contributes only for n ≥ 2, this equation provides B∗n explicitly at
all orders. Derivations of these expressions are given in detail in the recent formulation
of CPE mentioned earlier [18]. Concise algorithms for implementing the complete CPE
method are also discussed there. (Note that the line l = l in Algorithm A5 provided in this
reference should be corrected as l = 2 l.)

2.2. Thermodynamic Functions

Once the derivatives are determined to the required order, explicit expressions for
the correlation functions follow as functions of λ. Then, the series for g(r, λ) provides an
explicit expression for free energy F per particle [24].

βF(ρ, T) = βF0(ρ, T) +
ρ

2

∫
d~r

1∫
0

dλ βUa(r) g(r, λ) . (12)

Here, F0 is free energy per particle of the reference system. With the series expansion
for g(r, λ), the integral term over λ is evaluated as ∑∞

n=0 gn/(n + 1)!. By using the closure
relation, which is also expressed as g(r, λ) = exp[−βU(r, λ) + y(r, λ) + B(r, λ)], the above
expression is recast as follows [24].

βF(ρ, T) = βF0(ρ, T) +
ρ

2

∫
d~r
[
− ga(r, 1) + g(r, 1)(ya(r, 1) + Ba(r, 1))

]
− ρ

2

∫
d~r

1∫
0

dλ [ya(r, λ) + Ba(r, λ)] [∂ ga(r, λ)/∂λ] . (13)

Here, the subscript in ga(r, λ) (and similarly other functions) denotes the excess
contribution over that of the reference potential, i.e., g(r, λ) ≡ g0(r) + ga(r, λ). This form
does not involve the attractive potential explicitly. Again, the integral term over λ is
obtained as ∑∞

n=1 gn/(n− 1)! ∑∞
m=1 (ym + Bm)/[(n + m)m!]. Once F(ρ, T) is determined,

pressure βP = ρ2(∂F/∂ρ)T and chemical potential βµ = βF + βP/ρ are readily computed.
It is to be noted that this approach does not require integration over density or temperature.
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The thermodynamic properties are also be obtained via the compressibility route.
The (reduced) inverse compressibility χ−1 is provided in terms of a direct correlation
function as follows.

χ−1 = β(∂P/∂ρ)T = 1− 4πρ

∞∫
0

c(r, 1) r2dr . (14)

As the function c(r, 1) is short ranged, χ−1 is the most appropriate response function
for computing pressure on an isotherm via integration with respect to ρ, whenever possible.
Tje chemical potential µ is also determined by integrating the thermodynamic equation
ρ(∂µ/∂ρ)T = (∂P/∂ρ)T , as follows.

βµ = ln(ρ) + 3 ln(λth) +

ρ∫
0

dρ

ρ
(χ−1 − 1). (15)

The first two terms, where λth = h/
√
(2πmkBT) is the thermal wavelength, are the

ideal gas contributions. This approach is always useful for computing βF0 = βµ0 − βP0/ρ
for the reference system and is employed in this paper. There are also explicit expressions
for virial-pressure and chemical potential [12], involving g(r, 1), c(r, 1), and B(r, 1).

Having outlined the general algorithm for CPE, numerical investigations of con-
vergence of the expansion for specific potentials are readily carried out. Before that,
this analysis is conducted using analytical solutions of two model problems in the next
two sections.

3. Coupling Parameter Expansion—AHS Model

Baxter’s AHS model deals with a system of hard spheres (of diameter σ) with an
infinitely narrow attractive square well potential (of width ∆) representing surface ad-
hesion [8]. The well depth is taken as βφ = ln[τ∆/(σ + ∆)], where the parameter τ
represents an effective temperature, being zero at zero temperature and large at high
temperatures. In the limit ∆ → 0, this particular form reduces Mayer’s function to the
form f (r) = −1 + (σ/12τ)δ(r− σ), where −1 represents the hard sphere contribution. By
using virial expansion, it is also shown that the total correlation function reduces to
h(r) = −1 + (Γ σ/12τ) δ(r− σ) for the range 0 ≤ r ≤ σ, where Γ is a parameter to be
determined employing OZE and PY closure. Baxter showed that Γ∗ = η (1−η) Γ satisfies
the following quadratic equation:

1
12

(Γ∗)2 − [τ(1− η) + η]Γ∗ + η(1 + η/2) = 0 , (16)

where η = πρσ3/6 is the volume fraction of particles. This equation shows that the solu-
tions are real in the entire range 0 < η < 1 when τ > τc = (2−

√
2)/6 ≈ 0.09763. However,

they turn complex for a range η1(τ) < η < η2(τ) around ηc = (3/
√

2− 2) ≈ 0.1213 when
τ < τc. These boundaries are determined from the condition of vanishing discriminant
in Equation (16), viz., [τ(1− η) + η]2 − (η/3)(1 + η/2) = 0. Thus the model predicts a
gas-liquid phase transition with critical parameters τc and ηc. The proper root Γ∗ out of
the two solutions that satisfy the ideal gas limit (for small η) is the negative root given by
the following.

Γ∗ = 6[τ(1− η) + η]− 6[(τ(1− η) + η)2 − (η/3)(1 + η/2)]1/2 . (17)

The analytical expression for pressure [8] that is obtained by integrating compressibil-
ity for τ > τc, and analytically continued to τ < τc is given by the following.

β
P
ρ
=

1 + η + η2

(1− η)3 −
Γ∗(2 + η)

2(1− η)3 +
Γ∗3

36η(1− η)3 . (18)



Condens. Matter 2021, 6, 29 7 of 20

Here, the first term is the compressibility-pressure for hard spheres within the PY
closure. Other terms involving Γ∗ are the contributions of surface adhesion. Similar
expressions for chemical potential is also derived [25], and these expressions facilitate the
determination of phase diagram [25] by using thermodynamic conditions. It is nice to note
that the ‘no-real-solution-region’, where Γ∗ and, hence, P are undefined, is contained inside
the co-existence region (see below). What is equally important is that the model shows
the emergence of multiple solutions in all regions and a ‘no-real-solution-region’ in the
two-phase region.

The equations of the AHS model are also derived as the lowest order solution to
Baxter’s factorized form of OZE [26]. This analysis employed ε = ∆/(σ + ∆) as a pertur-
bation parameter [27] and directly showed that Equation (16) is accurate to O(ε) and the
parameters Γ and τ are related to square well parameters as the following:

τ = (12 ε)−1 exp(β u0) , Γ = 12
1∫

1−ε

g[(σ + ∆) x] x dx , (19)

where u0 < 0 is the depth of the potential. Now, all results of the model can be discussed
in the usual phase-plane as the parameter τ is explicitly related to T.

The CPE is introduced by replacing the potential depth u0 with λu0. Then, the func-
tions τ(λ) and Γ∗(λ), which is directly related to τ(λ), are expanded in a power series as
the following.

τ(λ) =
∞

∑
n=0

λn τn , Γ∗(λ) =
∞

∑
n=0

λn Γ∗n . (20)

The series for τ(λ) is uniformly convergent with expansion coefficients
τn = (12ε n!)−1[βu0]

n for n ≥ 0. Substitution from Equations (20) into the quadratic equation,
Equation (16), yields the following expansion coefficients Γ∗n:

Γ∗n =
ωn

[τ0(1− η)− (1/6)Γ∗0 + η]
, n ≥ 1 , (21)

ωn =
1
12

n−1

∑
m=1

Γ∗m Γ∗n−m − (1− η)
n

∑
m=1

τm Γ∗n−m , n ≥ 1 ,

where Γ∗0 satisfies an equation similar to Equation (16) but with τ0 in place of τ.

1
12

(Γ∗0)
2 − [τ0(1− η) + η]Γ∗0 + η(1 + η/2) = 0 . (22)

This equation is similar to the OZE for reference potential while Equation (21) is
analogous to the solution of the system of linear integral equations defined in Equation (9).
The parameters τ0 and Γ∗0 correspond to the AHS model for depth u0 = 0 but finite and
small ε. This is taken as the reference system in lieu of the hard sphere system, because
in order to obtain the hard sphere limit τ0 → ∞, it will be necessary to take the limit
ε→ 0. The coefficients Γ∗n obtained up to sufficient order provides Γ∗(1), which yields all
thermodynamic properties within CPE. The series expansion for Γ∗(λ) is also derivable
from Equation (17). However, by writing the second square bracket term in this expression
as
√

1− x, where x = (η/3)(1 + η/2)/(τ(1− η) + η)2, this equation shows that the series
fails to converge for η1(τ) < η < η2(τ) when τ < τc, that is, within the ‘no-real-solution-
region’.

The convergence properties just discussed are also elaborated in Table 1, where the
ratio of the expansion coefficients |Γ∗n/Γ∗n−1| versus n are given at three volume fractions for
the subcritical temperature T∗ = 0.45 (see below). The ‘no-real-solution-region’ boundaries
for this temperature are η1 = 0.06453 and η2 = 0.1912. The volume fractions η = 0.05 and
0.25 lie outside this region while η = 0.15 lies inside. First and third columns illustrate
convergence of CPE series, whereas the second column indicates a non-convergent series
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for λ = 1. Thus, the real values of Γ∗(1) obtained in the ‘no-real-solution-region’ at any
order of truncation do not correspond to convergent series. However, this is not a serious
issue, as will be discussed below.

Table 1. Convergence of CPE coefficients in AHS model.

AHS Model Γ∗
n /Γ∗

n−1 T∗ = 0.45

n η = 0.05 η = 0.15 η = 0.25

1 2.11588 1.90467 1.69443
6 0.769139 1.93929 3.16261
11 0.823916 1.00009 0.764407
16 0.881579 0.948853 0.716068
21 0.90604 0.959392 0.842613
26 0.918982 0.971881 0.878875
31 0.927508 0.981006 0.880897
36 0.933696 0.987649 0.884413
41 0.938408 0.992688 0.889093
46 0.942117 0.996646 0.892829
51 0.945112 0.999839 0.895698

The variation of Γ∗(1) versus η is compared with the exact solution (see Equation (17))
in Figure 1A (upper part) for two values of reduced temperature T∗ = kBT/u0. These
results correspond to the perturbation (width) parameter ε = 0.1, which yields the critical
temperature T∗c = 0.4663 (τc = 0.09761). Graph of Γ∗(1) versus η obtained using CPE
of 20th order for T∗ = 0.5 (τ = 0.1128) (curve-1) and exact results (symbols) compare
excellently, and this case corresponds to T∗ > T∗c . Similar comparisons are found even
at the 10th order. In the case of T∗ = 0.4 (τ = 0.06840), the range η1 < η < η2 is the
‘no-real-solution-region’. Again, Γ∗(1) versus η from CPE of 20th order (curve-2) and the
exact results (symbols) are compared. There are deviations between the two sets of results
in the neighborhood of η1 and η2, otherwise they agree quite well. The portion of graph for
η1 < η < η2 obtained via CPE does not correspond to a convergent series. A subcritical
isotherm for T∗ = 0.45 (τ = 0.09031) obtained via the compressibility route in CPE (curve-
1) and the exact results (symbols) are compared in the lower part. Excellent agreement is
found once again between the two sets of results, except in the ‘no-real-solution-region’
(blank portion). Similar agreement is obtained for chemical potential as well. Next,
the phase diagram of AHS model is computed by using the analytical expressions for P
and µ in the thermodynamic conditions, viz., PL = PG and µL = µG, where the subscripts L
and G, respectively, denote the liquid and gaseous branches. The exact results for the phase
diagram (blue line and symbols) are compared in Figure 1B with those obtained by using
CPE of 50th order (curve-2) and 20th order (curve-3). These agree with one another, except
for when it is close to the critical point. Critical temperature T∗c obtained at these orders
are 0.4629 and 0.4525, respectively. The ‘no-real-solution-region’, lying within the dashed
lines (curve-1), is also shown. These comparisons show that CPE provides useful results
because the ‘no-real-solution-region’ where the expansion fails to converge lies completely
inside the co-existence dome.
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Figure 1. (A) Upper part shows Γ∗(1) versus η from CPE of 20th order for T∗ = 0.5 (curve-1), T∗ = 0.4 (curve-2), and exact results
(symbols). The range η1 < η < η2 is the ‘no-real-solution-region’ for T∗ = 0.4. Lower part of the figure for T∗ = 0.45 shows
compressibility pressure P versus η, from CPE of 20th order (curve-1), and exact results (symbols). The blank portion is the ‘no-real-
solution-region’. (B) The exact results for phase diagram of AHS model (blue line and symbols) are compared with those obtained
using a CPE of 50th order (curve-2) and 20th order (curve-3). The ‘no-real-solution-region’, lying within the dashed lines (curve-1), is
also shown.

4. Coupling Parameter Expansion—MSA Model

The system of hard spheres (of diameter σ) attached with the attractive Yukawa
potential is analytically solved within the MSA closure [28]. The Yukawa part, defined over
the range r ≥ σ, is expressed as (−Jσ/x) exp[−ζ(r/σ− 1)], where ζ and J are range and
depth parameters, respectively. Analytical results of the model are useful for analyzing the
convergence properties of CPE. Explicit expressions for all thermodynamic quantities exist
in terms of a parameter Φ; for instance, the reduced compressibility is obtained as follows:

χ−1 = (1− η)−4
(

1 + 2η + Φ 12ηζ−1eζ [(1 + 2η − 6η/ζ)(D − 1−De−ζ(1 + ζ)) +D3ηζe−ζ ]
)2

, (23)

where D is an explicit function of ζ and volume fraction η. Similar expressions are also
derived for pressure computed via the virial and energy routes [11]. The central parameter
Φ of the model satisfies a fourth degree polynomial equation of the following:

6η2Φ4 − XΦ3 + 12ηKΦ2 − KYΦ + K2 = 0 , (24)

where K = βJ and X and Y are specified functions of ζ and η. Note that this model
has more solutions compared to the AHS model. This equation has two real and two
complex solutions in the entire range of η for K (proportional to T−1) lower than a critical
value K∗(ζ). Out of the two real solutions, the proper one must approach the ideal gas
limit for small η and should also vanish as K → 0. For the region K > K∗(ζ), there is a
‘no-real-solution-region’ for a range η1(ζ) < η < η2(ζ), because all solutions turn complex.
Thus, the results of the model, although there are more solutions, are similar to those of
the AHS model. However, an important difference is that the spinodal lines, which now
occur on both the gaseous and liquid branches, encompass the ‘no-real-solution-region’.
Thus, the occurrence of the latter may not be of much consequence in determining the
phase diagram.

The CPE is introduced in the model by replacing K with λK. Then the reference
solution (for λ = 0) is that of hard spheres within the PY closure. As the proper real
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solution must approach zero as λ → 0, the series expansion for Φ(λ) must start at first
order and is given by the following.

Φ(λ) =
∞

∑
n=1

λn φn . (25)

Recursion relations for the expansion coefficients φn readily follow on substituting
this series in Equation (24):

φ1 =
K
Y

, φ2 =
12ηKψ2,2 − Xψ3,3

KY
, φn =

12ηKψ2,n − Xψ3,n+1 + 6η2ψ4,n+1

KY
, n ≥ 3 , (26)

where the additional coefficients ψ2,n, ψ3,n, and ψ4,n are obtained as the following.

ψ2,n =
n−1

∑
m=1

φm φn−m , n ≥ 2 ; ψ3,n =
n−2

∑
m=1

φm ψ2,n−m , n ≥ 3 ; ψ4,n =
n−3

∑
m=1

φm ψ3,n−m , n ≥ 4 . (27)

After truncating the expansion at a suitable order, Φ(1) is to be substituted in the
analytical expressions [11] to obtain the results within CPE. Note that CPE generates real
solutions for all values of η and K.

The convergence properties of CPE in the MSA-HCY model is different from that of
the AHS model. The ratios of the expansion coefficients |φn/φn−1| versus n are given in
Table 2 for three volume fractions for K = 1.2, which is in the subcritical range (see below).
Volume fraction η1 = 0.1 and 0.3 lie outside the ‘no-real-solution-region’, while η = 0.2
lies inside (see upper portion in Figure 2A). However, the data in this table illustrates
convergence of CPE for all three η. Similar results are obtained for K = 1.4 as well. Thus,
CPE converges even the ‘no-real solution-region’ in this model.

Table 2. Convergence of CPE coefficients in the MSA-HCY model.

MSA-HCY Model φn/φn−1 K = 1.2

n η = 0.1 η = 0.2 η = 0.3

2 0.203451 0.233279 0.187291
6 0.568111 0.612217 0.454637
11 0.648161 0.689816 0.499086
16 0.678529 0.719187 0.51365
21 0.694581 0.734819 0.520534
26 0.704522 0.744575 0.524387
31 0.711287 0.751261 0.526771
36 0.71619 0.756136 0.528354
41 0.719906 0.75985 0.529465
46 0.722821 0.762777 0.53029
51 0.725169 0.765143 0.530938

The series solution Φ(1) versus η is compared with exact solutions, which are simply
the roots of Equation (24), for two values of the parameter K in Figure 2A. These results
are for the range parameter ζ = 2, which yields the critical value K∗ = 1.1354. The lower
part (for K = 0.8) shows Φ(1), obtained from CPE of the 20th order (curve-1) and exact
results (curve-2). The latter is the real root of Equation (24) discussed earlier. The two sets
of results agree excellently, however, note that this case is in the region of K with two real
solutions. The series solution converges quite fast, in fact, low order expansions (say 10th
order) also yield similar comparisons. In the upper part of the figure (for K = 1.2 > K∗),
the range η1 < η < η2 is the ‘no-real-solution-region’. Graphs show Φ(1), obtained
from CPE of 20th order (curve-1), and real (curve-2) and imaginary (curve-3) parts of
the exact root. Note that CPE does not yield the complex solutions, and there are also
significant deviations outside the ‘no-real-solution-region’. However, data in Table 2 have
demonstrated convergence of CPE in all regions; thus, the graph for Φ(1) in the upper part
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also corresponds to a convergent series. Exact results for (reduced) inverse compressibility
χ−1 (curve-2), obtained using analytical expressions [11], are compared in Figure 2B with
those obtained by using CPE of 20th order (curve-1). The inset figure, which is for K = 1.4,
shows that χ−1within CPE is non-negative in the entire range of η. Note that exact values
of χ−1 are complex in the ‘no-real-solution-region’.
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Figure 2. (A) Lower part (for K = 0.8, ζ = 2) shows Φ(1) versus η obtained from CPE of 20th order (curve-1) and the exact results
(curve-2). In the upper part (for K = 1.2, ζ = 2), the range η1 < η < η2 is ‘no-real-solution-region, as K∗ = 1.1354. Graphs show Φ(1)
versus η obtained from CPE of 20th order (curve-1) and real (curve-2) and imaginary (curve-3) parts of the exact results. (B) Graphs
show (reduced) inverse compressibility χ−1 versus η obtained from CPE (curve-1) and exact results [11] (curve-2) for K = 1.2. The inset
figure is similar, but it is for K = 1.4.

The results presented above for the AHS and MSA-HCY models show several features:
(i) The CPE converges to exact results quite well in regions of phase plane where there are
real solutions; (ii) the expansion fails to converge in ‘no-real-solution region’ of the AHS
model, however, it converges even in that region for the MSA-HCY model; (iii) CPE is
useful to derive the phase diagram by using thermodynamic conditions if it totally contains
(as shown in the AHS model) the ‘no-real-solution region’.

5. Coupling Parameter Expansion—LJ Potential

This section presents numerical results for the more realistic LJ potential:
U(r) = 4ε[(σ/r)12 − (σ/r)6], where ε and σ are, respectively, the depth and range pa-
rameters. The density-dependent bridge function given in Equation (5) defines the closure
relation for OZE. This is important because the predictive power of OZE depends solely on
the accuracy of the bridge function. In obtaining numerical results, CPE (outlined earlier)
is truncated at the 7th order, i.e., expansion including terms up to g6 are used throughout
the analysis. Reduced temperature T∗ = kBT/ε and density ρ∗ = ρσ3 are the variables
used, and the argument λ = 1 is omitted from different expressions.

The CPE around λ = 0 provides real solutions throughout the phase plane if the
series expansion converges. In the case of AHS and MSA models, as discussed in previous
sections, convergence is clearly evident above the gas-liquid phase transition temperature.
However, for the more realistic model considered here, convergence can only be tested
numerically at somewhat lower orders of expansions. The LJ model (and bridge function)
is also analyzed by applying Newton’s method to the full potential [9], where provisions
to search for complex solutions are also builtin. This analysis reveals features similar to
those found in AHS model, i.e., occurrence of a ‘no-real-solution-line’ on the gaseous side
of an isotherm below critical temperate. Compressiblility is found to be finite but complex
along this line, but the constant-volume heat capacity diverges. Although there is no
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true spinodal line on the gaseous side, the same analysis has found one to the left of the
co-existence line on the liquid side. The emergence of complex isothermal compressibility
within the HNC closure is also presented as a ‘fold-bifurcation’ [29] on isotherms for
sub-critical temperatures. In fact, this feature is observed with several other closures [30],
including the one considered here. However, it appears that the HNC closure does not
yield a true critical point because the isothermal compressibility is finite on both boundaries
(on gaseous and liquid sides) of the ‘no-real-solution region’ [4,31]. However, the series
expansion in CPE about the repulsive component of the potential will not pick up these
complex solutions. Moreover, as shown below, CPE is useful for computing the phase
diagram, either via the compressibility or the free energy routes. The latter does not require
data corresponding to phase points in the spinodal region.

First of all, it is necessary to check the accuracy of modeling the reference system
resulting from WCA prescription. To that end, the pair distribution function g0(r/σ) versus
scaled distance (r/σ) (curve-1), which corresponds to T∗ = 0.7290 and ρ∗ = 0.8446, is
compared against molecular dynamics simulation data (symbols) [32] in Figure 3A. Similar
comparisons are shown in Figure 3B for the case T∗ = 1.095 and ρ∗ = 0.6257. Excellent
agreement found in peak heights and variations in the entire range of (r/σ) demonstrates
the accuracy of the bridge function for the repulsive WCA potential. The compressibility
factor Z = βP/ρ versus the volume fraction, η = πρ∗/6 is compared against simulation
data (symbols) [33] in the inset figure for two temperatures: T∗ = 0.75 (top curve) and
T∗ = 2.0 (bottom curve). Here, the agreement is also quite good, although slight differences
are noted at higher η for the low temperature case. All these results, obtained via the
compressibility route, are found to be superior than those from the virial route.
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Figure 3. (A) Pair distribution function g0(r/σ) versus scaled distance (r/σ) (curve-1) for the reference system of LJ potential, as per the
WCA prescription (see text), at reduced temperature T∗ = 0.7290 and density ρ∗ = 0.8446. Symbols are molecular dynamics simulation
results [32]. (B) Similar results for the parameters T∗ = 1.095 and density ρ∗ = 0.6257. The inset figure shows compressibility factor
Z = βP/ρ versus volume fraction η = πρ∗/6 for reduced temperature T∗ = 0.75 (top curve) and T∗ = 2.0 (bottom curve). Symbols
are simulation results [33].

Next, the convergence of the correlation functions c(r/σ) and g(r/σ) is analyzed in
Figure 4 for single phase region and Figure 5 for two phase region. The former figure
corresponds to the phase point ρ∗ = 0.3 and T∗ = 1.45, which is above the critical
temperature, while the latter one is for ρ∗ = 0.3 and T∗ = 1.15 lying within the the spinodal
region (see below). In both figures, the left and right panels (A and B) correspond to
c(r/σ) and g(r/σ), respectively. The functions c(r/σ) (curve-c), the reference function
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c0(r/σ) (curve-0), and six successive derivative terms cn(r/σ)/n! (curve-1 to curve-6)
are shown in both left panels. Similarly, the two right panels show g(r/σ) (curve-g),
the reference function g0(r/σ) (curve-0), and six successive derivative terms gn(r/σ)/n!
(curve-1 to curve-6).
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Figure 4. Convergence of direct correlation function c(r/σ) and pair distribution function g(r/σ) for the LJ system at the phase
point ρ∗ = 0.3 and T∗ = 1.45, which is above the critical temperature. (A) Graphs show c(r/σ) (curve-c), reference function c0(r/σ)

(curve-0), and successive derivative terms cn(r/σ)/n! (curve-1 to curve-6). (B) Similarly, the graphs show g(r) (curve-g), reference
function g0(r/σ) (curve-0), and derivative terms gn(r/σ)/n! (curve-1 to curve-6) for the same phase point.
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Figure 5. Convergence of direct correlation function c(r/σ) and pair distribution function g(r/σ) for the LJ system at the phase point
ρ∗ = 0.3 and T∗ = 1.15, which is in the spinodal region. (A) Graphs show c(r/σ) (curve-c), reference function c0(r/σ) (curve-0),
and successive derivative terms cn(r/σ)/n! (curve-1 to curve-6). (B) Similarly, the graphs show g(r/σ) (curve-g), reference function
g0(r/σ) (curve-0), and derivative terms gn(r/σ)/n! (curve-1 to curve-6) for the same phase point.

Convergence to well defined functions, shown as c(r/σ) and g(r/σ), although based
on numerical results, is evident at both phase points. Moreover, it is the first order term
that contributes to the main correction. Note that the reference function c0(r/σ) is negative
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at both phase points; however, the graphs of c(r/σ) for r > σ have positive parts, which
arise due to attractive interactions. This positive component is more pronounced at the
spinodal region (Figure 5A), and it leads to negative compressibility at that point (see
below). The reference functions g0(r/σ) have only small first peaks at both phase points.
However, the first and second peaks in g(r/σ) are more pronounced in the spinodal region
(Figure 5B). This is because of lower temperature T∗ at this point, which amplifies the
effects of attractive interactions. These profiles of c(r/σ) and g(r/σ) in Figure 5 (for the
sub-critical case) are similar to those corresponding to one of the real solutions in the
spinodal region [10], although they are obtained with PY closure. This point is discussed
in more detail in Section 5.3 below.

Graphs of inverse compressibility χ−1 versus reduced density ρ∗, obtained using
Equation (14) at successive orders, are shown in Figure 6. Here, the left panel (A) is for
T∗ = 1.45 (in one-phase region), while the right panel (B) corresponds to T∗ = 1.15 (in
spinodal region). Note that the graphs depict partial sums of the series terms. Thus, χ−1

were obtained using c0(r/σ) (curve-0), c0(r/σ) + c1(r/σ) (curve-1), c0(r/σ) + c1(r/σ) +
(1/2)c2(r/σ) (curve-2), etc., and finally c(r/σ) (curve-6) are shown in the panels. Similarly
to the case of correlation functions, the main contribution of attractive potential comes up
at first order corrections, although it over-corrects a bit. Both panels show convergence
of the curves to well defined profiles of χ−1. It is positive in the entire range of ρ∗ for
T∗ = 1.45, as expected. However, for T∗ = 1.15, there is a region of ρ∗ where χ−1 is
negative. Numerical values of χ−1 for three values of ρ∗, obtained with c(r/σ), are also
given in Table 3. Data in column 3, for the case of ρ∗ = 0.361 and T∗ = 1.15, are for a
phase-point in the spinodal region. The sub-critical isotherms, obtained by integrating
χ−1 over density (starting from ρ∗ = 0), will show the familiar van der Waals loop due
to the negative-value region. Thus, the thermodynamic properties obtained via CPE,
although much more accurate, are similar to those of any first order mean field theory.
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Figure 6. Graphs show inverse compressibility χ−1 versus reduced density ρ∗ obtained at successive orders of series expansion. Thus,
χ−1 calculated with just c0(r/σ) (curve-0), c0(r/σ) + c1(r/σ) (curve-1), c0(r/σ) + c1(r/σ) + (1/2)c2(r/σ) (curve-2), etc., and finally
c(r/σ) (curve-6) is shown. (A) Graphs for reduced temperature T∗ = 1.45 in one-phase region. (B) Similarly, for T∗ = 1.15 when
crossing the spinodal region.
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Table 3. Partial sums of LJ model inverse compressibility series in CPE.

Order
Inverse Compressibility T∗ = 1.15 Inverse Compressibility T∗ = 1.45

ρ∗ = 0.091 ρ∗ = 0.361 ρ∗ = 0.631 ρ∗ = 0.091 ρ∗ = 0.361 ρ∗ = 0.631

1 1.47757 4.53543 13.6363 1.46285 4.35925 12.6832
2 0.434523 −1.13238 2.19019 0.632217 −0.091533 3.77993
3 0.396093 −0.532527 2.79679 0.606776 0.283586 4.16096
4 0.369497 −0.491079 2.85451 0.592575 0.304848 4.19282
5 0.352317 −0.459612 2.88001 0.585209 0.318156 4.20459
6 0.342099 −0.43545 2.89254 0.581667 0.326561 4.20943
7 0.335684 −0.416063 2.89917 0.579865 0.332105 4.21159

There is an issue related to the occurrence of negative compressibility (at any phase
point) because it implies, by continuity requirements, that 1− ρc̄(k0) would vanish at some
positive value k0. This is so because c̄(k) should tend to zero for sufficiently large k. Then,
the transforms ȳ(k) (see Equation (6)) and consequently h̄(k) would diverge at k0. Thus,
negative compressibility at any phase point implies a singularity at a positive k0 in the
Fourier transform h̄(k), which signals long ranged oscillations in the correlation function
h(r) [9]. Truncated Taylor’s series employed in CPE will not yield this singular function.
In fact, this function is the solution to OZE with the series approximation to c̄(k). There
is no inconsistency here, because it is known that OZE admits multiple solutions in the
spinodal regions. As argued further in Section 5.3, only the series solution for h̄(k) obtained
via CPE is relevant.

5.1. Phase Diagram of LJ Potential

Before obtaining the phase diagram, it is important to check the accuracy of CPE
results on an isotherm close to the critical point. This is conducted in Figure 7A, which
shows χ−1 versus ρ∗ (curve-1) on isotherm for T∗ = 1.33. The results of independent
computations (symbols) are also shown [12]. The latter results are for identical models
but are based on Newton’s method applied to the full potential, together with very careful
strategies to mark out the spinodal region. The reduced temperature T∗ = 1.33 is just
above the critical temperature T∗c = 1.326 and was obtained via CPE, as discussed next.
The agreement between the two sets of results is quite good, thereby demonstrating
convergence of χ−1 profile in CPE even close to the critical point. The inset figure shows
pressure βP (curve-1) and chemical potential βµ (curve-2) obtained via the compressibility
route, i.e., by integrating χ−1 profile (see Equation (15)) from zero to ρ∗. Nearly flat regions
in these graphs over a range of ρ∗ show the closeness of the isotherm to the critical isotherm.

Next, the phase diagram (co-existence curves) of the LJ system obtained via CPE is
compared against simulation data (symbols) [34]. Two schemes are used for this purpose:
(i) thermodynamic conditions (i.e., PL = PG and µL = µG discussed earlier) via free
energy route (curve-1) and (ii) Maxwell’s construction via compressibility route (curve-2).
Note that the first scheme (see Equation (13)) is not dependent on the results within the
spinodal region. The second scheme uses results in the negative compressibility region
for obtaining P and its volume-integral on the liquid side of the phase-plane. The good
agreement between the two schemes show that χ−1 profiles in the spinodal region are
accurate interpolations between those in the gas and liquid sides. There are only slight
differences between the results of the two schemes, along the liquid branch near the
transition point. The simulation data agree better with the results of the former. The
critical point parameters are also obtained using two methods: (i) solving the defining
equations, ∂vP = 0 and ∂2

vP = 0; and (ii) extrapolating values of χ−1
min (over density)

to zero on different isotherms in the one phase region. These methods provide almost
identical critical point parameters: ρcσ3 = 0.299 [0.312], kBTc/ε = 1.326 [1.316] and
Pcσ3/ε = 0.102 [0.127], which compare well with simulation data given in square brackets.
The spinodal lines on the gas and liquid sides (curve-3) are also shown in the figure.
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Figure 7. (A) Comparison of χ−1 versus ρ∗ obtained by using CPE (curve-1) and independent computations (symbols) [12] on the
isotherm for T∗ = 1.33, which is just above the critical temperature. The inset graphs show pressure βP (curve-1) and chemical
potential βµ (curve-2) (both obtained via compressibility route) on the same isotherm. (B) Comparison of co-existence lines using
thermodynamic conditions (curve-1) and Maxwell’s construction (curve-2) with the simulation results (symbols) [34], obtained with
CPE. The spinodal lines (curve-3) on gaseous and liquid sides are also shown.

The correlation functions and thermodynamic properties in the spinodal region, al-
though converge to well defined profiles in CPE, are nonphysical, as they generate negative
compressibility and van der Waals’s loop in pressure. However, their utility in computing
the phase diagram (via thermodynamic conditions or Maxwell’s construction) is now
demonstrated by comparing the results with those from independent methods. In any
case, the weighted averaging of contributions of gas and liquid phases is needed to obtain
physically acceptable properties.

5.2. Phase Diagrams of Generalized LJ(n,m) Potentials

The LJ potential is generalized to LJ(n, m) family of potentials, with arbitrary power
law exponents n and m, in the following expression.

U(r) =
m ε

n−m

( n
m

)n/(n−m)[(σ

r

)n
−
(σ

r

)m]
. (28)

The pre-factor is chosen so that potential depth is ε for all n and m. Varying the
exponent n, while keeping m = 6, generates a family of potentials, also called Mie (n,6)
potentials. The effective potential-range is altered on varying n: A larger n yields arrow
and smaller n broad potentials. These potentials have applications in modeling systems in
soft matter physics and have been investigated via molecular dynamics simulations [35]
and integral equation theory [12].

The phase diagrams, obtained with CPE, are compared with simulation data (sym-
bols) [35] in Figure 8A for potentials LJ(7,6) (curve-1), LJ(9,6) (curve-2), LJ(12,6) (curve-3),
LJ(15,6) (curve-4), and LJ(20,6) (curve-5). These results are obtained via the compressibility
route mentioned earlier. Perhaps the results obtained via CPE offer better comparison with
simulation data than that obtained using Newton’s method applied to full potential [12]. It
is also possible in CPE to approach the critical point closer on both branches. The gaseous
branches and critical points compare well for all cases. However, there are differences
on the liquid side for n = 7, n = 9, and n = 20 cases. In fact, CPE results lie above
simulation data for softer cases (smaller n) where the trend is just opposite for harder
(larger n) cases. Results agree quite well on both branches for intermediate values n = 12
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and n = 15. A possible reason for this is analyzed in Figure 8B, which shows the reduced
isotherms for LJ(7,6) (curve-1) obtained via the virial (solid line), compressibility (dashed
line), and free energy (dash-dot line) routes for T∗ = 1. Similar sets of graphs for potentials
LJ(12,6) (curve-3) at T∗ = 1 and LJ(20,6) (curve-5) at T∗ = 0.75 are also shown in the panel.
These results indicate that the bridge function [22] provides much better thermodynamic
consistency for the intermediate cases (n = 12 and 15) while important deviations are
noted for softer and harder potentials. This might explain the differences in the phase
diagrams on the liquid branch for the latter cases.
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Figure 8. (A) Comparison of co-existence lines, obtained with CPE, for potentials: LJ(7,6) (curve-1), LJ(9,6) (curve-2), LJ(12,6) (curve-3),
LJ(15,6) (curve-4), and LJ(20,6) (curve-5), with simulation data (symbols) [35]. (B) Reduced isotherms for LJ(7,6) (curve-1) using virial
(solid line), compressibility (dashed line), and free energy (dash-dot line) routes corresponding to T∗ = 1. Other sets of graphs are for
LJ(12,6) (curve-3) at T∗ = 1 and LJ(20,6) (curve-5) at T∗ = 0.75.

5.3. Solution-Spaces and Bifurcations of Solutions

The closure relation (Equation (4)) is solvable (in principle) so as to express c(r) in
terms of h(r) explicitly. Then, OZE reduces to the following mapping: h = Oh, where O is
a nonlinear operator. The specific details of O will depend on the closure relation, bride
function, and inter-particle potential. However, the important point is that the solutions to
OZE are simply the fixed-points of the operatorO, acting on functions defined in a suitable
metric space [36]. Stability of the fixed-points and bifurcation of solutions, resulting due to
variation of parameters (such as ρ and T) in O, will crucially depend on the solution-space
chosen for h(r) in addition to the specific properties of O. If OZE is solved simply to obtain
correlation functions, it is adequate to chose a solution-space S1, wherein functions tend
to zero for sufficiently large values of r. However, it is necessary to impose the constraint
I =

∫
h(r) d~r < ∞, for employing h(r) to compute thermodynamic quantifies, as reduced

compressibility (along an isotherm) is given by χ = 1 + ρ I. The integral constraint, which
ensures the existence of 3D Fourier transforms of functions (used for computing structure
factor), restricts the solutions to a sub-space S2. Furthermore, numerical methods chosen to
solve for the fixed-points, which are always of the iterative type, impose certain constraints
on the solution so that iterations converge. It is common to modify the solution-algorithm,
such as Newton’s method, and to look for complex solutions in regions where the method
shows signs of diverging iterates [9].

The most efficient algorithms for solving OZE compute the convolution integral by
using 3D Fourier transforms [6]. Baxter’s alternate formulation of OZE [8], applicable to
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cases where c(r) = 0 for r > R0 (cutoff range), is defined entirely in 0 ≤ r ≤ R0. However,
this formulation imposes the integral constraint mentioned above. The vanishing property
of c(r) is exactly valid within PY closure when potential U(r) = 0 for r > R0, as in the
AHS model. Both these approaches seek solutions in the sub-space S2; algorithms used
with them are also modified to detect bifurcations from real to complex solutions at some
ρ along a sub-critical isotherm [7,9]. The region between such values of ρ in the gas and
liquid sides on the isotherm is termed ‘no-solution-region’, as the original aim was only to
find real solutions. More detailed bifurcation analysis that was mentioned earlier [29], using
the pseudoarc-length continuation (PAL) algorithm, has provided the complete bifurcation
curve (with HNC closure). The same algorithm (PAL), as well as the modified Newton’s
method, has also yielded real solutions within this region at somewhat lower temperatures,
although not continuously across the ‘no-solution-region’. A numerical treatment of the AHS
model [37] has shown similar features, wherein two pairs of complex solutions and one real
solution are detected.

The OZE given in Equation (3) may also be written in the radial coordinate (0 ≤ r < ∞)
and solved numerically in a sufficiently long range 0 ≤ r ≤ R, together with builtin
asymptotic conditions (for r > R) [10]. These solutions would then belong to the less
restricted space S1. Bifurcations of a real solution to three real solutions, along a sub-
critical isotherm in the spinodal region, are found with this approach using PY closure [10].
Of the three solutions, two correspond to long ranged h(r), which do not satisfy the
integral constraint, and one to short ranged h(r). Furthermore, the short ranged h(r) and
corresponding c(r) yield negative compressibility along the part of the isotherm in the
spinodal region. It is not known at present if this approach can also provide the complex
solutions found in the sub-space S2.

The real series obtained via CPE for y(r) and, hence, h(r) (in the stable, metastable,
and unstable regions), provides short ranged solutions because the linear integral operator
in Equation (9) involves only the correlation functions of the reference system. Further-
more, the source terms in this equation, for all orders, result from functions obtained
at lower orders. Since the method uses 3D Fourier transforms, CPE seeks solutions in
the sub-space S2. The singular function h̄(k), obtained by substituting the series for c̄(k)
in Equation (6), would be a first approximation to one of the long ranged h(r); how-
ever, it lies outside the CPE method. This conclusion is based on the assumption that
real solutions would be found in the spinodal region for the LJ model and closure used
here, similarly to the PY case [10]. Finally, note that the closure relation rewritten as
g(r) = g0(r) exp[−βUa(r) + ya(r) + Ba(r)] (see Equation (13)), together with the series for
ya(r), can be used to obtain slightly improved results for pair correlation function.

6. Summary

The main aim in this paper is to analyze the convergence of CPE for solving the
OZE. After providing brief details of CPE, its convergence is evaluated first for the two
analytically solvable AHS and MSA models. Both these models show the emergence of a
‘no-real-solution-region’ in the two-phase domain of the phase plane. The CPE, which is
based on series expansions around the correlation functions of the (repulsive) reference
potential, always generate real solutions. Hence, it will not provide complex solutions to
the OZE, obtained from several studies, in the two-phase region. The analytical arguments
and numerical results presented for the AHS model show that CPE fails to converge in the
‘no-real-solution-region’. In fact, convergence is slow in the neighborhoods outside this
region. However, this does not affect computation of the phase diagram of the AHS model
because it completely contains the ‘no-real-solution-region’. Numerical results presented
also show that CPE converges even in the ‘no-real-solution-region’ for the MSA-HCY model.
The convergence issue is evaluated in detail for the LJ system modeled using an accurate
density-dependent bridge function and 7th order solutions. Spatial profiles of correlation
functions, corresponding to phase points above as well as below the critical point, are found
to approach well defined functions. Similarly, density-profiles of inverse compressibility
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(above, below, and close to critical point) also converge toward appropriate functions.
The phase diagrams of LJ model obtained via two schemes, one using the free energy
and the other using the compressibilty routes, agree well and also with simulation data.
The two schemes are independent as the free energy route uses only results corresponding
to phase points outside the spinodal region. It is argued that CPE provides proper real
solutions to OZE in the stable, metastable, and spinodal region. The whole procedure is also
evaluated with reference to simulation data on the generalized LJ(n,6) family of potentials.
These potentials with variable ranges have important applications in soft condensed matter.
The main conclusion of this paper is that CPE provides a practical approach to evaluate the
thermodynamic proprieties of one of the component fluids described by using general pair-
potentials.
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