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Abstract: We review the study of the superfluid phase transition in a system of fermions whose
interaction can be tuned continuously along the crossover from Bardeen–Cooper–Schrieffer (BCS)
superconducting phase to a Bose–Einstein condensate (BEC), also in the presence of a spin–orbit
coupling. Below a critical temperature the system is characterized by an order parameter. Generally
a mean field approximation cannot reproduce the correct behavior of the critical temperature Tc over
the whole crossover. We analyze the crucial role of quantum fluctuations beyond the mean-field
approach useful to find Tc along the crossover in the presence of a spin–orbit coupling, within a path
integral approach. A formal and detailed derivation for the set of equations useful to derive Tc is
performed in the presence of Rashba, Dresselhaus and Zeeman couplings. In particular in the case of
only Rashba coupling, for which the spin–orbit effects are more relevant, the two-body bound state
exists for any value of the interaction, namely in the full crossover. As a result the effective masses of
the emerging bosonic excitations are finite also in the BCS regime.

Keywords: BCS-BEC crossover; superfluidity; critical temperature

1. Introduction

Experimental developments in confining, cooling and controlling the strength of the
interaction of alkali atoms brought a lot of attention to the physics of the crossover between
two fundamental and paradigmatic many-body systems, the Bose–Einstein condensation
(BEC) and the Bardeen–Cooper–Schrieffer (BCS) superconductivity.

A system of weakly attracting fermions can be treated in the context of the well-known
BCS theory [1], originally formulated to describe superconductivity in some materials
where an effective attractive interaction between electrons can arise from electron-phonon
interaction. This theory predicts a phase transition and the formation of the so-called
Cooper pairs [2] with the appearance of a gap in the single particle spectrum. The fermions
composing these weakly bounded pairs are spatially separated since their correlation
length is larger than the mean inter-particle distance; for this reason the pairs cannot be
considered as bosons. By increasing the strength of the attraction among the fermions,
the system could be seen as made of more localized Cooper pairs, or almost bosonic
molecules, which may undergo into a true Bose–Einstein condensation. Since there is no
evidence of a broken symmetry by continuously varying the width of the couples, this
process realizes a crossover between a BCS and a BEC state. The idea of this crossover
preceded by far its experimental realization [3] and became a subject of active investigations
by several authors. Those studies were first motivated by the purpose of understanding
superconductivity in metals at very low electron densities, since in this diluted regime
Cooper pairs are smaller than the mean inter-particle distance and, therefore, can be treated
like bosons. In a particularly relevant pioneering work [4] a system of interacting fermions
has been investigated to obtain the evolution of the critical temperature of the system along
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the crossover by changing the strength of the interaction between the BCS and the BEC
limits. [5] The discovery of the high-temperature superconductors [6], where the coupling
between electrons is supposed to be stronger than that in conventional superconductors,
renewed the interest in the BCS-BEC crossover with the aim to explore the regime of
stronger interaction. Few years later, an important work [7] provided for the first time
a path integral formulation of the problem, which we will review here, describing the
crossover at finite temperature with tunable strength of the coupling between pairs. The
scientific interest in this field was first purely theoretical because the interaction strength
in real solid state materials cannot be tuned easily. The situation changed drastically after
the first realizations of magnetically confined ultracold alkali gases. A typical alkali gas
obtained in laboratory is made by 105 to 109 atoms, with a density n inside the bulk of a
realistic trap in the range from 1012 to 1015 cm−3. An important property is their diluteness:
these densities are such that the mean inter-particle distance is larger than the length scale
associated to the atom-atom potential and implying that only two-body physics is relevant.
Below those densities, the thermalization of the gas after a perturbation becomes too slow,
while at higher densities three body collisions become relevant. At low temperatures,
namely at low kinetic energies, the scattering properties of the atoms can be characterized
by a single parameter, the scattering length. These gases can be furthermore cooled at
such temperatures to enter in a quantum degenerate regime characterized by a thermal de
Broglie wavelength of the same order of the interatomic distance, i.e., λ2

th = 2πh̄2

mkBT ∼ n−2/3.
The degenerate temperatures, for the densities mentioned before, are smaller than a µK.
These are the conditions achieved in the first experimental realization of a Bose–Einstein
condensation [8]. The importance of such experimental setups does not rely only on these
extreme conditions, but also on the possibility of fine tuning the parameters which describe
the gas. In particular the mechanism of the so-called Feshbach resonance allows one to
control the strength of the interaction between two atoms by simply a magnetic field,
for example, making it sufficiently strong to support a new bound state. This phenomenon
was first predicted and then observed experimentally [9,10] in bosonic systems. Soon after
these techniques have been extended to create and manipulate ultracold gases for fermionic
systems [11–14] employing atomic alkali gases with two different components, a mixture
of atoms in two different spin or pseudospin states, where the quantum degeneracy is
reached when lowering the temperature the energy of the system ceases to depend on
the temperature. In this system by Feshbach resonance the interaction among the atoms
can be made sufficiently strong to allow the formation of a two-body bound state, called
Feshbach molecule, with a lifetime compatible to the time needed to cool the system
down and to observe a Bose–Einstein condensation. Later the experimental observation
of fermionic pairs was extended to the whole region of the crossover [15,16], studying
also the thermodynamical properties [17,18]. A renewed interest in the study of the BCS-
BEC crossover arose in 2011 after the experimental realization, in the context of ultracold
gases, of a synthetic spin–orbit (SO) interaction [19–22]. In contrast to the spin–orbit
interaction in solid state systems, in atomic gases this coupling is produced by means of
laser beams and therefore is perfectly tunable. The realization of this artificial spin–orbit
coupling is a bright example of the versatility and controllability of the ultracold techniques,
showing once more that ultracold gases are the perfect experimental playgrounds for
testing physical models hardly realizable by means of other solid state setups. These
experimental achievements stimulated intense theoretical effort to understand the spin–
orbit effects with the so-called Rashba [23] and Dresselhaus [24] terms in the evolution
from BCS to BEC superfluidity, considering many SO configurations, in two and three
dimensions, at zero and finite temperature, exploring eventually novel phases of matter
or topological properties [25–67]. In particular SO coupling induces triplet pairing [43]
which can produce nodes in the quasiparticle excitation spectrum. This allows for detecting
bulk topological phase transitions of the Lifshitz type in polarized systems [41] or, more
recently, in heterostructures [68]. Moreover the experimental realization of 2D degenerate
Fermi gases for ultracold atoms in a highly anisotropic disk-shaped potential [69] is one of
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the reasons of the growing interest for fermions in reduced dimensionality, where exotic
gapless superfluid states and Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) pairing states can
be observed [55].

The aim of this paper is to review some basic concepts on the BCS-BEC crossover,
whose properties will require taking into account quantum fluctuations in order to get
a better theoretical predictions when comparing with experimental results [70]. We will
reproduce many results beyond the mean-field level, and extend the study in the presence
of a spin–orbit interaction, in a detailed and comprensive way, by means of a path integral
approach, with a particular emphasis to the derivation of the critical temperature Tc. We
will show how Tc can be strongly enhanced by the SO couplings in the BCS side, already at
the mean-field level, while its increase is softened by the effects of the quantum fluctuations
specially in the intermediate region of the crossover and in the strong coupling regime.

1.1. Basic Concepts in Ultracold Atomic Physics

To understand the structure of an atom it is necessary to consider the forces among
its constituents. For alkali atoms (Li, Na, K, Rb. . . ), the relevant force is due to Coulomb
interaction that acts between the off-shell electron and the effective charge Ze of the nucleus.
This central force produces the following Bohr energy spectrum

En = −mrc2

2
Z2α2

n2 (1)

with n = 1, 2, ..., where α = e2

4πε0 h̄c ≈
1

137 is the so-called fine structure constant and
mr ≈ me the reduced mass, approximately given by the mass of the electron. This spectrum
is degenerate in the quantum numbers L and Lz, associated to the angular momentum
operators L̂2 and L̂z.

The Coulomb interaction, due to its symmetry, preserves the angular momentum
and the spin separately. However, in principle, they are coupled via a spin–orbit term,
Ĥso = αso

h̄2 L̂ · Ŝ, therefore, only the total angular momentum Ĵ = L̂ + Ŝ is conserved. This
additional term causes the known correction to the spectrum, called fine structure, shift-
ing the degeneracy in the energy spectrum by ∆EJ =

αso
2 [J(J + 1)− L(L + 1)− S(S + 1)].

However, for ultracold alkali gases, at very low temperatures, only the fundamental state
is occupied, so that the off-shell electron is in the s orbital (L = 0). In this state J = S
and the spin–orbit fine structure can be neglected, ∆EJ = 0. However, also the coupling
between the spins of the electrons Ŝ and of the nucleus Î can remove the degeneracies and
it is generally approximated by a dipole–dipole interaction

Ĥh f =
αh

h̄2 Î · Ŝ (2)

This term, again, does not lead to the conservation of both Î and Ŝ separately but only of
the total spin of the atom F̂ = Î + Ŝ, since L = 0. Then it is possible to label the states
of an alkali atom by the quantum numbers F and Fz, related to the operators F̂2 and F̂z.
The effect of this contribution is a small correction to the Bohr spectrum, usually called
hyperfine structure

∆EF =
αh
2
[F(F + 1)− I(I + 1)− S(S + 1)]. (3)

Since S = 1
2 and because of the properties of the sums of angular momentums, the quantum

number F is allowed only to have the values F = I ± 1
2 , so the hyperfine correction is

given by

∆EF=I± 1
2
= ±αh

2

(
I +

1
2
∓ 1

2

)
(4)

In the presence of an homogeneous magnetic field, this coupling between the latter and the
electronic and nuclear spins gives rise to a shift of the energy levels of the atoms, called the
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Zeeman effect. An alkali atom at very low energy and in a magnetic field can be described,
therefore, by the following Hamiltonian

Ĥ = Ĥh f − γN BÎz + γEBŜz (5)

where the Zeeman couplings are inversely proportional to the mass of the particles, there-
fore γN � γE, since the nucleus is heavier than the electrons. As long as the effect of the
magnetic field is small, F and Fz can be considered almost good quantum numbers, while
in general the eigenstates are labeled by Iz e Sz, associated to Îz and Ŝz. Diagonalizing the
Hamiltonian in Equation (5) we can find the corrections to the Bohr spectrum. For example,
in the case of an hydrogen atom I = 1

2 and we get

∆E± = −αh
4
± αh

2

√
1 +

(
h̄(γN + γE)B

αh

)2

. (6)

The dependence on the magnetic field is quadratic for low intensities and linear for high
field. An important experimental feature is that varying the magnetic field it is possible
to vary the energy levels of the single atom, a property that can be exploited to induce a
confining potential for atoms, realizing an atomic trap.

There are two main kinds of atomic traps available, the magnetic and the optical
dipole traps, which are briefly discussed below.

Magnetic Traps

This technique is based on the concrete possibility of creating position dependent
magnetic fields which, as a consequence, make every hyperfine energies also position
dependent. In these conditions an alkali atom has a kinetic energy plus an effective
potential, that, properly taylored, can be seen as a confining potential for the gas,

Eatom(r) =
h̄2 p2

2m
+ V(B(r)) (7)

with a confining force F(r) = −∇V(r). Trapping a gas in a magnetic field is the key to
achieve degeneracy temperatures; in these conditions the gas is isolated from the external
world getting rid of the main source of heating which is due to the walls of the container.
Typically the magnetic trap is modeled to obtain an harmonic potential, however there are
several experimental possibilities depending only on the ability to create non homogeneous
magnetic fields. In particular these potentials highly depend on the hyperfine states of the
atom and this characteristic can be exploited to select particular states in the trap. Another
interesting possibility is to create highly anisotropic potentials by strong confinement in
some dimensions, realizing one- or two-dimensional systems. This technique is compatible
with the cooling methods of atomic gases but not with the mechanism of the magnetic
Feshbach resonance. For the latter reason an alternative trapping method is required.

Optical Traps

The optical traps are based upon the interaction between an atom and light of a laser
beams. The key features of this method are the great stability of the trapped gas and
the possibility of making a lot of different geometries. Under proper conditions, called
far-detuning, the confinement is independent from the internal state of the atom. When an
atom is put in a laser beam, the electric field E(r) = E0(r)eiωt induces an electric dipole
moment p(r) = αωE0(r)eiωt, where αω is the polarizability. The effective potential given
by the iteration between the dipole moment and the electric field is given by a temporal
mean value

V(r) = −1
2

p(r) · E(r) (8)
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which is simply directly proportional to the intensity I(r) of the beam. It is then possible
to produce an artificial potential, as before, considering a position dependent focalization
of the laser so that there is a force acting on the single atom given by F(r) = −∇V(r) ∝
∇I(r). As mentioned, this technique makes possible to easily create different geometries.
Indeed, employing two counter-propagating laser in more dimensions for example, lattice
potentials can be realized, particularly interesting since they can simulate solid state
systems in a fully controllable environment. For a more complete review on this confining
technique one can refer to Refs. [71,72].

The confined gas has to be cooled down in order to reach the degeneracy temperatures.
This can be done in two steps, by laser cooling and evaporative cooling [73].

Laser or Doppler Cooling

The term laser cooling refers to several techniques employed to cool atomic gases,
taking advantage of the interaction between light and matter. The most relevant one takes
advantage also from the Doppler effect. This technique is applied to slow down the mean
velocity of the atoms realizing a situation in which an atom absorbs more radiation in a
direction and less in the opposite one. This can be done slightly detuning the frequency
of the laser below the resonance of the exited state of the atom. Because of the Doppler
effect, the atom will see a frequency closer to the resonant one and so it will have an higher
absorption probability. In the opposite direction the effect will be reversed. The atom,
which is now in an exited state, can spontaneously emit a photon. The overall result of
the absorption and emission process is to reduce the momentum of the atom, therefore
its speed. If the absorption and emission are repeated many times, the average speed,
and therefore the kinetic energy of the atoms, will be reduced, and so the temperature. By
this technique one can reach low temperatures of the order of some µK, still not enough to
get a degenerate gas.

Evaporative Cooling

The degenerate temperatures can be reached by the so-called forced evaporative cool-
ing method. A fundamental feature of every trap discussed before is the possibility of
varying its depth, defined as the energy difference between the bottom and the scattering
threshold of the potential. Lowering the depth of the trap it is possible to let the most
energetic atoms escape; this correspond to extracting energy from the gas at the cost of
loosing a considerable quantity of matter. After the thermalization of the gas, the tempera-
ture is lowered and this procedure can be repeated. The lower limit in temperature now is
related to the rate between inelastic collisions, that fix the lifetime of the sample, and the
elastic collisions, that assure thermalization and fix the time needed for the cooling process.
Loading more atoms in a trap lowers the limit of the lowest temperature achievable but
also makes the gas unstable. With the correct compromise this scheme allows to go well
below the degenerate temperatures. For alkali atoms the limits in temperatures achievable
by evaporative cooling are at the order of T∼pK [74]. Once a degenerate gas is obtained,
letting the gas expand in free flight by turning off the trap, from the absorption spectrum
one can access to the temperature of the gas or to the density profile in position space that
can be compared with theoretical results.

1.2. Artificial Spin-Orbit Interaction in Ultracold Gases

Laser techniques can be employed also to build a tunable synthetic spin–orbit coupling
between two pseudo-spin states of an atom. In a previous section it was shown that spin–
orbit coupling (fine structure) for atoms in the fundamental state (n = 0, L = 0) vanishes.
In order to induce it in laboratory it is necessary to select a gas with two components.
In the first realization of this system [19] two states (|F, Fz〉) of 87Rb were chosen with
pseudo-spins | ↑〉 = |1, 0〉 and | ↓〉 = |1,−1〉. In order to understand schematically how it
works, let us suppose that the atom is in an initial state | ↓〉, then, two lasers can be tuned
in such a way that one induces a transition to an intermediate exited state and the other



Condens. Matter 2021, 6, 16 6 of 59

induces a stimulated emission from the latter state to | ↑〉. The inverse process is equally
allowed. Due to the Doppler effect, this coupling will be necessarily momentum-sensitive
and, as shown in Refs. [19,20], the effective generated term is equivalent to a spin–orbit
coupling of a spinful particle moving in a static electric field E, let us say, along the z axis.
An effective additional term in the Hamiltonian is −µs · BSO, where BSO = v× E is the
magnetic field seen by the moving particle and µs the electron magnetic moment, which
can be written as

HR = vR(σxky − σykx) (9)

This is called Rashba coupling, in analogy to the same coupling occurring in crystals.
With the same technique other interactions can be produced in the laboratory such as the
Dresselhaus term

HD = vD(σxky + σykx) (10)

or a Weyl term HW = λ σ · k. The two lasers are detuned by a frequency 2δ from the Raman
resonance and couple the states | ↑〉 and | ↓〉 with the Raman strength 2Ω. This generates
additional terms, Ωσz and δσy. We will neglect the detunig term and will consider the
Raman coupling as an effective artificial Zeeman term

HZ = h σz. (11)

By this procedure one can study the effects of a spin–orbit interaction in ultracold gases,
which has the great advantage of being fully under control, allowing for fine tuning
experiments where the couplings can be easily manipulated, not possible otherwise in
solid state systems.

2. Two-Body Scattering Problem

In the previous section we said that only two-body physics is relevant in a dilute
ultracold gas, for that reason we will briefly review the two body problem in a generic
central potential. We are going to consider only scattering properties after two-body
collisions neglecting the three-body ones because of the low probability of finding three
particles within the range of interaction. Generally interatomic potentials are not known
analytically and their approximations are not so easy to use in theoretical and numerical
evaluations. The density of the gas can fix the interparticle distances and the range of the
potential. This is what typically happens in the experiments with ultracold dilute gases.
In this situation an approximate potential, or pseudo-potential, can be employed, which
should exhibit some general properties of the full scattering problem. A detailed analysis
of the scattering problems, specifically for ultracold gases, can be found in Refs. [75–77].
Scattering theory provides the tools useful to characterize the interaction between particles
in terms of few parameters that can be used to create suitable approximate potentials.
The Schrödinger equation is employed to determine the wavefunctions and the scattering
amplitudes, then we require that a simple pseudo-potential should reproduce the same
results in a low energy limit, namely in the ultracold limit. We will assume that the
two-body interaction is described by a short-range and spherically symmetric potential.

It is known that Schrödinger equation for the wavefunction of two colliding particles
can be decomposed in one equation that describes the center-of-mass motion, a free particle
equation with mass M = m1 + m2, and another that describes the relative motion. With
the definition m = m1m2

m1+m2
for the reduced mass, in the relative frame the Schödinger

equation reads [
− h̄2∇2

m
+ V(r)

]
ψ(r) =

[
Ĥ0 + V(r)

]
ψ(r) = Eψ(r) . (12)
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Let us suppose that the potential is short-ranged, so that there exists a characteristic length
r∗ such that the potential can be neglected outside this radius,

V(r) ≈ 0, ∀ |r| > r∗ (13)

In this case Equation (12) becomes a free Schrödinger equation whose solution is given
by the composition of an incoming plane wave with momentum p and a scattering state
with momentum p′. It is relevant to look for elastic collisions, that can be studied fixing

the scattering energy to E = 2εp = p2

m , equal to the incoming wave energy. The solution is
given by [

2εp − Ĥ0
]
|ψp〉 = V̂|ψp〉. (14)

The homogeneous solution (V̂ = 0) is simply |ψp〉 = |p〉, therefore, it is possible to write
an implicit solution, known as the Lippmann–Schwinger equation

|ψp〉 = |p〉+
1

2εp − Ĥ0 + iε
V̂|ψp〉 (15)

with ε an infinitesimally small positive real number. In the coordinate representation,
it reads

ψp(r) = 〈r|p〉+ 〈r| 1
2εp − Ĥ0 + iε

V̂|ψp〉

=
e

i
h̄ r·p

(2πh̄)3/2 −
m

4πh̄2

∫
d3r′

e
i
h̄ p|r−r′ |

|r− r′| 〈r
′|V̂|ψp〉 (16)

At long distances, (see Appendix A for details) Equation (16) can be written as

ψp(r) =
1

(2πh̄)3/2

{
e

i
h̄ r·p + f (q, p)

e
i
h̄ pr

r

}
+ O(r−2) (17)

after defining q ≡ p r̂ = p
r r, and the scattering amplitude

f (q, p) = −2π2h̄m 〈q|V̂|ψp〉 . (18)

The scattering solution at large distances is then composed by an incoming plane wave and
an outgoing spherical wave, weighted by the scattering amplitude. In terms of the latter it
is also possible to define the differential cross section of the process, at large distances,

dσ

dΩ
= | f (q, p)|2 . (19)

Due to the spherically symmetric potential, the scattering amplitude depends only on
the modulus p and the angle θ = arccos( q·p

p2 ) = arccos(r̂ · p̂). It is convenient, therefore,
to perform a spherical wave expansion

f (q, p) = f (p, θ) =
∞

∑
`=0

(2`+ 1) f`(p)P`(cos θ) (20)

with P` the Legendre polynomials. In order to preserve the normalization of the wavefunc-
tion, one has to impose the following condition for the coefficients f`(p) (see Appendix B)

|1 + 2ip f`(p)| = 1 ⇒ 1 + 2ip f`(p) ≡ e2iδ`(p) (21)

which defines the phase shift δ`(p) and where we rescaled, here and in what follows, p→
h̄p for simplicity, to get rid of h̄. This relation imposes that when the relative momentum
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vanishes, also the phase shift should be zero, δ`(0) = 0. The scattering amplitude, at fixed
angular momentum, can be rewritten as

f`(p) =
1

p cot[δ`(p)]− ip
(22)

In the radial Schrödinger equation (see Appendix C), for ` 6= 0, besides the potential V(r)
there is also the so-called centrifugal barrier, that depends on the angular momentum at
which the scattering happens and on the relative distance. In ultracold atoms, at sufficiently
low temperatures, the atoms may not have enough energy to overcome this centrifugal
barrier, therefore the only relevant contribution to the scattering amplitude will come from
s-wave scattering (` = 0). To clarify this point one can estimate the angular momentum as
the product of the range of the interaction r∗ times the momentum given by the inverse of
the thermal de Broglie length ` ≈ r∗

Λth
. For ultracold gases the temperatures are typically

T ∼ nK and, since the thermal wavelength Λth ∼ T−1/2, it is allowed to consider ` ≈ 0,
namely, the scattering amplitude is dominated by the s-wave contribution

f (q, p) ≈ f0(p) =
1

p cot[δ0(p)]− ip
(23)

It is expected that scattering processes modified by the presence of V(r) for ` 6= 0 are
greatly suppressed at sufficiently low energy. Moreover, also the ` = 0 contribution is
affected by the low energy hypothesis. As shown in Ref. [76], it is possible to define the
scattering length at fixed ` considering the low energy limit

f`(p) ∼
p→0
−a` p2` (24)

which comes from the low energy limit of the phase shift

δ`(p) ∼
p→0

p2`+1 (25)

This can be derived by solving the Schrödinger equation as shown in Appendix C. It is
remarkable that ultracold gases can be cooled down to the point where only one partial
wave in the two-body problem becomes dominant, the s-wave contribution. At low
energies (p ∼ 1/Λ) it is possible to expand the phase δ0(p) = −as p + O(p2), so defining
the scattering length as

as ≡ − lim
p→0

δ0(p)
p

(26)

Actually only as = a`=0 has the dimension of a length, contrary to the other terms a` with
` > 0. Considering the relation in Equation (22) and the following expansion

p cot(δ0(p)) ≈ − 1
as

+
reff
2

p2 (27)

the scattering amplitude is then given, at low energy, by the expression

f0(p) ≈ − as

1− as
reff
2 p2 + ias p

(28)

which shows explicitly that for ultracold gases, under the hypothesis of short-range central
potential, at low energy, the two-body scattering depends only on two parameters: as,
the s-wave scattering length, and reff, an effective range proportional to r∗. We will not treat
reff, the effective range of the potential, more deeply here, because, for what follows, only
the first order expansion of the phase shift is needed. Finally also the cross section admits a
low energy limit. Writing σ(p) = ∑` σ`(p), we have σ` 6=0(p) = 8π

p2 (2`+ 1) sin2(δ`(p)) ∼
p→0



Condens. Matter 2021, 6, 16 9 of 59

8π(2`+ 1)p4` and σ`=0(p) ∼
p→0

8πa2
s . In particular, from Equations (A15) and (A17), one

gets σ(p) ∼
p→0

8πa2
s for spinless bosons, σ(p) ∼

p→0
p4 for spinless (polarized) fermions,

σS(p) ∼
p→0

8πa2
s for fermions in a singlet state, σT(p) ∼p→0

p4 for fermions in a triplet state.

These results show that the interaction between polarized fermions is suppressed, while
interaction in the singlet channel is dominant in the low energy limit, consistently with the
Pauli exclusion principle.

2.1. Two-Body Scattering Matrix

It is possible to mimic a realistic potential using the pseudo-potential with the same
scattering properties a low energies, namely the same s-wave scattering length. Let us
introduce the operator T̂2B, called T scattering matrix,

V̂|ψp〉 = T̂2B|p〉 (29)

By this definition it is possible to rewrite the scattering amplitude as a function of T̂2B

f (q, p) = −2π2m〈q|V̂|ψp〉 = −2π2m〈q|T̂2B|p〉 . (30)

In the same way also the Lippmann–Schwinger equation, introduced earlier, can be writ-
ten as

T̂2B(z) = V̂ + V̂
1

z− Ĥ0 + iε
T̂2B(z) (31)

whose solution, in terms of T̂2B, is the following

T̂2B(z) = V̂ + V̂
1

z− Ĥ + iε
V̂ . (32)

This solution can be expressed as an expansion in the potential V̂

T̂2B(z) = V̂
∞

∑
n=0

[
1

z− Ĥ0 + iε
V̂
]n

. (33)

Given a complete set of eigenstates of Ĥ, inserting a completeness relation, one can write

T̂2B(z) = V̂ + ∑α V̂ |ψα〉〈ψα |
z−εα

V̂ + Ω
(2π)3

∫
d3 pV̂ |ψp〉〈ψp |

z−2εp
V̂, where εα < 0 are the energies of the

bound states, |ψp〉 the scattering states and Ω is a volume. It is then clear that the two-body
scattering matrix T2B(z) has simple poles associated to bound states and a branch cut on the
real axis caused by the continuum of the scattering states. Indeed the transition amplitude

given by Equation (28) can be also rewritten in terms of the scattering energy E = h̄2 p2

m
so that

T2B(E) ≈ 1
2π2m

as

1− ias

√
mE
h̄2 −

masreff
2h̄2 E

(34)

At low energies (E→ 0−) it is found that, for positive scattering length, as > 0, this quantity
has a simple pole at

Eb = − h̄2

ma2
s

. (35)

This pole indicates the presence of a bound state close to the scattering threshold (E = 0)
and gives an additional meaning to the scattering length as.

As a final remark, by the Fano–Feshbach resonance method one can control by a
magnetic field the value of as. We refer to Refs. [11–14] for a detailed description of
this technique.
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2.2. Renormalization of the Contact Potential

Let us consider the contact potential in the position representation

V̂eff(r) = −g δ(3)(r) (36)

The action of this operator on the eigenstates of the momentum operator is

〈q|V̂eff|p〉 = 〈q|
∫

d3rV̂eff|r〉〈r|p〉 = −g〈q|0〉〈0|p〉 = − g
(2π)3 (37)

We will want this potential to reproduce the scattering amplitude of a realistic potential.
Exploiting the Lippmann–Schwinger equation for T2B, written in Equation (31), we have

〈q|T̂2B|p〉 = 〈q|V̂eff|p〉+
∫

d3k〈q|V̂eff
1

E− Ĥ0 + iε
|k〉〈k|T̂2B|p〉 (38)

We now impose that, for the contact potential, the zero energy scattering amplitude should
give the same result of a realistic potential. From Equation (34) we have

T2B(E = 0) =
as

2π2m
(39)

while from Equation (38), using Equation (37), we get

1
g
= − m

4πas
+
∫ d3k

(2π)3
1

2εk
(40)

This relation may seem inconsistent at first sight due to the divergence of the last term.
However, as we will see in what follows, this result will turn out to be very helpful since this
divergence cancels out another divergence appearing in the so-called gap equation, for the
order parameter, resulting as an elegant renormalization procedure for the contact potential.

2.3. With Spin-Orbit Coupling

As shown in Refs. [44,45], in the presence of a spin–orbit coupling, the equation
useful to cure the ultraviolet divergences is formally the same as Equation (40), (see
Equation (A82)), with the only difference that as is replaced by the scattering length ar
which contains also a dependence on the spin–orbit parameters (see Appendix D for
more details).

3. Fermi Gas with Attractive Potential

In the previous introductory sections we showed that the extreme regimes of ultracold
gases, namely the diluteness and the low temperatures, allow us to consider only the
two-body physics and simplify the real interaction replacing it with a contact potential that
is able to reproduce the same scattering properties. For these reasons this kind of systems
can be described by a set of fermions in three dimensions with a BCS-like Hamiltonian

H = H0 + HI =
∫

d3r

{
∑
σ

ψ†
σ(~r)

(
−∇

2

2m

)
ψσ(~r)− gψ†

↑(~r)ψ
†
↓(~r)ψ↓(~r)ψ↑(~r)

}
(41)

The interaction coupling is positive (g > 0) for an attractive potential. In the following
section we will review the study of this model by a path integral approach, focusing on the
evaluation of the critical temperature as a function of the coupling g, along the crossover
from weak coupling (BCS regime) to strong coupling (BEC regime). The Hamiltonian in
Equation (41) is associated to the grand canonical partition function in the path integral
formalism which is

Z = Tr
(

e−β(H−µN)
)
=
∫

Dψ†Dψ e−S[ψ† ,ψ] (42)
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where the action is give by

S[ψ†, ψ] =
∫

d3r
∫ β

0
dτ

{
∑
σ

ψ†
σ(~r)

(
∂τ −

∇2

2m
− µ

)
ψσ(~r)− gψ†

↑(~r)ψ
†
↓(~r)ψ↓(~r)ψ↑(~r)

}
(43)

It is possible to take advantage of the properties of Gaussian integrals (see for instance
Ref. [77]) to handle the interacting term introducing the complex auxiliary field ∆(r, τ)

eg
∫

d3r
∫ β

0 dτψ†
↑ψ

†
↓ψ↓ψ↑ ∝

∫
D∆∗D∆ e

∫
d3r
∫ β

0 dτ

[
− |∆|

2
g +∆∗ψ↓ψ↑+∆ψ†

↑ψ
†
↓

]
(44)

The grand canonical partition function can be rewritten, therefore, as it follows

Z =
∫

Dψ†Dψ
∫

D∆∗D∆ e−S[ψ† ,ψ,∆] (45)

with the use of a new action, dependent now also on an auxiliary field

S[ψ†, ψ, ∆] =
∫

d3r
∫ β

0
dτ

{
∑
σ

ψ†
σ

(
∂τ −

∇2

2m
− µ

)
ψσ +

|∆|2
g
− ∆∗ψ↓ψ↑ − ∆ψ†

↑ψ
†
↓

}
(46)

The physical meaning of ∆ will be clear from the saddle point equation. It is more conve-
nient to introduce the Nambu spinors

Ψ =

(
ψ↑
ψ†
↓

)
Ψ̄ =

(
ψ†
↑, ψ↓

)
(47)

so that the action of the system can be written as

S[Ψ̄, Ψ, ∆] =
∫

d3r
∫ β

0
dτ

[
|∆|2

g
+ Ψ̄G−1Ψ

]
+ β ∑

k
ξk (48)

with G−1, the inverse of the interacting Green function, defined as

G−1 =

(
−∂τ +

∇2

2m + µ ∆
∆∗ −∂τ − ∇

2

2m − µ

)
(49)

Actually in order to put S[ψ†, ψ, ∆] in a quadratic form in the spinor representation we
exploited the anticommutation relations of the Grassmann fields, getting also the last term
in Equation (48). Defining z= e−β ∑k ξk , this term can be put outside the functional integral.
The grand canonical partition function is the following

Z = z
∫

D∆∗D∆ e−
∫

d3r
∫ β

0 dτ ∆2
g

∫
DΨ̄DΨ e−

∫
d3r
∫ β

0 dτΨ̄G−1Ψ (50)

Performing the standard Gaussian integral over the fermionic degrees of freedom one gets

Z = z
∫

D∆∗D∆ e−
∫

d3r
∫ β

0 dτ
|∆|2

g +Tr[ln(G−1)] ≡
∫

D∆∗D∆ e−Se [∆] (51)

which defines the effective action depending only on the auxiliary field

Se[∆] =
∫

d3r
∫ β

0
dτ
|∆(~r, τ)|2

g
− Tr[ln(G−1)] + β ∑

k
ξk . (52)
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3.1. Gap Equation

Starting from this action it is possible to write down the saddle point equation and
look for an homogeneous solution. With ∆(~r, τ) = ∆0 the effective action is given by

Se[∆0] =
βV
g
|∆0|2 − Tr[ln(G−1

0 )] + β ∑
k

ξk (53)

where V is the volume. In the momentum space and in the Matsubara frequencies the
matrix G−1 defined as in Equation (49) is

G−1
0 (k, iωn) =

(
iωn − k2

2m + µ ∆0

∆∗0 iωn +
k2

2m − µ

)
=

(
iωn − ξk ∆0

∆∗0 iωn + ξk

)
(54)

which has poles in real frequencies at ±Ek where

Ek =
√

ξ2
k + |∆0|2 (55)

The minimum of the spectrum is at εk =µ with the minimum energy |∆0|, characterized by
the existence of a gap compared to the minimum of the spectrum of a free particle, which is
zero. This implies that there is a minimum energetic cost for the creation of an elementary
excitation. The physical interpretation is that the minimum energy requested for breaking a
pair is 2|∆0|. The value of this minimum energy can be obtained imposing δSe

δ∆0
= 0, getting

1
g
=

1
βV ∑

k,iωn

1
ω2

n + E2
k

(56)

Performing the standard sum over the Matsubara frequencies and going to the continuum

limit
1
V ∑

k
→ 1

(2π)3

∫
d3k, one gets the so called gap equation

1
g
=

1
(2π)3

∫
d3k

tanh(βEk/2)
2Ek

(57)

The contact potential is a great simplification in the model, however it gives rise to ultravi-
olet divergences. Actually, Equation (57) diverges linearly with the ultraviolet cut-off.

BCS Superconductors

The Hamiltonian and the obtained gap equation are the same as those of the BCS
theory for conventional superconductors. However in the BCS theory the ultraviolet
behavior is regularized by the existence of a natural cut-off at the Debye frequency ωD of
the underlying lattice. Typically, in classical superconductors h̄ωD � εF = µ and a finite
gap can exists only for particles near the Fermi energy. Exploiting the approximation of
constant density of states (DOS), 1

(2π)3

∫
d3k ≈ ν0

∫
dξ, where ν0 is the DOS at the Fermi

energy, the gap equation becomes

1
g
≈ ν0

h̄ωD∫
0

dξ
tanh

(
(ξ2+|∆|2)1/2

2Tc

)
(ξ2 + |∆|2)1/2 (58)

Solving the gap equation Equation (58) one gets, at T = 0,

|∆0| = 2h̄ωDe−
1

ν0g . (59)
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Supposing that at a critical temperature, T = Tc, the thermal fluctuations spoil the super-
conductivity, ∆0(Tc) = 0, one gets

Tc = 2
eγ

π
h̄ωD e−

1
ν0g , (60)

with γ ≈ 0.5772, the Euler-Mascheroni number. Finally, for T < Tc the gap is

|∆0(T)| ∝
√

Tc(Tc − T) . (61)

3.2. Number Equation

The second equation that we should considered describes the mean number of parti-
cles, usually called number equation. Calculations with the full effective action (52) are
difficult, so one has to resort to an approximated scheme expanding the action close to the
classical solution of the gap equation. Considering ∆(x)=∆0 + δ∆(x), the action can be
expanded in the fluctuations of the auxiliary field at the desired order. The zeroth order is
equivalent to the mean field approximation. We will then include the fluctuations at the
Gaussian level so that

Se[∆] = Se[∆0] +
∫

dx
δSe[∆]
δ∆(x)

∣∣∣∣
∆0︸ ︷︷ ︸

= 0

δ∆(x)+

+
1
2

∫
dx1dx2

δ2Se[∆]
δ∆(x1)δ∆(x2)

∣∣∣∣
∆0

δ∆(x1)δ∆(x2) + o(∆3) (62)

3.2.1. Mean Field

At the mean field level the action is proportional to the grand canonical potential

Ω[∆0, ] = βSe[∆0] (63)

from which is possible to derive the equation for the mean number of particles

N = −∂Ω
∂µ

= ∑
k

[
1 +

1
β ∑

iωn

Tr

(
G0

∂G−1
0

∂µ

)]
= ∑

k

[
1− 1

β ∑
iωn

(
2ξk

ω2
n + E2

k

)]
(64)

Summing over the Matsubara frequencies one gets

N = ∑
k

[
1− ξk

Ek
tanh

(
Ek
2T

)]
(65)

Let us consider the cases at T = 0 and T = Tc.

At T = 0.

In order to study the behaviors of the gap ∆0 and of the chemical potential µ as
functions of the coupling, at T = 0, at the mean field level, the equations to solve are

1
g

=
1
V ∑

k

1
2Ek

(66)

n =
1
V ∑

k

(
1− ξk

Ek

)
(67)

where n = N/V , the particle density.
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At T = Tc.

On the other hand if we want to calculate the critical temperature Tc, putting by
definition ∆0(Tc) = 0, at the mean field level the equation to solve in terms of Tc are

1
g

=
1
V ∑

k

tanh( ξk
2Tc

)

2ξk
(68)

n =
1
V ∑

k

[
1− tanh

(
ξk
2Tc

)]
. (69)

3.2.2. Inclusion of the Gaussian Fluctuations

Let us now include quantum fluctuations beyond the mean field approach at the
Gaussian level. The fermionic propagator appearing in Equation (52), in momentum space,
can be written as

G−1 =

(
iωn − ξk ∆

∆∗ iωn + ξk

)
=

(
iωn − ξk 0

0 iωn + ξk

)
+

(
0 ∆

∆∗ 0

)
≡ Ĝ−1 + ∆̂ (70)

Expanding the logarithm for small ∆ one gets

ln(G−1) = ln(Ĝ−1(I+ Ĝ∆̂)) = ln(Ĝ−1) + Ĝ∆̂− 1
2

Ĝ∆̂Ĝ∆̂ + O(∆3) (71)

The linear term in ∆̂ has a vanishing trace, therefore, up to second order the action is
given by

Se[∆] = S(0)
e +

∫
d3r
∫ β

0
dτ
|∆(~r, τ)|2

g
+

1
2

Tr
(
Ĝ∆̂Ĝ∆̂

)
+ o(∆3) (72)

Making explicit the quadratic term in ∆ we have

Ĝ∆̂Ĝ∆̂ =

(
0 G11∆

G22∆∗ 0

)(
0 G11∆

G22∆∗ 0

)
=

(
G11∆G22∆∗ 0

0 G22∆∗G11∆

)
All the calculation can be done in momentum space

1
2

Tr(Ĝ∆̂Ĝ∆̂) = Tr(G22∆∗G11∆) =
1

βV ∑
q

∆∗(q)

[
∑
k

G11(k)G22(k− q)

]
∆(q) (73)

where k = (k, iωn) and q = (q, iνm) are the four-momenta and Ĝ(k) is given by

Ĝ(k) = Ĝ(k, iωn) =

(
G11 0
0 G22

)
=

(
1

iωn−ξk
0

0 1
iωn+ξk

)
(74)

whose components fulfill the property G11(k) = −G22(−k) that can be exploited to rewrite
the quadratic term. Calling for simplicity G11(k) = G(k), we have

1
2

Tr(Ĝ∆̂Ĝ∆̂) = ∑
q

∆∗(q)

[
− 1

βV ∑
k

G(k)G(q− k)

]
∆(q) ≡∑

q
∆∗(q)χ(q)∆(q) (75)

where we defined the function χ(q) which, after performing the summation over the
Matsubara frequencies iωn, reads

χ(q) =
1

βV ∑
k,iωn

1
iωn − ξk

· 1
iωn − iνm + ξq−k

=
1
V ∑

k

1− nF(ξk)− nF(ξq−k)

iνm − ξk − ξq−k
(76)
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where nF is the Fermi distribution. The action at second order in ∆, corresponding to the
inclusion of the Gaussian fluctuation around mean field solution, is

Se[∆] = S(0)
e + ∑

q
∆∗(q)Γ−1(q)∆(q) + o(∆3) (77)

where we introduced the function

Γ−1(q) =
1
g
+

1
V ∑

k

1− nF(ξk)− nF(ξk−q)

iνm − ξk − ξk−q
(78)

The partition function at the Gaussian level is, therefore,

ZG = Z0

∫
D∆∗D∆ e−∑q ∆∗(q)Γ−1(q)∆(q) = Z0 det(Γ) (79)

with the definition Z0 = e−S(0)
e , which can be written as

Z0 det(Γ) = Z0 e− ln[det(Γ−1)] = Z0 e−Tr[ln(Γ−1)] = e−S(0)
e −Tr[ln(Γ−1)] (80)

the grand canonical potential is shown to be

ΩG = − 1
β

ln(ZG) =
1
β

S(0)
e +

1
β

Tr[ln(Γ−1)] (81)

The number equation, at the Gaussian level, is given by

n = − 1
V

∂ΩG
∂µ

= n(0) + n(2) (82)

where
n(2) = − 1

βV
∂

∂µ
Tr[ln(Γ−1)] = − 1

βV
∂

∂µ ∑
q,iνm

ln(Γ−1(q, iνm)) (83)

The first term in Equation (82) is simply the density of particles at the mean field level
while the second one is due to the quantum corrections. In general if ln

(
Γ−1(q, z)

)
, has

poles in the complex plane at z= zj (j = 0, 1, 2 . . . ) and a branch cut on the real axis, the sum
over Matsubara frequencies can be rewritten as

1
β ∑

iνn

ln(Γ−1(q, iνn)) = ∑
j

nB(zj)Res
[
ln(Γ−1(q, zj))

]
−

− 1
2πi

∫ +∞

−∞
dω nB(ω)

[
ln(Γ−1(q, ω + iε))− ln(Γ−1(q, ω− iε))

]
(84)

In our case the integrand has poles only on the cut, so that this formula reduces to

1
β ∑

iνn

ln(Γ−1(q, iνn)) =
1

2πi

∫ +∞

−∞
dω nB(ω)

[
ln(Γ−1(q, ω− iε))− ln(Γ−1(q, ω + iε))

]
(85)

where nB is the Bose distribution. Since Γ(q, ω) has to be real on the real axis, it can be
written as a modulus times a phase. Defining a phase shift δ(q) as in Ref. [4], we can write

Γ(q, ω± iε)−1 =
∣∣∣Γ(q, ω± iε)−1

∣∣∣e±iδ(q,ω+iε) (86)

therefore
1
β ∑

iνn

ln(Γ−1(q, iνn)) = = − 1
π

∫ +∞

−∞
dω nB(ω)δ(q, ω) (87)
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At the Gaussian level, therefore, the density of particles can written in the following form

n = n(0) +
1

πV ∑
q

∫ +∞

−∞
dω nB(ω)

∂δ(q, ω)

∂µ
. (88)

The number and the gap equations allow us to find the critical temperature and the chemical
potential as functions of the interaction strength. In the following section we will solve
those equations, first at the mean field level and then with Gaussian fluctuations. However,
before we proceed with the calculation, due to the presence of a contact potential, we notice
that the right-hand-side of Equation (57) has an ultraviolet divergence that has to be cured.

4. BCS-BEC Crossover

In this section we will derive the critical temperature Tc and the chemical potential
at Tc as functions of the interaction coupling, discussing the limits of strong and weak
attraction, namely the BEC and the BCS limits, respectively, solving the gap equation and
the number equation introduced previously. In Section 2.2 we showed that an effective
contact potential, V(r) = −gδ(r), can reproduce the same scattering properties of a realistic
potential, in the low energy limit, if g and the scattering length as satisfy the relation in
Equation (40), reported here for convenience

m
4πas

= − 1
g
+

1
V ∑

k

1
2εk

(89)

Let us substitute the coupling g from Equation (89) in the gap equation Equation (57),
linking in this way the toy model discussed until now with a realistic ultracold gas, through
the experimentally accessible scattering length as. In this way the gap equation reads

− m
4πas

=
1
V ∑

k

(
tanh(ξk/2Tc)

2ξk
− 1

2εk

)
(90)

The divergence in the gap equation is exactly canceled out by the divergence in Equa-
tion (89). The limits of strong (g→ ∞) and weak coupling (g→ 0) have to be reviewed in
terms of as which is now the tuning parameter along the crossover. For this purpose it is
useful to introduce an ultraviolet cut-off Λ so that Equation (89) becomes

m
4πas

= − 1
g
+

1
V ∑
|k|<Λ

1
2εk

(91)

In the limit g → 0, namely in the BCS limit, the cut-off Λ does not play any role and
eventually can be sent to infinity, therefore the scattering length is negative and 1

as
→ −∞.

In the limit g→ ∞, namely in the BEC limit, we get, instead,

m
4πas

=
1
V ∑
|k|<Λ

1
2εk

=
1

2π2

∫ Λ

0
dk

k2

2εk
=

m
2π2

∫ Λ

0
dk =

m
2π2 Λ (92)

Sending the cut-off to infinity the limit of strong interaction can be captured for 1
as
→ +∞.

Since the scattering length comes from the low energy limit of the interaction, it is an
intrinsic parameter and not an adjustable property of the potential. However, as already
mentioned, by the mechanism of the Feshbach resonance, the scattering length can be
modified on a wide range of values, therefore it is the tunable parameter along the crossover.
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4.1. Mean Field Theory

At the mean field level one has to simultaneously solve the gap and the number
equations found previously,

− m
4πas

=
1
V ∑

k

(
tanh(ξk/2Tc)

2ξk
− 1

2εk

)
(93)

n =
1
V ∑

k

[
1− tanh

(
ξk
2Tc

)]
(94)

We will discuss in what follows the weak (BCS) and the strong (BEC) interacting limits.

4.1.1. Weak Coupling

Let us consider the number equation Equation (94), which, in the continuum limit,
reminding that εk = k2

2m and introducing the density of state, becomes

n =
(2m)

3
2

2π2

∫ ∞

0

√
ε

e
ε−µ
Tc + 1

dε (95)

For Tc very small one can resort to the well-known Sommerfield expansion, getting for the
density of particle at low temperature

n = (2m)
3
2

[
1

3π2 µ
3
2 +

1
24

T2
c

µ1/2 + o(T4
c )

]
(96)

At fixed density n = (2mεF)3/2

3π2 , which is the typical experimental situation, this equation of

state implies ε3/2
F = µ

3
2 + π2

8
T2

c
µ1/2 + o(T4

c ), and solving for µ we find an explicit relationship
between the chemical potential and the temperature

µ = εF −
π2

12
T2

c
εF

+ o(T4
c ) (97)

The chemical potential is, therefore, almost constant, µ ' εF. Thermal corrections occur
only at second order. Exploiting this result, we can solve the gap equation Equation (93),
as done in Ref. [77]. With constant chemical potential, Equation (93) fixes the behavior
of the critical temperature Tc as a function of the scattering length. In the continuum
limit, after introducing the density of state and after a change of variables, x = ε/µ,
Equation (93) becomes

− π

kFas
=
∫ ∞

0
dx
√

x
(

tanh(µ(x− 1)/2Tc)

x− 1
− 1

x

)
(98)

At µ = εF and supposing Tc � εF one gets π
kF as

= −2 ln( 8eγεF

e2πTc
), with γ being the Eulero–

Mascheroni number. We remember that as has a small negative value in the weak coupling
limit. Solving in terms of Tc we obtain

Tc =
8eγ

πe2 εF e−
π

2kF |as | (99)

a critical temperature exponentially small in the weak coupling limit, in agreement with
the BCS theory and consistently with the hypothesis Tc � εF.

4.1.2. Strong Coupling

In the strong coupling limit, we will solve first the gap equation Equation (93) to
obtain the chemical potential µ which is expected to be very large and negative, as in the
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case of free fermions at high temperatures, and that |µ(Tc)| � Tc. Taking advantage of this
ansatz, whose validity will be proved a posteriori, we have

− m
4πas

=
m3/2T1/2

c

2π2

∫ ∞

0
dx
√

x
(

tanh(x− µ̃)

x− µ̃
− 1

x

)
(100)

where we defined µ̃ = µ(Tc)
2Tc

. For |µ̃| � 1, we can approximate tanh(x−µ̃)
x−µ̃ ≈ 1

x−µ̃ , so that,
rescaling x → −µ̃x, we get

− m
4πas

≈ m3/2T1/2
c

2π2

√
−µ̃

∫ ∞

0
dx

√
x

x(x + 1)
=

m3/2

2π

√
−µ (101)

The relation between the chemical potential and the scattering length, in the strong coupling
limit, is, therefore, given by

µ ≈ − 1
2ma2

s
=

Eb
2

(102)

where we used Equation (35) (here h̄ = 1), reminding, from Section 2.1, that for positive
scattering length the two-body problem supports the existence of a bound state with
energy Eb. We will use Equation (102) in the number equation Equation (94) to derive the
critical temperature. After introducing the density of state and after a rescaling, in the limit
1
as
→ +∞, we have

n =
(2m)

3
2

2π2

∫ ∞

0

√
ε

e
ε−µ
Tc + 1

dε ≈ (2mTc)
3
2

2π2 e
µ
Tc

∫ ∞

0

√
xe−xdx =

(mTc)
3
2

√
2π

3
2

e−
|Eb |
2Tc

At fixed density of particles along the crossover, n = (2mεF)3/2

3π2 , we have
(

εF
|Eb |

) 3
2 ∝(

Tc
|Eb |

) 3
2 e−

|Eb |
2Tc , therefore in the strong coupling limit the leading term for the critical temper-

ature at the mean field level is given by

Tc ≈
|Eb|

3 ln(|Eb|/εF)
, (103)

namely, Tc grows to infinity in the deep strong coupling regime. Actually this is the
temperature at which Cooper pairs break down due to thermal fluctuations, since it was
derived imposing ∆(Tc) = 0, namely in a system of free fermions. It is then naturally
expected that when the interaction becomes strong, this approximation fails. As we have
seen, at strong coupling, Tc/εF � 1, the gas is out of the degenerate regime. Actually,
at high temperatures the system is described by a mixture of free particles and pairs,
both following almost a Maxwell–Boltzmann distribution therefore the equilibrium can
be imposed by he condition µp = 2µ f , namely when the chemical potential of the pairs
matches twice the chemical potential of the unpaired fermions. In this picture Tc can be
seen as the dissociation temperature for the pairs.

4.1.3. Along the Crossover

Let us consider Equations (93) and (94) in the continuum limit. Defining y = 1
kF as

and
µ̃ = µ

2Tc
, working at fixed density, we can write

y
(

εF

Tc

) 1
2
= −
√

2
π

∫ ∞

0

√
x
(

tanh(x− µ̃)

x− µ̃
− 1

x

)
dx ≡ Ig(µ̃) (104)(

εF

Tc

) 3
2
=

3
√

2
2

∫ ∞

0
(1− tanh(x− µ̃))dx ≡ I0(µ̃) (105)



Condens. Matter 2021, 6, 16 19 of 59

These integrals can be calculated numerically for different values of µ̃, building the lists of
values for

(
µ
εF

, y
)

and
(

Tc
εF

, y
)

. The graphs reported in Figure 1 are obtained in this way,
confirming the analytical results at mean field level.
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Figure 1. Critical temperature Tc and chemical potential µ at Tc as functions of the inverse of the
scattering length as. The dashed lines are the analytical results from Equations (99) and (102).

4.2. Beyond Mean Field: Gaussian Fluctuations

As seen previously, the second order expansion of the action is given by Equation (77),
which is

Se[∆] = S(0)
e + ∑

q
Γ−1(q)|∆(q)|2 + o(∆3) (106)

with Γ−1(q) given by Equation (78). After regularizing the contact interaction through
Equation (89), and after a shift of the momenta k→ k + q/2 in order, for simplicity, to get
rid of the angular dependence in the denominator on the angle defined by k · q = kq cos θ,
we can write

Γ−1(q) = −
{

m
4πas

+
1
V ∑

k

[
1− nF(ξk+q/2)− nF(ξk−q/2)

ξk+q/2 + ξk−q/2 − iνn
− 1

2εk

]}
(107)

The sum is invariant under k→ −k, therefore the numerator [1−nF(ξk+q/2)−nF(ξk−q/2)]

can be written as [1− 2nF(ξk+q/2)] = tanh
(

ξk+q/2
2Tc

)
, getting simply

Γ−1(q) = −

 m
4πas

+
1
V ∑

k

 tanh
(

ξk+q/2
2Tc

)
ξk+q/2 + ξk−q/2 − iνn

− 1
2εk

 (108)

In the continuum limit and writing explicitly the spectra ξk±q/2 = |k±q/2|2
2m we have

Γ−1(q) = − m
4πas

− m
(2π)2

∫ 1

−1
d cos θ

∫
dkk2

 tanh
(

k2+q2/4−2mµ+kq cos θ
4mTc

)
k2 + q2/4− 2mµ− imνn

− 1
k2

 (109)

The dependence on cos θ is only in the hyperbolic tangent and we can integrate over it,
using

∫ 1
−1 dx tanh(a + bx) = 1

b [ln(cosh(a + b))− ln(cosh(a− b))],

∫ 1

−1
dx tanh

 k2 + q2

4 + kq x− 2mµ

4mTc

 =
4mTc

kq
[
A(k, q)− A(k,−q)

]
(110)

where

A(k, q) = ln
[

cosh
(
(k + q/2)2

4mTc
− µ

2Tc

)]
(111)
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We have, at the end, the following expression

Γ−1(q) = −
{

m
4πas

+
m

(2π)2

∫ +∞

0
dkk2

[
4mTc

kq
A(k, q)− A(k,−q)

k2 + q2/4− 2mµ− imνn
− 2

k2

]}
(112)

Let us consider the weak and the strong coupling limits.

4.2.1. Weak Coupling

In the weak coupling limit the chemical potential is finite and the critical temperature
and the scattering length go to zero, as → 0−. Without entering into the details we have

Γ−1(q) = − m
4π

(
1
as

+ f (q, µ)

)
(113)

where f (q, µ) some complex function of the four-momentum q (momentum and frequency)
and chemical potential µ. In the weak coupling limit, approximately Γ−1(q) does not

depend on critical temperature since, for small Tc we have A(k, q) ∼ 1
2Tc

∣∣∣ (k+q/2)2

2m − µ
∣∣∣.

Calculating explicitly the second order correction to the density of particles, we have

n(2) =
1

βV
∂

∂µ ∑
q

ln
(

Γ−1(q)
)

=
1

βV ∑
q

1
1
as
+ f (q, µ)

∂ f (q, µ)

∂µ
−→

as→0−

as

βV ∑
q

∂ f (q, µ)

∂µ
∝ as (114)

In this limit the correction to the density of particles is proportional to the scattering length
and therefore is negligible. As a result the chemical potential will be almost constant,
µ ≈ εF, and since also the gap equation is unchanged, in the limit 1

kF as
→ −∞, the critical

temperature is expected to be almost the same as that obtained at the mean field level.
In other words, the Gaussian fluctuations are not so effective at weak coupling. This
expectation will be confirmed by numerical calculations.

4.2.2. Strong Coupling

As we will see, in the strong coupling limit the effective partition function is equivalent
to that of a system of free bosons whose critical temperature is that of the BEC. In order
to prove this result we first need to manipulate Γ−1. As we have seen, in the BEC limit,
βµ→ −∞ and 1/kFas → ∞. For a large and negative chemical potential

A(k, q) = ln

cosh

 (k+q/2)2

2m − µ

2Tc

 −→
µ→−∞

(k+q/2)2

2m − µ

2Tc
(115)

therefore

A(k, q)− A(k,−q) −→
µ→−∞

(k+q/2)2

2m − µ

2Tc
−

(k−q/2)2

2m − µ

2Tc
=

kq
2mTc

(116)

Inserting this result in Equation (112), after integration, we get

Γ−1(q) ≈ − m
4π

(
1
as
−
√

q2

4
− 2mµ− imνn

)
(117)

Taking advantage of the definition of the bound state Eb = − 1
ma2

s
, and defining µB =

2µ− Eb, we can write

Γ−1(q) ≈ 1
R(q)

[
iνn −

(
q2

4m
− µB

)]
(118)
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where R(q) = 4π
m3/2

(√
−Eb +

√
q2

4m − 2µ− iνn

)
, which is simply R(q) ≈ 8π

m2as
for small

fluctuations in the deep BEC limit. The quantity µB can be seen as the chemical potential for
free bosons, which makes sense only if it is negative. The partition function takes the form

ZG = Z0

∫
D∆∗D∆ e−∑q Γ−1(q)|∆(q)|2 ≈ Z0

∫
D∆∗D∆ e

−∑q

[
iνn−

(
q2
4m−µB

)] |∆(q)|2
R(q) (119)

Rescaling the fields φ(q) = ∆(q)√
R(q)

and defining mB = 2m the partition function at the

Gaussian level is equivalent to that for free bosons with mass mB (equal to the mass of
two fermions)

ZG ∝
∫

Dφ∗Dφ e
−∑q φ∗(q)

[
iνn−

(
q2

2mB
−µB

)]
φ(q)

(120)

Now we can take advantage of the well-known expression for the critical temperature for
the Bose–Einstein condensation which is given by

Tc =
2π

mB

(
nB

2ζ(3/2)

) 2
3

(121)

If in the deep BEC regime all fermions form pairs, therefore nB = n/2. At fixed fermionic

density n = (2mεF)2/3

3π2 , we have

Tc =
2π

mB

(
nB

2ζ(3/2)

) 2
3
=

π

m

(
(2mεF)3/2

6π2ζ(3/2)

) 2
3

=

( √
2

3
√

π ζ(3/2)

) 2
3

εF ≈ 0.218 εF (122)

According to the BEC theory, at the critical point, the effective chemical potential approaches
zero from negative values, therefore

µB(Tc) = 2µ(Tc)− Eb −→
1

kF as
→∞

0 (123)

which is exactly the solution of the gap equation in the strong coupling limit, Equation (102).

4.2.3. Full Crossover

As shown in Section 3.2.2, the set of equations to solve at second order is

− m
4πas

=
1
V ∑

k

(
tanh(ξk/2Tc)

2ξk
− 1

2εk

)
(124)

n = n(0) + n(2) =
1
V ∑

k

[
1− tanh

(
ξk
2Tc

)]
+

1
πV ∑

q

∫ +∞

−∞
dω nB(ω)

∂δ(q, ω)

∂µ
(125)

with the phase shift δ(q, ω) = −Arg
(
Γ−1(q, ω + iε)

)
. We need, therefore, to find the

second term of the number equation, n(2), possibly resorting also to some approximations.

Bosonic Approximation

As we have seen before, the corrections due to quantum fluctuations are more im-
portant in the BEC regime while they are negligible in the BCS weak coupling regime.
The inverse of the vertex function in the strong coupling limit is

Γ−1(q) ≈ iνn −
(

q2

2mB
− µB

)
(126)

which describes a system of free bosons, with µB = 2µ− Eb and mB = 2m. We can use this
simple result as a first approximation to include Gaussian fluctuations in order to calculate
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the critical temperature. This approximation consists of simply substituting the second
order correction n(2) in the number equation Equation (125) with the density of free bosons
whose inverse propagator is given by Equation (126). It is well known that the critical
temperature Tc of free bosons is given by Equation (121). Let us suppose that the number of
bosonic excitations composed by pairs of fermions is nB = 2n(2), while the rest of fermions
remains unpaired. In this approximation, using Equation (121), we have, therefore,

n(2) ≈ 2 ζ(3/2)
(

mTc

π

)3/2
(127)

As a result, we have to solve Equation (124) together with the number equation which,
in the bosonic approximation, reads

n =
1
V ∑

k

[
1− tanh

(
ξk
2Tc

)]
+ 2ζ(3/2)

(
mTc

π

)3/2
. (128)

After defining the following quantities

y =
1

kFas
, µ̄ =

µ

εF
, T̄c =

Tc

εF
(129)

in the continuum limit, Equations (124) and (128), at fixed density n = k3
F

3π2 can be written as

y = − 2
π

∫ ∞

0
dx x2

 tanh
(

x2−µ̄
2T̄c

)
x2 − µ̄

− 1
x2

 (130)

2
3
=
∫ ∞

0
dx x2

[
1− tanh

(
x2 − µ̄

2T̄c

)]
+ 2 ζ(3/2)

√
π

2
T̄3/2

c (131)

This set of equations can be easily solved numerically, finding the lists of values (T̄c, µ̄, y)
which fulfill the two equations. Some results are reported in Figure 2.
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Figure 2. Critical temperature Tc and chemical potential µ at Tc within the bosonic approximation.
The dashed lines are the mean field results.

Exact Gaussian Fluctuations

Let us work further on the function Γ−1(q, ω + iε), as obtained in Equation (112).
With the rescalings µ̃ = µ

2Tc
, p = k√

4mTc
and Q = q√

4mTc
, the function A(k, q) becomes

A(k, q) = ln

cosh

 (k+q/2)2

2m − µ

2Tc

 = ln
[
cosh

(
(p + Q/2)2 − µ̃

)]
= Ã(p, Q) (132)
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Making the same substitutions in the vertex function, after a Wick rotation in the frequencies
(νn → ω + iε, with ε > 0 an infinitesimal quantity), we can define Γ−1(q, ω + iε) =
Γ̃−1(Q, ν + iε), with the rescaled real frequency ν = ω

4Tc
,

Γ̃−1(Q, ν + iε) = −
( m

4π

){ 1
as

+

√
4mTc

πQ

∫ ∞

0
dp

[
p
[
Ã(p, Q)− Ã(p,−Q)

]
p2 + Q2/4− µ̃− ν− iε

− 2Q

]}
(133)

We remind that, looking at Equation (88), the interesting part of the function Γ̃−1(Q, ν + iε)
is actually its argument, therefore, its prefactor is irrelevant. Within the range of integration
the integrand has a pole in p0 =

√
µ̃ + ν−Q2/4, if p0 real and positive. Defining the

function

t(p, Q) =
p
[
Ã(p, Q)− Ã(p,−Q)

]
− 2Q(p2 − p2

0)

p + p0
(134)

we can write

Γ̃−1(Q, ν + iε) = −C

[
Q y
(

εF

Tc

)1/2
+

√
2

π

∫ +∞

0

t(p, Q)

p− p0 − iε
dp

]
(135)

with the prefactor C = −
(m

2
)3/2

√
Tc

πQ . The integral in Equation (135) can be evaluated
knowing its Cauchy principal value∫ +∞

0

t(p, Q)

p− p0 ± iε
dp = P

∫ +∞

0

t(p, Q)

p− p0
dp∓ iπ

∫ +∞

0
δ(p− p0)t(p, Q) (136)

For (µ̃ + ν−Q2/4) > 0, namely for p0 real and positive, Γ−1 has an imaginary part. We
can write the vertex function Γ̃−1 and its argument δ̃ as it follows

Γ̃−1(Q, ν) = −C(X + iY), δ̃(Q, ν) = arctan
(

Y
X

)
(137)

where the real and imaginary parts of Γ̃−1 are given by

X = Q y
(

εF

Tc

)1/2
+

√
2

π
P
∫ ∞

0

t(p, Q)

p− p0
dp (138)

Y =
√

2 t(p0, Q) =
1√
2

[
Ã(p0, Q)− Ã(p0,−Q)

]
(139)

We obtained an analytic expression for the imaginary part of the vertex function. We
can now calculate the contribution to the density of particles due to quantum Gaussian
fluctuations from Equation (88), which by rescaling all the parameters, reads

n(2) =
1

πV ∑
q

∫ +∞

−∞
dω nB(ω)

∂δ(q, ω)

∂µ
(140)

=
(4mTc)3/2

π3

∫ +∞

0
dQ Q2

∫ +∞

−∞
dν

1
e4ν − 1

∂δ̃(Q, ν)

∂µ̃
≡ (2mTc)3/2

3π2 I2

(
µ̃, y
√

εF

Tc

)
Writing the number of particles in terms of εF, the final number equation can be rewritten as(

εF

Tc

)3/2
= I0(µ̃) + I2

(
µ̃, y
√

εF

Tc

)
(141)
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We have, therefore, to solve this equation together with the gap equation Equation (104).
The complete set of equations, obtained going beyond the mean field theory, with the
inclusion of the full Gaussian fluctuations contained in the function I2, is, therefore,

y
(

εF

Tc

)1/2
= Ig(µ̃) (142)(

εF

Tc

)3/2
= I0(µ̃) + I2

(
µ̃, Ig(µ̃)

)
(143)

This set of equations can be solved numerically with root-finding algorithms, finding the
values for (y, µ, Tc) which satisfy simultaneously the two equations. The results are shown
in Figure 3. In particular Equation (143) is actually an equation of state which put in relation
Tc and µ. As one can see from Figure 3, the quantum fluctuations are more important in
the BEC regime, namely in the strong coupling limit, as already discussed.
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Figure 3. Critical temperature Tc and chemical potential µ at Tc at the Gaussian level. The dashed
lines are the mean field results.

The failure of the mean field theory in correctly reproducing the behavior for the
critical temperature along the crossover is due to the fact that, in that scheme, the number
equation describes a set of non interacting fermions, disregarding, therefore, the two-body
physics which becomes relevant specially when the attraction becomes strong. We showed
that going towards strong coupling, the partition function of the system actually tends to
that of a system of bosons which can be seen as composed by pairs of fermions.

5. Fermi Gas with Spin-Orbit Interaction, Zeeman Term and Attractive Potential

The aim of the next sections is to see how the critical temperature along the BCS-BEC
crossover, described in the previous section, is modified by the presence of the spin–orbit
(SO) coupling discussed in section Section 1.2. Let us consider the following Hamiltonian
H = H0 + HI , in the momentum space, made by a single-particle term

H0 = ∑
k

Ψ̂†(k)
{ k2

2m
I+ vR(σxky − σykx) + vD(σxky + σykx) + hσz

}
Ψ̂(k) (144)

where Ψ̂(k) =
(

ψ̂↑(k)
ψ̂↓(k)

)
and an interacting term

HI = −
g
V ∑

k,k′ ,q
ψ̂†
↑(k + q)ψ̂†

↓(−k)ψ̂↓(q− k′)ψ̂↑(−k′) (145)

where σx =

(
0 1
1 0

)
and σy =

(
0 −i
i 0

)
are Pauli matrices. The new ingredient with

respect to the previous case is the spin–orbit interaction, contained in the two terms of the
single-particle Hamiltonian, respectively the Rashba term, vR(σxky − σykx), Equation (9),
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and the Dresselhaus term, vD(σxky + σykx), Equation (10). We included also an effective
artificial Zeeman term hσz, Equation (11), which can be tuned by a Raman laser [19]. This
Hamiltonian is associated, in the path-integral formalism, by the Grassmann variables ψ
and ψ†, to the partition function

Z = Tr
(

e−β(H−µN)
)
=
∫

Dψ†Dψ e−S[ψ† ,ψ] (146)

with the action

S[ψ†, ψ] = ∑
k,s

ψ†
s (k)

[
iωn +

k2

2m
− µ

]
ψs(k) −

g
βV ∑

k,k′ ,q
ψ†
↑(k+ q)ψ†

↓(−k)ψ↓(q− k′)ψ↑(k
′)

+ ∑
k

(
ψ†
↑(k), ψ†

↓(k)
)[

vR(σxky − σykx) + vD(σxky + σykx) + hσz

](
ψ↑(k)
ψ↓(k)

)
(147)

where ψs(k) and ψ†
s (k) are Grassmann variables depending on the four-momentum k =

(ωn, k). As already seen, the term with four fermions can be decoupled by means of an
Hubbard-Stratonovich transformation, introducing the auxiliary field ∆(q)

e
g

βV ∑
k,k′ ,q

ψ†
↑(k+q)ψ†

↓(−k)ψ↓(−k
′)ψ↑(k

′+q)

=
∫

D∆∗D∆ e
∑
q

[
− βV

g |∆|2+∑
k

(
∆∗(q)ψ↓(−k)ψ↑(k+q)+ψ†

↑(k+q)ψ†
↓(−k)∆(q)

)]
(148)

in this way the partition function takes the formZ =
∫

Dψ†Dψ
∫

D∆∗D∆ e−S[ψ† ,ψ,∆] where,
after defining

γ(k) = vR(kx + iky) + vD(kx − iky) (149)

the new action reads

S[ψ†, ψ, ∆] = ∑
k,s

ψ†
s (k)

[
iωn + ξ

(s)
k

]
ψs(k) + ∑

k

ψ†
↓(k)γ

∗(k)ψ↑(k) + ∑
k

ψ†
↑(k)γ(k)ψ↓(k)

+ ∑
q

βV
g
|∆(q)|2 −∑

q,k
∆∗(q)ψ↓(−k)ψ↑(k+ q)−∑

q,k
ψ†
↑(k+ q)ψ†

↓(−k)∆(q) (150)

where ξ
(↑)
k = ξk + h and ξ

(↓)
k = ξk − h. It is now convenient to introduce the following

Nambu–Jona-Lasinio multispinors

Ψ(k) =


ψ↑(k)

ψ†
↓(−k)
ψ↓(k)

ψ†
↑(−k)

 and Ψ̄(k) =
(

ψ†
↑(k), ψ↓(−k), ψ†

↓(k), ψ↑(−k)
)

(151)

so that Equation (150) can be written as

S[ψ†, ψ, ∆] =
βV
g ∑

q
|∆(q)|2 + 1

2 ∑
k,p

Ψ̄(k) G−1(k, p)Ψ(p) + β ∑
k

ξk (152)

where the sum β ∑k ξk comes from interchanging the fermionic fields and the correspond-
ing equal-time limiting procedure in order to write the action in a matrix form [77], namely
∑
k,s

ψ̂†
s (k)ξkψ̂s(k) = 1

2 ∑
k

ξk[ψ̂
†
↑(k)ψ̂↑(k)− ψ̂↑(−k)ψ̂†

↑(−k)+ ψ̂†
↓(k)ψ̂↓(k)− ψ̂↓(−k)ψ̂†

↓(−k)]

+∑
k

ξk. In Equation (152) we also introduced the following inverse Green function
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G−1(k, p) =


(iωn + ξk + h)δk,p −∆(p-k) γ(k)δk,p 0
−∆∗(k-p) (iωn − ξk + h)δk,p 0 −γ(−k)δk,p
γ∗(k)δk,p 0 (iωn + ξk − h)δk,p ∆(p-k)

0 −γ∗(−k)δk,p ∆∗(k-p) (iωn − ξk − h)δk,p

 (153)

where γ(−k) = −γ(k). Being the action quadratic, we can perform a Gaussian integral in
the Grassmann variables getting an effective theory which depends only on the auxiliary
complex field

Z =
∫

Dψ†DψD∆∗D∆ e−S[ψ† ,ψ,∆] ∝
∫

D∆∗D∆ eSe [∆] (154)

obtaining an effective action depending only on the pairing function

Se[∆] =
βV
g ∑

q
|∆(q)|2 − 1

2
ln
[
det
(
G−1

)]
+ β ∑

k
ξk . (155)

5.1. Gap Equation

As done in Section 3, we first search for the homogeneous pairing which minimizes the
action, selecting only the contribution at q = 0 in momentum space. Calling ∆(q = 0) = ∆0
the determinant appearing in Equation (155) is simply

det
(
G−1

)
= ∏

k,iωn ,j
(iωn − Ejk) (156)

where the energies are

E1k =

√
ξ2

k + γ2
hk + |∆0|2 − 2

√
ξ2

kγ2
hk + |∆0|2h2 (157)

E2k =

√
ξ2

k + γ2
hk + |∆0|2 + 2

√
ξ2

kγ2
hk + |∆0|2h2 (158)

and where

γhk =
√
|γ(k)|2 + h2 =

√
(vR + vD)2k2

y + (vR − vD)2k2
x + h2 (159)

with γ(k) = vR(ky + ikx) + vD(ky − ikx), Equation (149), and ξk = k2/2m− µ. vR and vD

are the Rashba and Dresselhaus velocities and h is the Zeeman field. The effective action,
therefore, takes the form

Se[∆0] =
βV
g
|∆0|2 −

1
2 ∑

k,iωn ,j
ln
(
iωn − Ejk

)
+ β ∑

k
ξk (160)

The saddle point equation sets the mean field solution and is given by the condition ∂Se
∂∆0

= 0

∆∗0
g

= − 1
2βV ∑

k,iωn ,j

1
iωn − Ejk

∂Ejk

∂∆0
(161)
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After summing over the Matsubara frequencies the gap equation, in the presence of spin–
orbit interaction and Zeeman term, reads

1
g
=

1
4V ∑

k

 tanh(βE1k/2)
E1k

1− h2√
ξ2

kγ2
hk + |∆0|2h2


+

tanh(βE2k/2)
E2k

1 +
h2√

ξ2
kγ2

hk + |∆0|2h2

 (162)

5.2. Number Equation

As seen in the previous case, from the full action we can not calculate the partition
function exactly. The approximation scheme that we will employ is based again on the
expansion of the action in the gap field, as in Equation (62). The zeroth order is equivalent to
the mean field approximation. We will then include the fluctuations at the Gaussian level.

5.2.1. Mean Field

The effective action, at mean field level, is the action in Equation (160), evaluated
at the homogeneous solution of the gap equation, corresponding to the saddle point
approximation. The associated grand canonical potential is simply Ω[∆0, ] = βSe[∆0]. The
mean number of particles, defined by N = − ∂Ω

∂µ is, therefore, given by

N =
1

2β

∂

∂µ ∑
k,iωn ,j

ln
(
iωn − Ejk

)
− ∂

∂µ ∑
k

ξk = ∑
k

(
1− 1

2β ∑
iωn ,j

1
iωn − Ejk

∂Ejk

∂µ

)
(163)

Summing over the Matsubara frequencies, the number equation, at the mean-field level, reads

N = ∑
k

1− tanh(βE1k/2)
2E1k

ξk −
ξkγ2

hk√
ξ2

kγ2
hk + |∆0|2h2


− tanh(βE2k/2)

2E2k

ξk +
ξkγ2

hk√
ξ2

kγ2
hk + |∆0|2h2

 (164)

Let us consider in what follows the cases at T = 0 and T = Tc.

At T = 0.

In order to study the behavior of the gap and of the chemical potential as functions of
the coupling, at T = 0, the equations to solve at mean field level are

1
g
=

1
4V ∑

k

 1
E1k

1− h2√
ξ2

kγ2
hk + |∆0|2h2

+
1

E2k

1 +
h2√

ξ2
kγ2

hk + |∆0|2h2

 (165)

n =
1
V ∑

k

1− 1
2E1k

ξk −
ξkγ2

hk√
ξ2

kγ2
hk + |∆0|2h2

− 1
2E2k

ξk +
ξkγ2

hk√
ξ2

kγ2
hk + |∆0|2h2

(166)

where n = N/V is the particle density. This set of equations, for h = 0, has been solved
in Ref. [32]. We will focus, instead, on the finite temperature case, in particular at the
critical point.
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At T=Tc.

If we want to calculate the critical temperature Tc, putting by definition ∆0(Tc) = 0,
at the mean field level the equation to solve in terms of Tc are the following

1
g
=

1
4V ∑

k

 tanh
(

ξk−γhk
2Tc

)
ξk − γhk

(
1− h2

ξkγhk

)
+

tanh
(

ξk+γhk
2Tc

)
ξk + γhk

(
1 +

h2

ξkγhk

) (167)

n =
1
V ∑

k

{
1− 1

2

[
tanh

(
ξk − γhk

2Tc

)
+ tanh

(
ξk + γhk

2Tc

)]}
(168)

These equations should be solved in order to obtain the critical temperature and the
chemical potential, at Tc, as functions of the coupling g. The latter can be also written as

n =
1
V ∑

k

(
1− sinh(ξk/Tc)

cosh(ξk/Tc) + cosh(γhk/Tc)

)
. (169)

5.2.2. Inclusion of Gaussian Fluctuations at T = Tc

The inadequacy of the mean field approach, also with SO coupling, in the strong
coupling regime will be clarified later, and its reason is the same as before, based on the
fact that the number equation in Equation (168) is that of non-interacting fermions. It is,
therefore, necessary to extend the analysis including Gaussian fluctuations around the
mean field solution. We will get a second order term in the action, Se[∆] = S(0)

e + S(2)
e , in

addition to S(0)
e , the action of the non-interacting system but in the presence of spin–orbit

and Zeeman terms. As already seen, the following action has already a quadratic term
while the trace has to be expanded,

Se[∆] =
∫

d3r
∫ β

0
dτ
|∆(~r, τ)|2

g
− 1

2
Tr(ln(G−1)) + β ∑

k
ξk . (170)

The inverse of the Green function can be written in momentum space and in the Matsubara
frequency space as in Equation (153). It can be written as

G−1(k, p) = G−1(k, p) + ∆̂(k, p) (171)

where

G−1(k, p) =


(iωn + ξk + h) 0 γ(k) 0

0 (iωn − ξk + h) 0 γ(k)
γ∗(k) 0 (iωn + ξk − h) 0

0 γ∗(k) 0 (iωn − ξk − h)

δk,p

∆̂(k, p) =


0 −∆(p-k) 0 0

−∆∗(k-p) 0 0 0
0 0 0 ∆(p-k)
0 0 ∆∗(k-p) 0


We can now perform the series expansion of the logarithmic function

ln(G−1) = ln(G−1 + ∆̂) = ln
(

G−1(I+ G∆̂)
)
= ln(G−1) + G∆̂− 1

2
G∆̂G∆̂ +O(∆3) (172)
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The first term gives the action of the non-interacting system in the presence of spin–orbit
and Zeeman terms. The second term has a vanishing trace, as well as all the terms with
odd powers, Tr(G∆̂)2n+1 = 0. The action at second order in ∆̂ is, then, given by

Se[∆] = S(0)
e +

∫
d3r
∫ β

0
dτ
|∆(~r, τ)|2

g
+

1
4

Tr
(
G∆̂G∆̂

)
+ o(∆3) (173)

The inverse of G−1, the non-interacting Green function, in momentum space, is given by
G(k, p) = G(k) δk,p where

G(k) =



iωn+ξk−h
(iωn+ξk)2−γ2

hk
0 −γ(k)

(iωn+ξk)2−γ2
hk

0

0 iωn−ξk−h
(iωn−ξk)2−γ2

hk
0 −γ(k)

(iωn−ξk)2−γ2
hk

−γ∗(k)
(iωn+ξk)2−γ2

hk
0 iωn+ξk+h

(iωn+ξk)2−γ2
hk

0

0 −γ∗(k)
(iωn−ξk)2−γ2

hk
0 iωn−ξk+h

(iωn−ξk)2−γ2
hk

 (174)

Making the matrix product G∆̂G∆̂ and taking the trace we get

1
4

Tr(G∆̂G∆̂) =
1
2

Tr
(
G22∆∗G11∆− G24∆∗G31∆ + G44∆∗G33∆− G42∆∗G13∆

)
(175)

where Gij are the matrix elements of G. In momentum space Equation (175) reads

1
4

Tr(G∆̂G∆̂) = ∑
q

∆∗(q) χ(q)∆(q) (176)

where we define the function

χ(q) =
1

2βV ∑
k

[
G11(k)G22(k− q) + G33(k)G44(k− q)

−G13(k)G42(k− q)− G31(k)G24(k− q)
]

(177)

The Fourier transform of the first term in Equation (173) is
∫

d3r
∫ β

0 dτ
|∆(~r,τ)|2

g = ∑q
|∆(q)|2

g ,
therefore the action, at the second order in ∆, namely at the Gaussian level, can be written as

Se[∆] = S(0)
e + ∑

q
∆∗(q) Γ−1(q)∆(q) + o(∆3) (178)

where the same notation for Γ−1(q), used for the case without SO coupling, has been adopted

Γ−1(q) =
1
g
+ χ(q) (179)

but where now χ(q) ≡ χ(q, iνn) is more complicated than before. From Equations (174)
and (177) we get

χ(q, iνn) =
1

βV ∑
k,ωn

(iωn + ξk)(iωn + iνm − ξk−q) + h2 − Re[γ∗(k)γ(k− q)](
(iωn + ξk)2 − γ2

hk

)(
(iωn − iνn − ξk−q)2 − γ2

hk−q

) (180)
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It is convenient to make the shift k → k + q
2 and, after performing the sum over the

Matsubara frequencies, we obtain

χ(q, iνn) =
1

4V ∑
k

{(
1 + Ch

k,q

)1− nF

(
ξk+q/2 − γhk+q/2

)
− nF

(
ξk−q/2 − γhk−q/2

)
iνn − ξk+q/2 − ξk−q/2 + γhk+q/2 + γhk−q/2

+
(

1 + Ch
k,q

)1− nF

(
ξk+q/2 + γhk+q/2

)
− nF

(
ξk−q/2 + γhk−q/2

)
iνn − ξk+q/2 − ξk−q/2 − γhk+q/2 − γhk−q/2

+
(

1− Ch
k,q

)1− nF

(
ξk+q/2 − γhk+q/2

)
− nF

(
ξk−q/2 + γhk−q/2

)
iνn − ξk+q/2 − ξk−q/2 + γhk+q/2 − γhk−q/2

(181)

+
(

1− Ch
k,q

)1− nF

(
ξk+q/2 + γhk+q/2

)
− nF

(
ξk−q/2 − γhk−q/2

)
iνn − ξk+q/2 − ξk−q/2 − γhk+q/2 + γhk−q/2

}

where

Ch
k,q =

Re[γ∗(k + q
2 )γ(k−

q
2 )]− h2

γhk+q/2 γhk−q/2
(182)

=
(vR + vD)2(k2

y −
q2

y
4 ) + (vR − vD)2(k2

x −
q2

x
4 )− h2

γhk+q/2 γhk−q/2

with
γh k±q/2 =

√
(vR + vD)2

(
ky ± qy/2

)2
+ (vR − vD)2(kx ± qx/2)2 + h2 (183)

For vD = 0, namely with only the Rashba coupling, we have

Ch
k,q =

|k⊥|2 − |q⊥/2|2 − (h/vR)2√
[|k⊥ − q⊥/2|2 + (h/vR)2][|k⊥ + q⊥/2|2 + (h/vR)2]

(184)

where k⊥ = (kx, ky, 0) are momenta perpendicular to the z-direction, the Zeeman direction.
For vR = vD = v/2, namely for equal Rashba and Dresselhaus couplings, we have, instead,

Ch
k,q =

v2(k2
y − q2

y/4)− h2√
[v2(ky − qy/2)2 + h2][v2(ky + qy/2)2 + h2]

(185)

which, for h = 0, namely without the Zeeman field, it reduces to simply C0
k,q = 1.

Employing the symmetry k → −k under the sum we can simplify Equation (182) as
it follows

χ(q, iνn) =
1

4V ∑
k

{(
1 + Ch

k,q

)[ 1− 2nF

(
ξk+q/2 − γhk+q/2

)
iνn − ξk+q/2 − ξk−q/2 + γhk+q/2 + γhk−q/2

+
1− 2nF

(
ξk+q/2 + γhk+q/2

)
iνn − ξk+q/2 − ξk−q/2 − γhk+q/2 − γhk−q/2

]
(186)

+
(

1− Ch
k,q

)2− 2nF

(
ξk+q/2 − γh

hk+q/2

)
− 2nF

(
ξk−q/2 + γh

hk−q/2

)
iνn − ξk+q/2 − ξk−q/2 + γh

hk+q/2 − γh
hk−q/2


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or, in terms of the hyperbolic tangent,

χ(q, iνn) =
1

4V ∑
k

(1 + Ch
k,q

) tanh
(

ξk+q/2−γhk+q/2
2T

)
iνn − ξk+q/2 − ξk−q/2 + γhk+q/2 + γhk−q/2

+
tanh

(
ξk+q/2+γhk+q/2

2T

)
iνn − ξk+q/2 − ξk−q/2 − γhk+q/2 − γhk−q/2

 (187)

+
(

1− Ch
k,q

) tanh
(

ξk+q/2−γhk+q/2
2T

)
+ tanh

(
ξk−q/2+γhk−q/2

2T

)
iνn − ξk+q/2 − ξk−q/2 + γhk+q/2 − γhk−q/2


We found, therefore, that Γ−1(q) is much more complicated that that obtained in the
previous standard case without spin–orbit coupling. However, the partition function has
the same form as that shown in Equation (79), and, therefore, it is possible to apply the
same procedure seen before (in Section 3.2.2) to find the grand canonical potential and
the density of particles. This is again due to the fact that the analytical continuation of
Γ−1(q, z) has only a branch-cut of simple poles in the real axis. The density of particles is,
then, given by

n = n(0) + n(2) (188)

where n(0) is the mean field contribution as in Equation (168) while the second order term
is given by

n(2) =
1

βV
∂

∂µ
Tr(ln(Γ−1)) =

1
πV ∑

q

∫ +∞

−∞
dω nB(ω)

∂δ(q, ω)

∂µ
(189)

where the phase shift δ(q, ω) is defined as before

δ(q, ω) = lim
ε→0

Arg
(

Γ(q, ω + iε)−1
)

(190)

after a Wick rotation iνn → ω + iε.

5.3. Critical Point

Taking the static and homogeneous limit of Equation (188), after noticing that, at q = 0,

Ch
k,0 = 1− 2h2

γ2
hk

(191)

we have that, at T = Tc, χ(0, 0) is simply given by

χ(0, 0) = − 1
4V ∑

k


(

1− h2

γ2
hk

) tanh
(

ξk−γhk
2Tc

)
ξk − γhk

+
tanh

(
ξk+γhk

2Tc

)
ξk + γhk


+

h2

γ2
hk

 tanh
(

ξk−γhk
2Tc

)
+ tanh

(
ξk+γhk

2Tc

)
ξk

 (192)

We find that the equation Γ−1(0) = 0, namely

1
g
= −χ(0, 0) (193)
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is exactly the same equation reported in Equation (167) after reshuffling the terms. The set
of equations that has to be solved, at the Gaussian level, in order to find Tc and µ at Tc is
given by Equation (193), together with Equation (188).

6. BCS-BEC Crossover with Spin-Orbit Coupling

For the same reason discussed before, the introduction of a contact potential gives rise
to divergences that can be regularized by the same procedure. For simplicity we will focus
on the case without Zeeman term, h = 0. As shown in Appendix D and in Refs. [44,45], the
presence of a SO coupling does not alter the form of the renormalization condition for a
contact pseudo-potential. The only caution to be taken is to replace as with ar, a scattering
length which depends both on the interatomic potential and on the SO term

m
4πar

= − 1
g
+

1
V ∑

k

1
2εk

(194)

therefore, the arguments used to implement the BCS and BEC limits in terms of the
scattering length remains unchanged.

6.1. Mean Field

At the mean field level the equations to solve along the crossover are Equations (167)
and (168). Implementing Equation (194), for h = 0, the equations useful to derive the
critical temperature Tc and the chemical potential µ within the mean field theory become

− m
4πar

= 1
4V ∑k

{
tanh( ξk−γk

2Tc )

ξk−γk
+

tanh( ξk+γk
2Tc )

ξk+γk
− 2

εk

}
(195)

n =
1
V ∑

k

{
1− 1

2 tanh
(

ξk−γk
2Tc

)
− 1

2 tanh
(

ξk+γk
2Tc

)}
(196)

where γk ≡ γ0k, as reported in Equation (159) with h = 0. Additionally in this case the
number equation is the same as that of free fermions, therefore we expect that the mean
field level will fail in correctly reproducing the thermodynamic quantities in the strong
coupling limit.

Let us consider Equation (195). Contrary to the case without SO, the mass cannot be
eliminated from the equations by simply redefining the momenta, but it can be incorporated
in the couplings ṽD = vD

vF
= mvD

kF
and similarly for vR. In the continuum limit, with the

natural change of variables and substitutions ~p = 1
kF
~k, µ̃ = µ

εF
, T̃c =

Tc
εF

, ṽR = vR
vF

, ṽD = vD
vF

,
γ̃p(ṽR, ṽD) = 2γk(vR, vD), the gap equation can be written as

− m
4πar

=
k3

F

4(2π)3εF

∫
d3 p

 tanh( p2−µ̃−γ̃p

2T̃c
)

p2 − µ̃− γ̃p
+

tanh( p2−µ̃+γ̃p

2T̃c
)

p2 − µ̃ + γ̃p
− 2

p2

 (197)

while the number equation, Equation (196), becomes

n = k3
F

∫ d3 p
(2π)3

[
1− 1

2
tanh

(
p2 − µ̃− γ̃p

2T̃c

)
− 1

2
tanh

(
p2 − µ̃ + γ̃p

2T̃c

)]
(198)

6.1.1. Weak Coupling

At low temperature we expect that the chemical potential of a system of weakly
interacting fermions is almost constant

µ ≈
T→0

EF(εF, vR, vD) (199)



Condens. Matter 2021, 6, 16 33 of 59

and therefore, in this regime, µ
T � 1. Actually, one can shown perturbativly [32,43] that

µ ≈ εF −m(vR + vD)2/2. In this limit, the number equation can be neglected due to the
ansatz Equation (199), therefore Equation (197) is enough to self-consistently determine
the critical temperature Tc as a function of ar. As we will see, the critical temperature,
in the BCS part of the crossover, exhibits an exponential behavior as in the case without
SO, however Tc will be considerably improved by turning on the spin–orbit coupling. We
will also see that, in this weak coupling limit Tc is almost unaltered by the inclusion of
Gaussian fluctuations.

6.1.2. Strong Coupling

In the strong coupling limit, supposing that µ/Tc → −∞, which can be verified a
posteriori, Equation (197) can be used to determine the chemical potential of the system,
in fact the dependence in the equations on the critical temperature disappears making the
following approximation

tanh

(
p2 − µ̃− γ̃p

2T̃c

)
≈ 1 (200)

so that Equation (197), after introducing the dimensionless coupling y = 1
kF ar

, becomes
simply

y = − 2
π2

∫ ∞

0
dpx

∫ ∞

0
dpy

∫ ∞

0
dpz

{
1

p2 − µ̃− γ̃p
+

1
p2 − µ̃ + γ̃p

− 2
p2

}
(201)

where
γ̃p = 2

√
(ṽR + ṽD)2 p2

x + (ṽR − ṽD)2 p2
y (202)

We can integrate over pz getting

y =
1
π

∫ ∞

0
dpx

∫ ∞

0
dpy

 2√
p2

x + p2
y

− 1√
p2

x + p2
y − µ̃− γ̃p

− 1√
p2

x + p2
y − µ̃ + γ̃p

 (203)

For simplicity, let us consider the case with pure Rashba coupling, so that we have γ̃p =

2ṽR

√
p2

x + p2
y ≡ 2ṽR|p⊥|. The above equation can be written as

y = −1
2

∫ ∞

0
dp⊥p⊥

 1√
p2
⊥ − 2ṽR p⊥ − µ̃

+
1√

p2
⊥ + 2ṽR p⊥ − µ̃

− 2
p⊥

 (204)

With the substitutions p⊥ → p⊥ ± ṽR in the first two integrals we have

y = −1
2

lim
Λ→∞


∫ Λ

−ṽR

dp⊥
p⊥ + ṽR√

p2
⊥ − ṽ2

R − µ̃
+
∫ Λ

ṽR

dp⊥
p⊥ − ṽR√

p2
⊥ − ṽ2

R − µ̃
− 2

∫ Λ

0
dp⊥

 (205)

where Λ is the ultraviolet cut-off which can be sent to infinity, Λ→ ∞. Equation (205) can
be rewritten as

y = lim
Λ→∞

Λ−
∫ Λ

ṽR

dp⊥
p⊥√

p2
⊥ − ṽ2

R − µ̃

− ṽR

2

∫ ṽR

−ṽR

dp⊥
1√

p2
⊥ − ṽ2

R − µ̃
(206)

which gives

y =
√
−µ̃− ṽR arctanh

(
ṽR√
−µ̃

)
≈
√
−µ̃− ṽ2

R√
−µ̃

(207)
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Taking the square, y2 ≈ −µ̃− 2ṽ2
R, and using the definitions µ̃ = µ/εF and ṽR = vR/vF,

reminding that y = 1
kF ar

, we get

µ = − 1
2ma2

r
−mv2

R + o(ar) (208)

Therefore, in the strong coupling limit (BEC limit), 1/ar → ∞, we found µ ' − 1
2ma2

r
,

namely the spin–orbit interaction can be neglected and we get the same expression for the
chemical potential as that obtained previously in Equation (102), but with ar instead of as.
We expect that also in this case the critical temperature in the strong coupling limit at the
mean field level is not accurate therefore we will not discuss it here in details.

6.1.3. Full Crossover

Let us consider Equation (195), whose form, in the continuum limit and with rescaled
dimensionless parameters, ~p = 1

kF
~k, µ̃ = µ

εF
, T̃c = Tc

εF
, ṽR = vR

vF
, ṽD = vD

vF
, γ̃p(ṽR, ṽD) =

2γk(vR, vD), is reported in Equation (197), which can be rewritten in terms of y = 1
kF ar

as
it follows

y = −
∫ d3 p

(2π)2

 tanh( p2−µ̃−γ̃p

2T̃c
)

p2 − µ̃− γ̃p
+

tanh( p2−µ̃+γ̃p

2T̃c
)

p2 − µ̃ + γ̃p
− 2

p2

 ≡ ISO
y (µ̃, T̃c, ṽR, ṽD) (209)

The number equation, Equation (196), in the continuum limit and in terms of the same
dimensionless parameters, is

n =
k3

F

3π2

{
3π2

∫ d3 p
(2π)3

[
1− 1

2
tanh

(
p2 − µ̃− γ̃p

2T̃c

)
− 1

2
tanh

(
p2 − µ̃ + γ̃p

2T̃c

)]}

≡ k3
F

3π2 ISO
n (µ̃, T̃c, ṽR, ṽD) (210)

Reminding that the density of particles is n = (2mεF)3/2

3π2 = k3
F

3π2 , the equations to
solve are

y = ISO
y (µ̃, T̃c, ṽR, ṽD) (211)

1 = ISO
n (µ̃, T̃c, ṽR, ṽD) (212)

We can search for the solutions of these two equations, Equations (211) and (212), resorting
to a multidimensional root-finding algorithm: for any fixed values of the couplings y, ṽR

and ṽD we look for the critical temperature Tc and the chemical potential µ that satisfy
those equations simultaneously. In Figures 4 and 5 we report some results for the case with
only Rashba coupling.
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Figure 4. Critical temperature Tc and chemical potential µ as functions of y, at the mean field level,
for ṽD = 0 and for different values of ṽR.
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6.1.4. Special Case: Equal Rashba and Dresselhaus

For vR = vD ≡ v/2 we have γk = v|ky|, or, in terms of the rescaled quantities
py = ky/kF and ṽ = v/vF,

γ̃p = 2ṽ|py| (213)

Both in Equation (209) and in Equation (210) there are functions like F(p2
y ± 2v|py|) under

the integral
1
2

∫ +∞

−∞
dpy

[
F
(

p2
y − 2ṽ|py| − µ̃

)
+ F

(
p2

y + 2ṽ|py| − µ̃
)]

(214)

in a symmetric combination so that we can remove the absolute value symbols

1
2

∫ +∞

−∞
dpy

[
F
(

p2
y − 2ṽpy − µ̃

)
+ F

(
p2

y + 2ṽpy − µ̃
)]

(215)

so that after changing the variables py → py ± ṽ we get simply∫ +∞

−∞
dpy F

(
p2

y − ṽ2 − µ̃
)

(216)

As a general result, for the case with equal Rashba and Dresselhaus couplings at the mean
field level the effect of the spin–orbit interaction is just a rigid shift of the chemical potential.
The critical temperature Tc, is therefore the same as that without SO (see Figure 1) while µ
at finite v is linked to that without SO (v = 0) in the following way

µ(v)
εF

=
µ(0)

εF
− v2

v2
F

(217)

which means µ(v) = µ(0) − mv2/2, in agreement with the result obtained by gauge-
transforming the fermionic fields [43].

6.2. With Gaussian Fluctuations

Let us now recap the general results with the inclusion of Gaussian fluctuations
reporting the full set of equations, Equations (167) and (168) with Equations (188)–(190)
together with the regularization Equation (194), useful to derive the chemical potential µ
and the critical temperature Tc as functions of the effective interaction parameter, the inverse
scattering length,

m
4πar

=
1

4V ∑
k

 2
εk
−

tanh
(

ξk−γhk
2Tc

)
ξk − γhk

(
1− h2

ξkγhk

)
−

tanh
(

ξk+γhk
2Tc

)
ξk + γhk

(
1 +

h2

ξkγhk

) (218)
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n =
1
V ∑

k

{
1− 1

2

[
tanh

(
ξk − γhk

2Tc

)
+ tanh

(
ξk + γhk

2Tc

)]}
+

1
V ∑

q

∫ +∞

−∞

dω

π
nB(ω)

∂δ(q, ω)

∂µ
(219)

with
γhk =

√
(vR + vD)2k2

y + (vR − vD)2k2
x + h2 (220)

δ(q, ω) = Arg
(

Γ−1(q, ω + i0+)
)

(221)

Γ−1(q, iνn) = − m
4πar

+ χ(q, iνn) +
1
V ∑

k

1
2εk

(222)

χ(q, iνn) =
1

4V ∑
k

(1 + Ch
k,q

) tanh
(

ξk+q/2−γhk+q/2
2Tc

)
iνn − ξk+q/2 − ξk−q/2 + γhk+q/2 + γhk−q/2

+
tanh

(
ξk+q/2+γhk+q/2

2Tc

)
iνn − ξk+q/2 − ξk−q/2 − γhk+q/2 − γhk−q/2

 (223)

+
(

1− Ch
k,q

) tanh
(

ξk+q/2−γhk+q/2
2Tc

)
+ tanh

(
ξk−q/2+γhk−q/2

2Tc

)
iνn − ξk+q/2 − ξk−q/2 + γhk+q/2 − γhk−q/2


where

Ch
k,q =

(vR + vD)2(k2
y −

q2
y

4 ) + (vR − vD)2(k2
x −

q2
x

4 )− h2

γhk+q/2 γhk−q/2
(224)

We will consider for simplicity the case with h = 0 but let us first discuss two special cases.

6.2.1. Special Case: Equal Rashba and Dresselhaus

Let us consider the case where h = 0 and vR = vD, namley when Rashba and Dressel-
hauf couplings are equal. The equations are

m
4πar

= − 1
4V ∑

k

 tanh
(

ξk−γk
2Tc

)
ξk − γk

+
tanh

(
ξk+γk

2Tc

)
ξk + γk

− 2
εk

 (225)

n =
1
V ∑

k

{
1− 1

2

[
tanh

(
ξk − γk

2Tc

)
+ tanh

(
ξk + γk

2Tc

)]}
+

1
V ∑

q

∫ +∞

−∞

dω

π
nB(ω)

∂δ(q, ω)

∂µ
(226)

where γk = γ0k and since vR = vD,

γk = (vR + vD)|ky| ≡ v|ky| (227)

while δ(q, ω) is defined in Equation (221). Since C0
k,q = 1, we have that χ(q, iνn) is simply

given by
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χ(q, iνn) =
1

2V ∑
k

 tanh
(

ξk+q−γk+q
2Tc

)
iνn − ξk+q − ξk + γk+q + γk

+
tanh

(
ξk+q+γk+q

2Tc

)
iνn − ξk+q − ξk − γk+q − γk

 (228)

As already discussed, at the mean field level, after rescaling ky → ky ±mv we obtain
Equations (93) and (94), namely the mean-field equations without SO, but where the
chemical potential is µ + mv2/2, so that Equations (225) and (226) can be simplified as
it follows

m
4πas

= − 1
2V ∑

k

 tanh
(
(ξk−mv2/2)

2Tc

)
ξk −mv2/2

− 1
εk

 (229)

n =
1
V ∑

k

[
1− tanh

(
ξk −mv2/2

2Tc

)]
+

1
πV ∑

q

∫ +∞

−∞
dω nB(ω)

∂δ(q, ω)

∂µ
(230)

6.2.2. Special Case: Only Zeeman Term

For completness, let us consider the case without spin–orbit couplings but in the
presence of only a Zeeman term. In this case γhk = h. The equations become simply

m
4πar

= − 1
4V ∑

k

{
1

ξk

[
tanh

(
ξk − h

2Tc

)
+ tanh

(
ξk + h

2Tc

)]
− 2

εk

}
(231)

n =
1
V ∑

k

{
1− 1

2

[
tanh

(
ξk − h

2Tc

)
+ tanh

(
ξk + h

2Tc

)]}
+

1
V ∑

q

∫ +∞

−∞

dω

π
nB(ω)

∂δ(q, ω)

∂µ
(232)

with δ(q, ω) still defined by Equation (221) but where χ(q, iνn), since Ch
k,q = −1, is simply

given by

χ(q, iνn) =
1

2V ∑
k

 tanh
(

ξk+q/2−h
2Tc

)
+ tanh

(
ξk−q/2+h

2Tc

)
iνn − ξk+q/2 − ξk−q/2

 (233)

These are the equations to solve for finding the critical temperature of a polarized Fermi
gas [78,79] which should be the same in the presence of a Rabi coupling.

6.2.3. Weak Coupling

In this limit the chemical potential is finite and the critical temperature and the scatter-
ing length go to zero, in particular as → 0−. As argued in the case without SO coupling,
Γ−1(q) can be expressed as in Equation (113). As a result, in this limit, the Gaussian cor-
rection to the density of particles is proportional to the scattering length and, therefore, is
negligible, as shown in Equation (114). Since the chemical potential is almost constant and
since also the gap equation is unchanged, in the limit 1

kF as
→ −∞, the critical temperature

is expected to be almost the same as in the mean field level, therefore, the Gaussian fluctua-
tions are not so effective at weak coupling, as we will verify by numerical calculations.

6.2.4. Strong Coupling

In the strong coupling limit, ar → 0+, namely in the BEC limit, with SO coupling
we found that µ(Tc) diverges with the inverse scattering length y = 1

kF ar
, Equation (208),

getting the same formal result as that without SO coupling, µ → − 1
2mar

. Let us now
calculate the critical temperature Tc as a function of the y. In what follows we will consider
a generic spin-orbit coupling but without Zeeman term, h = 0.
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In the case without SO term the inverse of the vertex function, Γ−1(q), in the strong
coupling limit, can be seen as the inverse propagator of free bosons, Equation (126), with an
effective mass and a redefined chemical potential, µB = 2µ− Eb, which undergo the Bose–
Einstein condensation below the critical temperature. The calculation in the presence
of SO coupling is more difficult to perform due to the absence of spherical symmetry,
however we can adopt the method applied in Refs. [25,28,29], doing a second order
expansion in the momenta for Γ−1(q) in the BEC limit. The two-body physics emerges from
Γ−1(q), Equation (222), in the so-called vacuum limit, discarding the Fermi distribution,
nF → 0, and putting the chemical potential to zero [25,28,29]. What remains is the inverse
of the two-body scattering matrix, T−1

2B (q, iνn) ≡ Γ−1(q, iνn)|nF ,µ=0, which, reads

T−1
2B (q, iνn) = −

m
4πar

+
1

4V ∑
k

 2
εk

+

(
1 + C0

k,q

)
iνn − εk−q/2 − εk+q/2 − γk−q/2 − γk+q/2

+

(
1 + C0

k,q

)
iνn − εk−q/2 − εk+q/2 + γk−q/2 + γk+q/2

(234)

+
2
(

1− C0
k,q

)
iνn − εk−q/2 − εk+q/2 + γk+q/2 − γk−q/2


Binding Energy

From the two-body scattering matrix we can evaluate the scattering energies and
the existence of a two-particle bound state. We saw in a previous section, Section 2.1,
how T2B(z) has simple poles at the bound states and a branch cut at the scattering states.
In order to prove the existence of a bound state in the presence of a spin–orbit term it is
enough, therefore, to impose that, at vanishing momentum,

T−1
2B (q = 0, z=Eb) = 0 (235)

From Equation (224) we have C0
k,0 = 1, so that Equation (235) implies the following equa-

tion

− m
4πar

+
1

2V ∑
k

{
1

Eb − 2εk − 2γk
+

1
Eb − 2εk + 2γk

+
1
εk

}
= 0 (236)

that should be solved in terms of the bound state energy, measured from the threshold
energy for free fermions, as a function of the coupling y. This can be done by simple
numerical techniques. In the continuum limit, introducing the following dimensionless
quantities p = k

kF
, Ẽb = Eb

εF
, T̃c = Tc

εF
, ṽR = vR

vF
, ṽD = vD

vF
and γ̃p(ṽR, ṽD) = 2γk(vR, vD),

we get

y +
2

π2

∫ ∞

0
dpx

∫ ∞

0
dpy

∫ ∞

0
dpz

{
1

p2 + γ̃p − Ẽb/2
+

1
p2 − γ̃p − Ẽb/2

− 2
p2

}
= 0 (237)

which has the same form of Equation (201). The chemical potential and the bound state
energy, Eb = εF Ẽb, measured at the threshold energy m(vR + vD)2, in terms of dimension-
less quantities,

Ẽb = Ẽb − 2(ṽR + ṽD)
2 (238)

satisfy the same equation, therefore, in the the strong coupling limit, they are connected

by the relation µ −→
y→∞

Eb
2 = Eb

2 + m(vR+vD)2

2 . In the deep BEC, neglecting the second term,

we have
µ −→

y→∞
Eb/2 (239)
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which is the same result obtained in the absence of SO coupling, Equation (123). Taking
advantage of Equation (207), in the case of only Rashba coupling (vD = 0), we can write an
analytical solution

y =

√
ṽ2

R −
Ẽb
2
− ṽR arctanh

(
ṽR

√
2

2ṽ2
R − Ẽb

)
(240)

Inverting Equation (240) we can get Eb as a function of y. For equal Rashba and Dresselhaus
couplings, vR = vD, we have, instead,

y =

√
− Ẽb

2
(241)

which is the same result as that without SO coupling. For the more general case one can
easily resort to a numerical computation to solve Equation (237), or, after analytically
integrating over pz, Equation (203) with Ẽb/2 instead of µ̃. The results are shown in
Figure 6.

For pure Rashba coupling, Figure 6, a bound state exists also in the BCS part of the
crossover, where the scattering length is negative. Actually by looking at Equation (240),
for any value of y, a negative value of Eb exists. Moreover, in Figure 6 we show that turning
on a Dresselhaus term (vD 6= 0), greatly affects the existence of the bound state in the
BCS side.

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

E~
b

1/ kF ar

v~R = 2,  v~D = 0   

v~R = 2,  v~D = 0.5

v~R = 2,  v~D = 1   

v~R = 2,  v~D = 2   

Figure 6. Bound state energy Ẽb for a mixed spin–orbit coupling, keeping vR fixed and varying vD.
For vD = vR the binding energy exists only for y ≥ 0, in the BEC side, and is exactly the same curve
one obtains in the absence of spin–orbit coupling. For pure Rashba (or pure Dresselhaus) the binding
energy is always present, also in the BCS side while for any mixed SO coupling there is a threshold
value of y for the existence of the binding energy.

The very important feature is, therefore, that a bound state exists also for negative
scattering length, namely in the BCS side. The effect is relevant for a pure Rashba cou-
pling while it is suppressed in the presence of mixed Rashba and Dresselhaus couplings.
For equal Rashba and Dresselhaus couplings the bound state exists only in the BEC side,
exactly as in the case without SO.

Effective Masses

At strong coupling two fermions can be treated as a single bosonic particle with a
double mass. However in the presence of a spin–orbit interaction we have to reconsider
the evaluation of the effective mass. This can be done at low momenta requiring that
the dispersion relation of free bosons in the strong coupling limit (1/kFas → +∞) can be
written as

εb(q) = Eb +
q2

x
2mx

+
q2

y

2my
+

q2
z

2mz
(242)
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where Eb, mx and my depend on both the strength of the interaction and the spin–orbit
couplings. The effective masses along x and y directions can be generally different in the
presence of mixed Rashba and Dresselhaus terms. These masses can be derived imposing
that the inverse of the scattering matrix vanishes when measured right at εb(q) as in
Equation (242)

T−1
2B (q, z = εb(q)) = 0 (243)

At low energy and momentum this condition is imposed to the second order expansion

T−1
2B (q, εb(q)) ≈ T−1

2B (0, Eb) +Fx(Eb, mx) q2
x +Fy(Eb, my)q2

y +Fz(Eb, mz)q2
z = 0 (244)

which implies that

T−1
2B (0, Eb) = 0, Fx(Eb, mx) = 0, Fy(Eb, my) = 0, Fz(Eb, mz) = 0 (245)

The first equation in Equation (245) is the same encountered before for the bound state
energy, Equation (235). By choosing mz = 2m we get immediately thatFz(Eb, 2m) = 0 since,
in this way, T−1

2B (q, εb(q)) loses the dependence on qz. Actually, the two-body scattering
matrix reads

T−1
2B (q, εb(q)) = − m

4πar
+

1
4V ∑

k

2
εk

+
1

4V ∑
k

(
1 + C0

k,q

)
Eb +

q2
x

2mx
+

q2
y

2my
+ q2

z
4m − εk−q/2 − εk+q/2 − γk−q/2 − γk+q/2

+
1

4V ∑
k

(
1 + C0

k,q

)
Eb +

q2
x

2mx
+

q2
y

2my
+ q2

z
4m − εk−q/2 − εk+q/2 + γk−q/2 + γk+q/2

(246)

+
1

2V ∑
k

(
1− C0

k,q

)
Eb +

q2
x

2mx
+

q2
y

2my
+ q2

z
4m − εk−q/2 − εk+q/2 + γk+q/2 − γk−q/2

Introducing the following definitions

X =
2m
mx
− 1, Y =

2m
my
− 1 (247)

the two-body scattering matrix can be written as it follows

T−1
2B (q, εb(q)) = − m

4πar
+

1
V ∑

k

1
2εk

+
1

4V ∑
k

(
1 + C0

k,q

)
Eb +

X
4m q2

x +
Y

4m q2
y − 2εk − γk−q/2 − γk+q/2

+
1

4V ∑
k

(
1 + C0

k,q

)
Eb +

X
4m q2

x +
Y

4m q2
y − 2εk + γk−q/2 + γk+q/2

(248)

+
1

2V ∑
k

(
1− C0

k,q

)
Eb +

X
4m q2

x +
Y

4m q2
y − 2εk + γk+q/2 − γk−q/2



Condens. Matter 2021, 6, 16 41 of 59

Expanding for small q the following quantities

C0
k,q ≈ 1− (v2

R − v2
D)

2

2γ4
k

(
kxqy − kyqx

)2 (249)

γk−q/2 + γk+q/2 ≈ 2γk +
(v2

R − v2
D)

2

4γ3
k

(
kxqy − kyqx

)2 (250)

γk+q/2 − γk−q/2 ≈
(vR + vD)2

γk
kxqx +

(vR − vD)2

γk
kyqy (251)

the two-body scattering matrix, at leading orders, reads

T−1
2B (q, εb(q)) ≈ −

m
4πar

+
1

2V ∑
k

[
1

Eb − 2εk − 2γk
+

1
Eb − 2εk + 2γk

+
1
εk

]

− 1
4V

[
X
m ∑

k

(Eb − 2εk)
2 + 4γ2

k(
(Eb − 2εk)2 − 4γ2

k
)2 +

(
v2

R − v2
D

)2
∑
k

16 k2
y(

(Eb − 2εk)2 − 4γ2
k
)2
(Eb − 2εk)

]
q2

x

− 1
4V

[
Y
m ∑

k

(Eb − 2εk)
2 + 4γ2

k(
(Eb − 2εk)2 − 4γ2

k
)2 +

(
v2

R − v2
D

)2
∑
k

16 k2
x(

(Eb − 2εk)2 − 4γ2
k
)2
(Eb − 2εk)

]
q2

y (252)

≡ T−1
2B (0, Eb) +Fx(Eb, mx) q2

x +Fy(Eb, my) q2
y

The first term is the scattering matrix at q = 0, therefore, T−1
2B (0, Eb) = 0, by defi-

nition of the shifted bound state energy Eb. Solving Fx(Eb, mx) = 0 in terms of X and
Fy(Eb, my) = 0 in terms of Y, and from Equation (247), we can derive the values of the
effective masses

2m
mx

= 1−m
(

v2
R − v2

D

)2Bx

A (253)

2m
my

= 1−m
(

v2
R − v2

D

)2By

A (254)

where

A =
1
V ∑

k

(Eb − 2εk)
2 + 4γ2

k(
(Eb − 2εk)2 − 4γ2

k
)2 (255)

Bx =
1
V ∑

k

16 k2
y(

(Eb − 2εk)2 − 4γ2
k
)2
(Eb − 2εk)

(256)

By =
1
V ∑

k

16 k2
x(

(Eb − 2εk)2 − 4γ2
k
)2
(Eb − 2εk)

(257)

In the specific case of equal Rashba and Dresselhaus couplings (vR = ±vD), as already
seen, the bound state energy is not distinguishable from the one in absence of SO coupling,
which means that a bound state is present only for y ≥ 0, namely only in the BEC side,
where the effective masses are simply 2m/mx = 2m/my = 1.



Condens. Matter 2021, 6, 16 42 of 59

In the continuum limit, rescaling the variables p = k
kF

, µ̃ = µ
εF

, Ẽb = Eb
εF

, ṽR = vR
vF

, ṽD = vD
vF

,
γ̃p(ṽR, ṽD) = 2γk(vR, vD), Equations (255)–(257) in terms of the dimensionless parameters
become

A =
k3

F

ε2
F

∫ dp
(2π)3

(Ẽb − 2p2)2 + 4γ̃2
p(

(Ẽb − 2p2)2 − 4γ̃2
p

)2 =
k3

F

ε2
F

Ã (258)

Bx =
k5

F

ε5
F

∫ dp
(2π)3

16 p2
y(

(Ẽb − 2p2)2 − 4γ̃2
p

)2
(Ẽb − 2p2)

=
k5

F

ε5
F

B̃x (259)

By =
k5

F

ε5
F

∫ dp
(2π)3

16 p2
x(

(Ẽb − 2p2)2 − 4γ̃2
p

)2
(Ẽb − 2p2)

=
k5

F

ε5
F

B̃y (260)

The effective masses can be written in terms of dimensionless quantities

2m
mx

= 1− 8
(

ṽ2
R − ṽ2

D

)2 B̃x

Ã
(261)

2m
my

= 1− 8
(

ṽ2
R − ṽ2

D

)2 B̃y

Ã
(262)

For the case with a pure Rashba coupling, for which mx = my, we can perform the integrals
Ã, B̃x and B̃y analytically, obtaining

Ã =
1

2π2

∫ ∞

0
dpz

∫ ∞

0
dp⊥p⊥

(Ẽb − 2p2
⊥ − 2p2

z)
2 + 4(2ṽR p⊥)2[

(Ẽb − 2p2
⊥ − 2p2

z)
2 − 4(2ṽR p⊥)2

]2 =
−
√
−Ẽb

16
√

2 π
(
Ẽb + 2ṽ2

R

) (263)

B̃x = B̃y =
1

2π2

∫ ∞

0
dpz

∫ ∞

0
dp⊥

8 p3
⊥[

(Ẽb − 2p2
⊥ − 2p2

z)
2 − 4(2ṽR p⊥)2

]2
(Ẽb − 2p2

⊥ − 2p2
z)

=
1

256
√

2 πṽ4
R

1√
−Ẽb

[
log
(

1 +
2ṽ2

R

Ẽb

)
− 2ṽ2

R

Ẽb + 2ṽ2
R

]
(264)

where, from Equation (238), in the presence of a bound state, we assume that

Ẽb ≤ −2ṽ2
R (265)

The final analytical expressions for the effective masses are, therefore,

2m
mx

=
2m
my

= 1− 1
2Ẽb

[(
Ẽb + 2ṽ2

R

)
log
(

1 +
2ṽ2

R

Ẽb

)
− 2ṽ2

R

]
(266)

which, together with Equation (240) written in terms of Ẽb

y =

√
−Ẽb√

2
− ṽR arctanh

(
ṽR

√
2√
−Ẽb

)
(267)

in order to get their behaviors along the crossover, see Figure 7. This result is in agreement
with the T-matrix approach [50]. At the special point y = 1

kF ar
= 0, also called unitary limit,

the ratio 2ṽ2
R/Ẽb ≡ −co is the solution of the following equation

√
co = tanh(1/

√
co) (268)



Condens. Matter 2021, 6, 16 43 of 59

which is co ≈ 0.6948. As a result 2m
mx

= 2m
my

at y = 0 is the same for any value of ṽR,

2m
mx

∣∣∣∣
a−1

r =0
= 1− 1

2
[
co +

(
1− co

)
log(1− co)

]
≈ 0.8387 (269)

which is the nodal point shown in Figure 7. For the general case of mixed Rashba and
Dresselhaus terms the effective masses are given by Equations (261) and (262), together
with Equations (258)–(260).
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Figure 7. Effective mass ratio 2m/mx, as a function of the coupling 1/kF ar, for different values of
purely Rashba coupling ṽR, from Equations (266) and (267). For only Rashba coupling mx = my.

6.2.5. Full Crossover

We can now calculate the critical temperature Tc along the crossover within the bosonic
approximation, discussing a possible further improvement useful to refine the calculation
in the intermediate regime.

Bosonic Approximation

We found that the inverse of the scattering matrix, expanding at low momenta around
q=0, has the form

T−1
2B (q, iν) ≈ iν− εb(q) = iν− Eb −

q2
x

2mx
−

q2
y

2my
− q2

z
4m

(270)

with Eb, mx and my that depend on y = 1
kF ar

. This result for the two-body problem can be
exploited to determine the properties of the vertex function in the strong coupling limit

Γ−1(q, iν)
∣∣∣
µ→−∞

= T−1
2B (q, iν + 2µ) (271)

getting, in this regime,

Γ−1(q, iν) ≈ iν + 2µ− εb(q) = iν−
(

q2
x

2mx
+

q2
y

2my
+

q2
z

4m
− µB

)
(272)

where µB = 2µ − Eb/2 ' 2µ − Eb/2. We find, therefore, that the partition function
approaches that of a set of free bosons, with anisotropic masses. It is straightforward to
show that the condensation temperature for this kind of systems is actually rescaled by the
effective masses

Tc =
2π

mb

(
nB

2ζ(3/2)

) 2
3
(

mB

mx

) 1
3
(

mB

my

) 1
3

(273)
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where mB = 2m and, in the deep BEC, nB = n
2 = 1

2
(2mεF)3/2

3π2 , therefore

Tc

εF
≈ 0.218

(
2m
mx

) 1
3
(

2m
my

) 1
3
. (274)

We find that in the BEC limit the effective masses approach those of two fermions,

2m
mα
−−→

BEC
1 (275)

with α = x, y, for any mixture of Rashba and Dresselhaus couplings. For the case of only
Rashba (or Dresselhaus) coupling Equation (275) can be read out from Equation (266) in
the limit of Ẽb → ∞.

For two fermions with same momenta in a spin singlet state, composing a boson,
the spin–orbit coupling cancels out and a free particle spectrum with mass mB = 2 m emerges.
From Equation (273), solving in terms of nB, we have

nB = ζ(3/2)
(

mTc

π

)3/2(mx

2m

) 1
2
(my

2m

) 1
2

(276)

As done in Equation (127), let us suppose now that the number of bosonic excitations
composed by pairs of fermions is nB ≈ 2n(2), while the rest of fermions remains unpaired
so that we have

n(2) ≈ 2ζ(3/2)
(

mTc

π

)3/2(mx

2m

) 1
2
(my

2m

) 1
2
. (277)

With this approximation the set of equations to solve is the following

m
4πar

= − 1
4Ω ∑

k

{
tanh( ξk−γk

2Tc
)

ξk − γk
+

tanh( ξk+γk
2Tc

)

ξk + γk
− 2

εk

}
(278)

n =
1

2V ∑
k

{
2− tanh

(
ξk − γk

2Tc

)
− tanh

(
ξk + γk

2Tc

)}

+2ζ(3/2)
(

mTc

π

)3/2(mx

2m
my

2m

)1/2
(279)

In the continuum limit, from Equations (209) and (210), at fixed density n = k3
F

3π2 , after rescal-
ing p = 1

kF
k, µ̃ = µ

εF
, T̃c = Tc

εF
, ṽR = vR

vF
, ṽD = vD

vF
, γ̃p(ṽR, ṽD) = 2γk(vR, vD), the above

equations can be written in the following form

y = ISO
y (µ̃, T̃c, ṽR, ṽD) (280)

1 = ISO
n (µ̃, T̃c, ṽR, ṽD) + 3 ζ(3/2)

√
π

2
T̃ 3/2

c

(mx

2m
my

2m

)1/2
(281)

This set of equations can be easily solved numerically. Some results are reported in Figure
8 for the most relevant case with pure Rashba coupling.
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Figure 8. Critical temperature Tc and chemical potential µ, at Tc, with the inclusion of the Gaussian
fluctuations within the bosonic approximation, for different values of ṽR in the purely Rashba case.

These results have to be contrasted with those reported in Figure 2 in the absence of
spin–orbit couplings.

Further Improvements

The existence of a bound state also in the BCS side of the crossover allowed us to
extend the results of the effective masses also in this region, although the pole structure
of the vertex function Γ(q), presented in Equation (272), has been derived in the strong
coupling limit. To refine this result it should be sufficient to expand at second order in the
momentum q the full Γ−1(q) showed in Equations (222) and (224), with h = 0. The only
difference with respect to what done so far is to include the expansion of the hyperbolic
tangents of some functions, fq = (ξk±q/2 ± γk±q/2)/2, appearing in Equation (224), up to
second order in q

tanh
(

fq/Tc
)
= tanh( f0/Tc) + sech( f0/Tc)

2∇ fq
∣∣
0· q/Tc + (282)

+∑
ij

[
sech( f0/Tc)

2∂i∂j fq
∣∣
0/2− sech( f0/Tc)

2 tanh( f0/Tc)∂i fq∂j fq
∣∣
0

]
qiqj/T2

c + O(q3)

The inclusion of this expansion, with respect to the vacuum limit considered so
far, can be seen somehow as the addition of thermal corrections to the zero-temperature
results. These corrections are relevant in the intermediate regime, since in the strong
coupling limit fq/Tc → ∞, therefore tanh( fq/Tc)→ 1, recovering the results of the bosonic
approximation, while in the weak coupling limit the quantum fluctuations themselves are
not relevant at all, as discussed previously.

Alternatively one can calculate the exact Gaussian fluctuations solving numerically
the full equations in Equations (218) and (219) together with Equations (221), (222) and
(224), as done in the absence of the spin–orbit couplings. However, in the presence of SO
the rotational symmetry is broken and the numerics is extremely much more involved and
computationally costly.

7. Conclusions

We reviewed the calculations for the critical temperature along the BCS-BEC crossover
with and without spin–orbit couplings in the path integral formalism. The final equations,
with the inclusion of quantum fluctuations at the Gaussian level have been written in the
most general case with Rashba, Dresselhaus and Zeeman terms, even though most of the
results presented are done for the most relevant case with only Rashba term. We found
that in the weak coupling limit Tc is strongly enhanced, consistently with the increase
of the gap [32] which implies an increased binding energy promoting the formation of
fermionic pairs, therefore, raising the critical temperature. In the intermediate regime the
rapid increase of Tc predicted by the mean-field theory is softened by the evolution of
the effective masses, originated by the quantum Gaussian fluctuations, of the composite
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bosons satisfying mx, my > 2 m which lower the critical temperature. Intriguingly, either
the binding energy and the effective masses have finite values also in the BCS regime.
For the Rashba case this finding can be found analytically, in particular, at the unitary limit
we found that the masses do not depend on the spin–orbit parameter. Finally, in the deep
BEC, we found that Tc goes to the same value as that without SO, consistently with the
strong singlet-pair formation.

Before we conclude a last remark is in order. One can expect that the presence of SO
coupling could increase the pseudogap regime, a regime of uncondesed fermionic pairs
(see for instance [80–82] for further details). This consideration is based on the fact that the
mean-field pairing temperature is much higher than the critical superfluid temperature Tc
because the bosonic excitations are quite relevant already in the BCS regime. As a result
the pseudogap regime, supposed to be hosted in between those two temperatures, might
be much more extended in the presence of a spin–orbit coupling.
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Appendix A. Scattering Amplitude

Here we derive Equation (17), from Equation (16), first introducing an identity

ψp(r) =
e

i
h̄ r·p

(2πh̄)3/2 +
∫

d3r′〈r| 1
2εp − Ĥ0 + iε

|r′〉〈r′|V̂|ψp〉

=
e

i
h̄ r·p

(2πh̄)3/2 +
∫

d3r′〈r′|V̂|ψp〉
∫

d3 p′
〈r|p′〉〈p′|r′〉

2εp − 2εp′ + iε
(A1)

=
e

i
h̄ r·p

(2πh̄)3/2 +
∫

d3r′〈r′|V̂|ψp〉
m

(2πh̄)3

∫
d3 p′

e
i
h̄ p′ ·(r−r′)

p2 − p′2 + iε

Let us consider the last integral in spherical coordinates

m
(2πh̄)3

∫
d3 p′

e
i
h̄ p′ ·(r−r′)

p2 − p′2 + iε
=

2πm
(2πh̄)3

∫ 1

−1
d(cos θ)

∫ ∞

0
dp′ p′2

e
i
h̄ p′ |r−r′ | cos θ

p2 − p′2 + iε

=
m

i|r− r′|(2πh̄)2

∫ ∞

0
dp′

p′

p2 − p′2 + iε

(
e

i
h̄ p′ |r−r′ | − e−

i
h̄ p′ |r−r′ |

)
(A2)

=
m

i|r− r′|(2πh̄)2

∫ ∞

−∞
dp′

p′ e
i
h̄ p′ |r−r′ |

p2 − p′2 + iε

= − m
4πh̄2

e
i
h̄ p|r−r′ |

|r− r′|
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which, inserted in Equation (A2), gives Equation (16). In the large r limit, using the
expansion 1

|r−r′ | =
1
r + O(r−2), we get

ψp(r) =
e

i
h̄ r·p

(2πh̄)3/2 −
m

4πrh̄2 e
i
h̄ pr
∫

d3r′e−
i
h̄ p r·r′

r 〈r′|V̂|ψp〉+ O(r−2) (A3)

Defining q = p
r r, we finally obtain

ψp(r) =
e

i
h̄ r·p

(2πh̄)3/2 −
m

4πrh̄2 e
i
h̄ pr
∫

d3r′e−
i
h̄ q·r′〈r′|V̂|ψp〉+ O(r−2)

=
e

i
h̄ r·p

(2πh̄)3/2 −
m(2πh̄)3/2

4πrh̄2 e
i
h̄ pr
∫

d3r′〈q|r′〉〈r′|V̂|ψp〉+ O(r−2)

=
e

i
h̄ r·p

(2πh̄)3/2 −
m(2πh̄)3/2

4πrh̄2 e
i
h̄ pr〈q|V̂|ψp〉+ O(r−2)

=
1

(2πh̄)3/2

{
e

i
h̄ r·p + f (q, p)

e
i
h̄ pr

r

}
+ O(r−2) (A4)

where f (q, p) is defined in Equation (18).

Appendix B. Partial Wave Expansion

Let us consider the scattering state at large distances

ψp(r) = eip·r + f (q, p)
eipr

r
+ O(r−2) (A5)

where q = pr/r and p → h̄p, to get rid of h̄ in the expression, and where we drop,
for simplicity, the prefactor 1/(2π)3. For elastic scattering on a short-range spherically
symmetric potential, the scattering amplitude can depend now only on the modulus p and
the angle θ = arccos( q·p

p2 ). It is so correct to perform a spherical wave expansion of the
function f (p, θ) as in Equation (20). Let us expand the plane wave also on this basis,

eip·r =
∞

∑
`=0

(2`+ 1)i` `(pr)P`(cos θ) (A6)

The `(pr) are the usual spherical Bessel functions, whose large distance expansion is

i` `(pr) = i`
eipr− `π

2 − e−ipr+ `π
2

2ipr
+ O(r−2) =

eipr − e−i(pr−`π)

2ipr
+ O(r−2) (A7)

The scattering wavefunction is then a superposition of incoming and outgoing spherical
waves

ψp(r) =
1

2ipr

∞

∑
`=0

(2`+ 1)
[
−e−i(pr−`π) + (1 + 2ip f`(p))eipr

]
P`(cos θ) + O(r−2) (A8)

We found, then, that the complex amplitude of the outgoing spherical wave is modified by
the presence of the interaction, however, to preserve normalization, its modulus has to be
constant. A simple way to implement this condition is to introduce a phase δ`(p) defined
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in Equation (21). The scattering amplitude at fixed angular momentum is then given by
Equation (22). Inserting this result in Equation (A8) we get

ψp(r) =
1

2ipr

∞

∑
`=0

(2`+ 1)i`
[
+e2iδ`(p)ei(pr+ `π)

2 − e−i(pr− `π
2 )

]
P`(cos θ) + O(r−2)

=
∞

∑
`=0

(2`+ 1)i`eiδ`(p) sin(pr− `π + δ`(p))
pr

P`(cos θ) + O(r−2) (A9)

≡
∞

∑
`=0

(2`+ 1)i` ψ`,p(r)P`(cos θ) + O(r−2)

from which we can read the coefficients of the wavefunction expansion. The scattering
properties of particles are defined in relation to the noninteracting case by the phase
between the free wave and the scattered one. This is valid at large distances where δ`
contains all the informations about the scattering. The scattering amplitude and the cross
section can be written as follows

f`(p) =
eiδ`(p) sin(δ`(p))

p
(A10)

Using the orthogonality of the Legendre polynomials,
∫ 1
−1 P`(x)Pn(x)dx = 2 δn`

2`+1 , after inte-
grating the differential cross section dσ/dΩ = | f (p, θ)|2, one gets

σ(p) =
∞

∑
`=0

4π

p2 (2`+ 1) sin2(δ`(p)) (A11)

For identical spinless (polarized) particles it is also necessary to (anti)symmetrize the
wavefunction

Ψ(r1, r2) = ξΨ(r2, r1) −→ ψp(r) = ξψp(−r) (A12)

where ξ = +1 for bosons and ξ = −1 for fermions. The unnormalized wavefunction has
then two contributions

ψp(r) = eip·r + ξe−ip·r + f (p, θ)
eipr

r
+ ξ f (p, π − θ)

e−ipr

r
+ o(r−2) (A13)

therefore the differential cross section becomes

dσ

dΩ
= | f (p, θ) + ξ f (p, π − θ)|2 (A14)

Since the Legendre polynomials have parity (−1)`, some partial wave contributions to the
cross section vanish because of the statistics so that the final results are

σ(p) = 8π
p2 ∑

` even
(2`+ 1) sin2(δ`(p)) for spinless bosons,

σ(p) = 8π
p2 ∑

` odd
(2`+ 1) sin2(δ`(p)) for spinless fermions.

(A15)

In the presence of particles with spin, instead, it is necessary to take into account the spin
part of the wavefunction. For example, for fermions, if the scattering happens in a singlet
(antisymmetric) state |S〉, we should impose that the wavefuction is symmetric in the
position space

|ψp(r)〉 =
[

eip·r + e−ip·r + f (p, θ)
eipr

r
+ f (p, π − θ)

e−ipr

r

]
|S〉 (A16)
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By these considerations the cross sections for singlet (σS) and triplet (σT) spin-1/2 fermions
result

σS(p) = 8π
p2 ∑

` even
(2`+ 1) sin2(δ`(p)) ,

σT(p) = 8π
p2 ∑

` odd.
(2`+ 1) sin2(δ`(p)) .

(A17)

Appendix C. Asymptotic Solutions of the Schrödinger Equation

We saw that in the long range limit all the physics is contained in the phase shift which
can be obtained by imposing the scattering solution getting the form for the wavefunction
as in Equation (A10). One can derive, therefore, the shift δ`(p) solving the Schrödinger
equation,

(
−∇2

m + V(r)
)

ψ(r) = Eψ(r), with E = p2/m, which can be written in spherical
coordinates [

1
r2

∂

∂r

(
r2 ∂

∂r

)
− L̂2

r2 + p2 −U(r)
]

ψ(r) = 0 (A18)

with U(r) = mV(r). The wavefunction can be expanded in the eigenstates of L̂2 and L̂z

ψp(r) =
∞

∑
`=0

`

∑
m=−`

Ym
` (θ, ϕ)

up,`(r)
r

(A19)

so that one can write the radial Schrödinger equation[
1
r2

d
dr

(
r2 d

dr

)
+ p2 +

`(`+ 1)
r2 −U(r)

]up,`(r)
r

= 0 (A20)

Expanding the first term

1
r2

d
dr

(
r2 d

dr
up,`(r)

r

)
=

1
r

d2up,`(r)
dr2 + up,`(r)

1
r2

[
2r

d
dr

+ r2 d2

dr2

](
1
r

)
(A21)

we recognize in the second r.h.s. term of Equation (A21) the Poisson equation ∇2
r

(
1
r

)
=

−4πδ(r), so that Equation (A20) can be rewritten in the form

1
r

d2up,`(r)
dr2 −

up,`(r)
r2 δ(r) +

[
p2 +

`(`+ 1)
r2 −U(r)

]up,`(r)
r

= 0 (A22)

The relevance of the Dirac delta term has been discussed in Ref. [83]. If the potential did
not contain a delta function, Equation (A22) would be the usual radial equation, but then
we should impose the boundary condition

− δ(r)
up,`(r)

r2 = 0 (A23)

which implies

∫
d3r

up,`(r)
r2 δ(r) = −4π

∫
drr2 up,`(r)

r2 δ(r) = −4πup,`(0) = 0 (A24)

We have, therefore, to solve

d2up,`(r)
dr2 +

[
p2 +

`(`+ 1)
r2 −U(r)

]
up,`(r) = 0 (r > 0) (A25)
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with the boundary condition up,`(0) = 0. Considering a short range potential, meaning that
it can be neglected beyond some radius

V(r) ≈ 0 ∀ r > r∗ (A26)

the problem is split in two domains

d2up,`(r)
dr2 +

[
p2 +

`(`+ 1)
r2

]
up,`(r) = 0 (r > r∗) (A27)

d2up,`(r)
dr2 +

[
p2 +

`(`+ 1)
r2 −U(r)

]
up,`(r) = 0 (r < r∗) (A28)

always with the condition up,`(0) = 0. The radial Schrödinger equation, for r > r∗,
is a linear differential equation of the second order, so two independent solutions are
expected [76]. These are the Riccati-Bessel functions ̂`(z), with z = pr,

̂`(z) = z `(z) =
(πz

2

)1/2
J`+1/2(z) = z`+1

∞

∑
n=0

(−z2/2)n

n!(2`+ 2n + 1)!!
(A29)

where `(z) are the spherical Bessel functions and Jλ(z) the ordinary Bessel functions. Their
relevant asymptotic behaviors are

̂`(z) ∼
z→0

z`+1

(2`+ 1)!!
(A30)

̂`(z) ∼z→∞
sin
(

z− `π

2

)
(A31)

A second set of solutions are given by the Riccati-Neumann functions n̂`(z):

n̂`(z) = (−)`
(πz

2

)1/2
J−`−1/2(z) = z−`

∞

∑
n=0

(−z2/2)n(2`+ 2n− 1)!!
n!

(A32)

whose asymptotic behaviors are

n̂`(z) ∼
z→0

z−`(2`− 1)!! (A33)

n̂`(z) ∼z→∞
cos
(

z− `π

2

)
(A34)

Some examples of Riccati functions for the first angular momenta are reported in the
following Table A1.

Table A1. The Riccati-Bessel, ̂`(z), and the Riccati-Neumann, n̂`(z), functions for the first angular
momenta ` = 0, 1, 2.

`= 0 `= 1 `= 2

̂`(z) sin z 1
z sin z− cos z

(
3
z2 − 1

)
sin z− 3

z cos z

n̂`(z) cos z 1
z cos z + sin z

(
3
z2 − 1

)
cos z + 3

z sin z

The complete solution, for r > r∗, is then given by a linear superposition of ̂`(pr) and
n̂`(pr)

up,`(r) = Ap,` ̂`(pr) + Bp,` n̂`(pr) , for r > r∗ (A35)
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with Ap,` and Bp,` some coefficients. In the noninteracting problem the solution is fixed by
the boundary condition up,`(0) = 0 that excludes n̂`(pr) because of its divergence at the
origin, getting

u0
p,`(r) ∝ ̂`(pr) ∼

r→∞
sin
(

pr− `π

2

)
. (A36)

In the interacting case instead, the Schrödinger equation has to be solved also for r < r∗

and then the continuity of the wavefunction and of its first derivative should be imposed
at r ' r∗. This is clearly the difficult part of the calculation and an exact solution is known
only for a small number of potentials. In Appendix B it has been shown that the scattering
solution has the specific form (A10) at large distances. Imposing this behavior to the general
solution (A35)

up,`(r) ∼r→∞
Ap,` sin

(
pr− `π

2

)
+ Bp,` cos

(
pr− `π

2

)
= Cp,` sin

(
pr− `π

2
+ δ`(p)

)
(A37)

allows us to express the whole solution in terms of the phase shift. As a result, up to an
overall prefactor the solution of the radial equation, for r > r∗, is given by

up,`(r) ∝ ̂`(pr) + tan
(
δ`(p)

)
n̂`(pr) , for r > r∗. (A38)

Interestingly, we notice that the condition for having in Equation (A38) both the contribu-
tions of the same order, also in the limit p → 0, using Equations (A30) and (A33), is that
δ`(p) ∼ p2`+1, which is Equation (25). The expansion of the radial wavefunction (A38) at
` = 0, at low energy, gives

up,0(r) ∝
p→0

1− r
as

, r > r∗ (A39)

where as is defined in Equation (26), therefore the corresponding wavefunction is

ψp(r) ∝
p→0

1
r
− 1

as
, r > r∗ (A40)

The same form for the wavefunction can be obtained imposing the so-called Bethe-Peierls
boundary conditions

1
rψp(r)

d
(
rψp(r)

)
dr

∣∣∣∣∣
r=0

=
1
as

. (A41)

One should evaluate the scattering length for a realistic interatomic potential, however in
many cases this requires difficult calculations. For this reason it is often convenient to use a
simpler pseudo-potential that can reproduce the same scattering amplitude at low energies.
Fortunately, the relevant experimental parameter in ultracold atomic physics, tunable by
the so-called Feshbach resonance technique, is the scattering length as.

Contact Potentials

The simplest short-range potential is the contact interaction described by a Dirac-delta
function in a regularized form or in a bare form.

Regularized Delta-Funcion

Let us consider the following potential

V(r) = g δ3(r)
∂

∂r
r (A42)
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and write down the s-wave radial equation from Equation (A22)

1
r

d2up,`(r)
dr2 −

up,`(r)
r2 δ(r) +

[
p2 +

`(`+ 1)
r2 − mg

4πr2h̄2 δ(r)
∂

∂r
r
]up,`(r)

r
= 0 (A43)

Recasting the terms we have

1
r

d2up,`(r)
dr2 +

[
p2 +

`(`+ 1)
r2

]up,`(r)
r
− δ(r)

1
r2

[
up,`(r) +

mg
4πh̄2

dup,`(r)
dr

]
= 0 (A44)

For ` = 0, the s-wave term, we have to solve the following set of equations

d2up,0(r)
dr2 + p2up,0(r) = 0 (A45)

4πup,0(0) +
mg
h̄2

dup,0

dr
(0) = 0 (A46)

The solution of the first equation, as already seen, is

up,0(r) ∝
1

2ip

(
−e−ipr + e2iδ0(p)eipr

)
=

eiδ0(p)

p
sin(pr + δ0(p)) (A47)

so that the boundary condition can be written as it follows

u′p,0(0)

up,0(0)
= p cot(δ0(p)) = −4πh̄2

mg
(A48)

Using the definition of the scattering length as in Equation (27), with zero effective range,
one finds that, in order to model a realistic potential at low energy it is sufficient to use
Equation (A42) with

g =
4πh̄2

m
as . (A49)

Bare Delta-Function

Another relevant contact potential is simply

V(r) = g δ3(r) (A50)

This potential is widely employed in the literature, even though it leads to ultraviolet
divergences. The radial equation, in this case, becomes

− δ(r)
r2

[
up,`(r) +

mg
4πh̄2

up,`(r)
r

]
+

1
r

d2up,`(r)
dr2 +

[
p2 +

`(`+ 1)
r2

]up,`(r)
r

= 0 (A51)

For the s-wave term we have to solve the following equations

d2up,0(r)
dr2 + p2up,0(r) = 0 (A52)

δ(r)
r2

[
up,0(r) +

mg
4πh̄2

up,0(r)
r

]
= 0 (A53)

Integrating the second equation we get

up,0(0) +
mg

4πh̄2

∫
drδ(r)

up,0(r)
r

= 0 (A54)



Condens. Matter 2021, 6, 16 53 of 59

Expanding up,0(r) around r = 0, only the first two terms survive, and the equation becomes

up,0(0) +
mg

4πh̄2 u′p,0(0) +
mg

4πh̄2 up,0(0)
∫

dr
δ(r)

r
= 0 (A55)

Using the solution of Equation (A52) which is Equation (A47), we get again the relation
u′p,0(0) = up,0(0) p cot(δp(0)) = −up,0(0)/as, and dividing by up,0(0) we obtain

1
g
=

m
4πh̄2as

− m
4πh̄2

∫
dr

δ(r)
r

. (A56)

where the last term diverges. In order to find a clearer understanding of the relation
between g and as one has to resort to the formalism of the two-body scattering matrix T2B,
see Section 2.1.

Appendix D. Scattering Problem with Spin-Orbit Coupling

In this Appendix we will report the results of Refs. [44,45], using also the same notation.
The system of fermions with spin (or pseudo-spin) in the presence of spin–orbit interaction
can be characterized by the following single particle Hamiltonian

Ĥ1b =
h̄2P2

2m
+ λM · P + Z (A57)

where M = (∑i aiσi, ∑i biσi, ∑i ciσi) and with σi the usual Pauli matrices for the spin. We
will treat later, for simplicity, only the case λ = 1, M =

(
vDσy, vRσx, 0

)
and Z = 0, so a

spin–orbit coupling made of a Rashba and a Dresselhaus terms. However some important
results can be obtained from the most general Hamiltonian (A57). The Hilbert space of
the problem can be expressed as H = Hr ⊗Hs1 ⊗Hs2 , the product of Hr, the relative
motion space and the spin spaces. For clarity different brackets are associated to different
spaces, |·〉〉 ∈ H, |·) ∈ Hr, |·〉 ∈ Hs1 ⊗Hs2 , so that the position dependent states of the
spin is such that (r|ψ〉〉 = |ψ(r)〉. The same study on two-body problem, seen before,
should be done also in this case, always for a spherically symmetric and spin-independent
potential Û(X(1)−X(2)), where X(i) are the coordinates of the particles. The total two-body
Hamiltonian is then

Ĥ2b = Ĥ(1)
1b + Ĥ(2)

1b + Û(X(1)−X(2)) (A58)

This can be easily separated in the Hamiltonian of the center of mass and Hamiltonian
of the relative motion. The latter Hamiltonian is

Ĥ =
p2

m
+ λc · p + B(K) + Û(r) ≡ Ĥ0 + Û(r) (A59)

with the definitions of the relative quantities, p = P(1)−P(2)

2 , K = P(1) + P(2), r =

X(1) − X(2), c = M(1) −M(2), B(K) = Z(1) + Z(2) + λK ·
(

M(1) + M(2)
)

, m = m1m2
m1+m2

.
The total momentum K is conserved during the scattering process and it can be treated as
a constant. A basis of eigenstates for the free Hamiltonian is given by the tensor product of
eigenstates of the momentum operator and of spin eigenstates |ψ(0)

k,α〉〉 = |k)⊗ |k, α〉 with
α = 0, 1, 2, 3, labeling the four configurations of two spins, also momentum dependent,
which in relative position representation are (r|ψ(0)

k,α〉〉 = |ψ
(0)
k,α(r)〉 =

1
(2π)3/2 eikr|k, α〉. Since

the momentum part of the eigenfunction is known (plane waves as in the previous case) the
eigenproblem can be restricted exclusively to the spin part. In the relative coordinates the
Hamiltonian Ĥ0 can be decomposed in the following form Ĥ0 = Ĥ(1)

1b ⊗ I2×2 + I2×2 ⊗ Ĥ(2)
1b

with
Ĥ(1)

1b = p2

2m I2×2 + λM · p + Z + λ
2 M ·K

Ĥ(2)
1b = p2

2m I2×2 − λM · p + Z + λ
2 M ·K

(A60)
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Because of the structure of the operators M and Z the single particle Hamiltonian can be
written, with ξ = (K, λ, ai, bi, ci, di), as

Ĥ(1)
1b =

p2

2m
I2×2 + β(p, ξ)σx + γ(p, ξ)σy + η(p, ξ)σz =

(
p2

2m + η β− iγ

β + iγ p2

m − η

)
(A61)

The coefficients of the Pauli matrices depend on the specific parameters of the model and
linearly by the momentum; for example, η should have the form η(p, ξ) = v(ξ)·p + q(ξ),
for some v and q model dependent set of parameters. The eigenvalues of Ĥ(1)

1b are given by

E(1)
± =

p2

2m
±
√

η2 + β2 + γ2 ≡ p2

2m
± ε(p, ξ) (A62)

whose asymptotic behavior at large momenta, for the linearity of η, β and γ, is given by

ε(p, ξ) =
√

α2 + β2 + γ2 ∼
p→∞

m(ξ)·p . (A63)

For convention | ↑ 〉1 is the eigenvector associated to E+ and | ↓ 〉1 to E−. The same problem
is identically solved for H(2)

1b with the exception of a sign which has to be considered and so
the eigenvalues will have the same form but with a different sign in the spin–orbit part of
the spectrum. The eigenvectors | ↑ 〉2 and | ↓ 〉2 are identically assigned and the energies are

E(2)
± =

p2

2m
± ε(−p, ξ) (A64)

With a proper unitary transformation it is always possible to put the Hamiltonian H0 in a
diagonal form

Ĥ0 =

(
p2

2m + ε(p, ξ) 0

0 p2

2m − ε(p, ξ)

)
⊗ I2 + I2⊗

(
p2

2m + ε(−p, ξ) 0

0 p2

2m − ε(−p, ξ)

)
(A65)

The eigenvalues of the total Hamiltonian can be obtained building a basis of eigenstates;
with a simple change in the notation |m〉i = |mi〉, with m= ↑, ↓, this can be done building
the basis

|m1, m2〉 = |m1〉 ⊗ |m2〉 (A66)

The associated eigenvalues are therefore

Ĥ0| ↑ ,↑ 〉 =
[

p2

m + ε(p, ξ) + ε(−p, ξ)
]
| ↑ ,↑ 〉

Ĥ0| ↑ ,↓ 〉 =
[

p2

m + ε(p, ξ)− ε(−p, ξ)
]
| ↑ ,↓ 〉

Ĥ0| ↓ ,↑ 〉 =
[

p2

m − ε(p, ξ) + ε(−p, ξ)
]
| ↓ ,↑ 〉

Ĥ0| ↓ ,↓ 〉 =
[

p2

m − ε(p, ξ)− ε(−p, ξ)
]
| ↓ ,↓ 〉

(A67)

The four states of spin are labeled by α = 0, 1, 2, 3 and, for simplicity, we will indicate with
t = (α, k), which implicitly depends on ξ, the specific eigenstate of the free Hamiltonian
with eigenvalue Et. To obtain a renormalization relation similar to Equation (40) it is
necessary to write the Lippmann–Schwinger equation for the stationary scattering state

|ψt(r)〉 = |ψ(0)
t (r)〉+ (r| 1

Et − Ĥ0 + i0+
V̂|ψt〉〉 (A68)
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Inserting a completeness relation in the position space

|ψt(r)〉 = |ψ(0)
t (r)〉+

∫
d3r′(r| 1

Et − Ĥ0 + i0+
|r′)V̂(r′)|ψt(r′)〉

= |ψ(0)
t (r)〉+

∫
d3r′G0(Et; r, r′)V̂(r′)|ψt(r′)〉 (A69)

The main difficulties in the presence of a SO term are in the Green’s function

G0(E; r, r′) = ∑
α

∫
d3k(r| 1

E− Ĥ0 + i0+
|ψ(0)

t 〉〉〈〈ψ
(0)
t |r

′)

= ∑
α

∫
d3k

eik·(r−r′)

E− Et + i0+
|k, α〉〈k, α| (A70)

The breaking of the rotational symmetry induced by the SO term makes hard the evaluation
of the Green’s function and its asymptotic behavior at large distances, therefore, the treat-
ment done before is not easily adaptable to this case. However, as proved in Ref. [45],
the scattering amplitude for the two-body problem with SO coupling, in the low energy
limit, also for a realistic short range potential (with r∗ the range) is

f (t′, t) = −(2π)3 〈ψ(0)
t′ (0)|S〉〈S|ψ(0)

t (0)〉
1/ar + iE1/2

t − 4π〈S|F(Et)|S〉

where the state |S〉 = (| ↑↓〉 − | ↓↑〉)/
√

2 is the singlet spin state and the operator F(E) =
1

(2π)3

∫
dk3 ∑α

[
|α,k〉〈α,k|
E+i0+−Et

− |α,k〉〈α,k|
E+i0+−k2

]
. Specifically the authors of Ref. [44] were able to

prove that, for rk � 1, r∗k � 1 and λr∗ � 1, the scattering wavefunction must have
the form

|ψt(r)〉 ∝
(

1
r
− 1

ar

)
|S〉 − i

λ

2
·
( r

r

)
|S〉 (A71)

This is a natural generalization of the Bethe-Peierls boundary conditions, briefly
introduced in (A41). This condition can be exploit to deduce the scattering amplitude
of the problem in the same approximations. However to obtain the renormalization
condition for a contact potential only the zero energy case is needed, which is shown to be
f (t′, t) =

k→0
−ar〈α′|S〉〈S|α〉, quite similar to the previous case, with the only difference that

as should be replaced by the scattering length ar which now contains also a dependence to
the parameters of the SO coupling. Interestingly, also in this case, a bound state near the
scattering threshold exists for energies Eb that satisfy

1/ar + iE1/2
b − 4π〈S|F(Eb)|S〉 = 0 . (A72)

Renormalization Condition for a Contact Potential

As done previously, in order to obtain the correct renormalization relation for the
contact potential in the presence of a spin–orbit coupling, one can exploit the Lippmann–
Schwinger equation and impose that a pseudo-potential reproduces the same scattering
amplitude of a realistic potential in the low energy limit. Looking at Equation (A71),
the natural choice is to consider a simple contact potential that acts only on the singlet state
|S〉 = 1√

2
(| ↑↓ 〉 − |↓↑ 〉)

V̂eff(r) = −gδ(r)⊗ |S〉〈S| (A73)

The Lippmann–Schwinger equation with the effective potential is given by

T̂2B(z) = V̂eff + V̂eff
1

z− Ĥ0 + i0+
T̂2B(z) (A74)
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It is also useful to remember that the scattering amplitude in terms of the T-matrix is

f (t′, t) = −2π2m〈〈ψ(0)
t′ |T2B(Et)|ψ(0)

t 〉〉 (A75)

If two eigenstates of the free Hamiltonian are applied on the right- and on the left-hand
sides of Equation (A74), denoting for simplicity |α, k〉 by |α〉, the scattering amplitude
is recovered

f (t′, t)
2π2m

=
g

(2π)3 〈α
′|S〉〈S|α〉− g

(2π)3 〈α
′|S〉

(
∑
α′′

∫
d3k′′

〈S|α′′〉
Et − Et′′ + i0+

1
2π2m

f (t′′, t)

)
(A76)

Using the zero energy limit for the scattering amplitude f (t′, t) =
k→0

−ar〈α′|S〉〈S|α〉,
one gets

ar

2π2m
= − g

(2π)3 +
g

(2π)3
ar

2π2m

(
+∑

α′′

∫
d3k′′
〈α′′|S〉〈S|α′′〉

Et′′

)
(A77)

Simplifying the expression and making explicit the singlet state the obtained relation
between the scattering length ar and the coupling g can be put in the form

1
g
= − m

4πar
+

1
(2π)3

∫
d3k

1
2

(
1

E↑↓
+

1
E↓↑

)
(A78)

We can further simplify this relation using E↓↑(−k) = E↑↓(k), getting

∫
d3k

1
2

(
1

E↑↓
+

1
E↓↑

)
=
∫

d3k
1

E↑↓
=
∫

d3k
1

k2/m + ε(k, ξ)− ε(−k, ξ)
(A79)

which, in spherical coordinates, can be written as

m
∫

d3k
1
k2 −m

∫
dΩ

∫ ∞

0
dk
(

ε(k, ξ)− ε(−k, ξ)

k2/m + ε(k, ξ)− ε(−k, ξ)

)
(A80)

Because of the behavior of the eigenvalues shown in Equation (A63) the integrand in the last
term of Equation (A80), at large momenta, will have an asymptotic behavior proportional
to 1/k2, therefore, the integral converges to a constant C. We finally get∫

d3k
1

k2/m + ε(k, ξ)− ε(−k, ξ)
= m

∫
d3k

1
k2 + C (A81)

The constant term can be easily incorporated in the definition of the coupling g, so that the
renormalization condition turns to be

1
g
= − m

4πar
+

m
(2π)3

∫
d3k

1
k2 . (A82)

The presence of a SO coupling does not alter the form of the renormalization condition for
a contact pseudo-potential. The only caution to be taken is to replace as with ar, a scattering
length which depends both on the interatomic potential and on the SO term.
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