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Abstract: Using fingerprints used mainly in machine learning schemes of the potential energy surface,
we detect in a fully algorithmic way long range effects on local physical properties in a simple covalent
system of carbon atoms. The fact that these long range effects exist for many configurations implies
that atomistic simulation methods, such as force fields or modern machine learning schemes, that are
based on locality assumptions, are limited in accuracy. We show that the basic driving mechanism
for the long range effects is charge transfer. If the charge transfer is known, locality can be recovered
for certain quantities such as the band structure energy.

Keywords: atomic fingerprints, electronic structure, non-local effects

1. Introduction

Most approximate chemical simulation schemes are based on a locality assumption. A
local property, such as a local charge distribution, an atomic spin polarization or atomic
energy as well as bond lengths are assumed to depend only on a nearby local environment,
but not features far away. The locality assumption is very well satisfied in many covalently
bonded systems. As an example let us consider the total energy of the alkanes polymers,
Cn H2n+2. Each CH2 monomer is energetically virtually an independent unit. As one adds
an additional CH2 monomer, the energy increases by an amount that is nearly independent
of the chain length. Insertion of a CH2 monomer into the smallest chain, C2H6, gives
already an energy gain that agrees to within 10−4 Ha with the asymptotic value of the
insertion energy for very long chains [1]. This shows that the electrons belonging to
this inserted sub-unit no longer “see” the end of the chain. This locality principle has
therefore been dubbed “nearsightedness” by Walter Kohn [2–4] and he claimed it to be
valid nearly universally. While charge transfer driven by electronegativity differences
in multi-component systems is well established and accounted for in most simulation
schemes, it is generally neglected in single-component covalent materials. In this study, we
will consider pure carbon systems and show that even in such a simple covalent system,
non-local effects play an important role.

All the standard force fields for this material [5], such as EDIP [6], Tersoff [7], Bren-
ner [8] or recent versions of bond order potentials [9], are also based on this locality
assumption. Modern machine learning schemes [10–12] are based on this locality assump-
tion as well. The energy is given in these schemes as a sum over atomic energies which
depend only on a short range environment. Long range electrostatic energies are some-
times still added [13–16], but the atomic charges giving rise to these interactions depend
again only on a local environment, whereas in reality, they are strongly influenced by
non-local effects.
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2. Methodology

To demonstrate the existence of non-local effects, one has to show that local physical
properties are different for short range environments that are virtually identical. Environ-
ment descriptors, also called atomic fingerprints, that quantify the similarity of chemical
environments have recently been developed in the context of machine learning and for
analysing big structural data banks [17–20]. We will use in this study mainly the fin-
gerprints based on the eigenvalues of an atom-centered overlap matrix [21], since these
descriptors have demonstrated a high reliability in detecting differences in the local en-
vironment [22]. We use a cutoff radius of 6 Å and s and p type orbitals for the overlap
matrix. Denoting a fingerprint vector describing the environment of two atoms α and β
by fα and fβ, we obtain a measure of the similarity by calculating the fingerprint distance
as the euclidean norm | fα − fβ|. Small values indicate that the environments are similar.
In addition, we also use the SOAP fingerprint [18], which is another high resolution fin-
gerprint [22]. For the SOAP fingerprint, we used the same cutoff radius of 6 Å together
with the following parameters: nmax = lmax = 8, rδ = 3.0 Å and σ = 0.5 Å. The SOAP
fingerprint distance is calculated in the usual way as

√
1− fα · fβ.

In this work, we will correlate fingerprint distances with differences of localized
physical properties of the system, such as atomic charge densities, atomic energies, and
atom-projected densities of states. These changes in the charge densities will finally also
modify bond lengths of our systems in a non-local way.

To split up global quantities into atomic quantities, we use the following partitioning
of the unity Wα(r):

Wα(r) =
e−(

r−Rα
σ′ )2

∑Nat
β e−(

r−Rβ

σ′ )2
(1)

where Nat is the number of atoms in the system and Rα denotes the Cartesian coordinates
of atom α. σ′ is some smearing parameter which we take to be equal to the covalent radius
of atom α. The function Wα(r) has large values around atom α, and as we move further
away from atom α, it becomes very small and it has the property ∑α Wα(r) = 1. It can
be considered as some kind of smooth Voronoi decomposition of space, since it will give
the Voronoi decomposition in the limit of small σ′. Let us also still point out the trivial
but important point that this smooth Voronoi decomposition depends only on the nearest
neighbor positions. So, if the local environment is not changed, the Voronoi volume will not
be modified either. Hence, if some quantity that is derived from this partitioning exhibits
non-local effects, it cannot be due to some change in the shape of the smooth Voronoi
volume, but must be due to a change in the physical quantities. The physical quantities
that will be examined are the wavefunctions and their Kohn–Sham eigenvalues.

As a first quantity, we define atomic charges Qα

Qα =
∫

dr ∑
i

nF(εi)|φi(r)|2Wα(r) (2)

where εi and φi are eigenvalues and eigenfunctions of the Hamiltonian of the system
and are obtained by solving the Schroedinger equation for the system within density
functional theory (DFT) using the Perdew-Burke-Ernzerhof (PBE) functional [23] together
with accurate norm conserving pseudopotentials [24]. The calculations were done with
the BigDFT code [25] using a grid spacing of 0.4 Bohr and a self-consistent field (SCF)
convergence threshold of 1× 10−5. nF(ε) is the occupation number of the state with energy
ε at an electronic temperature kBT of 10−5 Ha. Since, as pointed out above, the Voronoi
volume will not be influenced by non-local effects, this quantity is a direct measure of the
change in the charge density around the central atom. This is in contrast to some other
charge decomposition schemes such as Bader [26] or Mulliken [27], where the volume
associated to an atom is not determined by the geometry of the local environment, but by
the charge density or the wavefunction.
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As a second quantity, we define atomic energies Eα. Since the decomposition of the
total energy is highly ambiguous [28], we perform this decomposition only for the band
structure energy, which can again be assigned in a unique way to the smooth Voronoi
volumes by partitioning the energy density.

Eα =
∫

dr ∑
i

nF(εi)εi|φi(r)|2Wα(r) (3)

Since Wα(r) is a partitioning of the unity, the sum over all the atomic energies gives
the band structure energy, i.e., ∑Nat

α Eα = ∑i εi. As is well known [29], the band structure
energy term, ∑i εi, is the most important term to describe variations in the total energy. As
shown in Figure 1, these atomic energies agree well with our basic chemical intuition, of
which environment will give rise to low or high atomic energies. The atoms at the end
of the chains have, for instance, the highest energies, whereas the atoms of the cage have
lower energies. For these atoms, the energy is however also larger for atoms in a defective
cage region.

Figure 1. Two pairs of distinct structures (a–d), where we can find central atoms (shown as cubes) that are in virtually
identical short range chemical environments, with fingerprint distances of ∆FPOM ≈ 10−2. Due to long range effects, the
atomic charges and atomic energies are, however, quite different. The atoms in the first and second row are coloured
according to their atomic charges and energies respectively. ∆E = 0.11 Ha and ∆Q = 0.08 electrons for the pair in the left
column and ∆E = 0.21 Ha and ∆Q = 0.12 electrons for the pair in the right column.

As a third quantity, we study the atom projected density of states. The density of
states for the system is D(ε) = ∑i δ(ε− εi). We define the atom-projected density of states
for atom α to be:

Dα(ε) =
∫

dr ∑
i

δ(ε− εi)nF(εi)|φi(r)|2Wα(r) (4)

With the property ∑α Dα(ε) = ∑i δ(ε− εi) = D(ε). We replace 1√
2πσ2 exp

(
−(ε−εi)

2

2σ2

)
for δ(ε− εi) in Equation (4), where σ is a smearing parameter whose value is 0.05 Ha.
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We define the difference between the atom-projected density of states of two atoms α in
structure p and β in structure q to be:

∆DOSα(p),β(q) =

√∫
dε
(

Dα(p)(ε)− Dβ(q)(ε)
)2

(5)

This quantity can be calculated analytically for the numerically obtained εis.

3. Results

By a combination of minima hopping [30–32] (MH) and molecular dynamics (MD)
coupled to density functional-based tight binding (DFTB) [33], we have generated a large
number of clusters, with 60 carbon atoms. This data base of 3000 C60 configurations
contains a wide range of structural motifs, including chains, graphitic sheets and cages.
In this way, 180,000 environments were created. By analysing the correlation between
the fingerprint distances and the physical observables, we will show that it is possible
to detect in a fully automatic way non-local effects in our structures. So, our search for
non-local effects is much more comprehensive than would be possible with a search based
on human intuition.

In Figure 2, we plot differences of three local physical properties, namely atomic
charges, atomic energies and the atom-projected density of states, against fingerprint
distances. In all these cases, it may happen that the same value of a physical property is
observed for different environments. Energies might for instance be degenerate. However,
if these localised physical properties differ for identical or nearly identical environments,
localised physical properties are influenced by long range effects. Such cases correspond to
points on or very close to the x axis in our correlation plots and we see that indeed plenty
of such problematic points exist. Since in related contexts it was shown that PBE does not
give a very accurate description of charge transfer [34], we have in addition performed
the same calculations with the PBE0 functional [35,36] and the Hartree–Fock method. As
can be seen from Figure 3, such problematic points exist in all cases and the non-local
effects are clearly not an artifact of the PBE functional. Neither does the choice of the
fingerprint influence the result. As can also be seen from Figure 2, virtually identical results
are obtained with the SOAP fingerprint [18]. Hence, long range effects clearly exist in this
single component covalent system.

Having established the existence of long range effects on local physical properties in
a purely algorithmic way, it is interesting to see whether they can also be explained by
traditional physical arguments. A structure that is strongly affected by non-local effects is
the structure shown in Figure 1d. It consists of a cage of 56 carbon atoms and a 4 carbon
atom chain attached to it. If one calculates the Kohn–Sham eigenvalues of the two isolated
fragments, i.e., the 4 atom chain and the 56 atom cage one finds that the LUMO level of the
chain is lower than the HOMO level of the cage. Hence, in a simple one particle picture
one electron would be transferred from the cage to the chain. In a DFT calculation, such
a charge transfer is always reduced by the electron-electron repulsion, and based on our
analysis of the atomic charges, we find indeed only a charge transfer of about 0.34 electrons,
with the PBE functional in this case. We were able to find analogous explanations for
several other cases that we inspected in more detail, but not for all of them.

It is for instance probably not possible to predict by basic chemical reasoning the
variation on the atomic charge on the central atoms in the pair of structures shown in
Figure 1c,d. Both central atoms are the outermost ones in a chain attached to a cage and the
cage structures look quite similar. Hard to explain by traditional arguments are also the
differences in the charge of the two central atoms shown in Figure 1a,b, where again, the
near environments are almost identical and only the bond connectivity of the cages differs
slightly. One can actually even transfer an additional 0.07 electrons onto the chain by just
compressing some bonds in the region of the cage furthest away from the docking point of
the chain.
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Figure 2. The correlation plot between OM and SOAP fingerprint distances among atomic environments and the differences
in atomic charge (Equation (2)), atomic energy (Equation (3)), and the atom projected DOS (Equation (4)) of the central
atoms of these environments. The colour coding indicates the density of correlation pairs. Within our chosen resolution,
there are about 200,000 points on the x-axis, which corresponds to about 0.001 percent of the total number of points.

Varying atomic charges are supposed to lead to variations in the bond length, and this
is indeed the case for this system. The bond lengths of the 4 atom chain differ depending on
whether the chain is isolated or attached to the cage. The bond lengths of the PBE-relaxed
free chain of 4 carbon atoms are 1.293, 1.313 (middle bond), and 1.293. If one attaches
the chain with these bond lengths to a cage the forces acting on the atoms of the chain
are not any more zero, because charge is transferred from the chain onto the cage. This
change of the forces for identical geometries can obviously not be obtained from local
fingerprints. Due to the charge transfer, the bond lengths relax then during a local geometry
optimization to the new values of 1.243, 1.327 (middle bond), and 1.280 (the bond at the free
end of the chain), as shown in Figure 1d). So, the bond length at the free end of the chain
becomes significantly shorter due to the transferred charge. In addition, the electronic
ground state of the free chain is also spin polarised. So, long range effects modify both the
bond lengths and the spin moments.
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Figure 3. The correlation between fingerprint distances and the atomic charge differences calculated in PBE0 and HF. The
color coding indicates the density of correlation pairs.

Having established the ubiquitous existence of non-local effects in a standard covalent
material, one has to question whether the near-sightedness postulated by Walter–Kohn
holds. Actually in the publication where this notion of near-sightedness was introduced
there is a caveat, namely that it is only valid if the chemical potential is constant. Since
charge transfer is driven by an equalisation of initially different chemical potentials, this
principle is therefore not directly applicable in real systems where, as shown in this
study, such a charge transfer is quite common. Because of its central importance in the
calculation of the total energy, we will, in the following, concentrate on the atomic band
structure energy and show that locality can be restored for this quantity if one includes not
only information about the structure in a limited environment, but also about the atomic
charges. For this purpose, we modify our OM fingerprint such that it also depends on
the atomic charges within the sphere with our chosen cutoff radius. The resulting charge-
sensitive overlap matrix fingerprint (CSOM) is a variant of OM fingerprint, which includes
information about charges in the near environment. To calculate the CSOM fingerprint
of an atom k, we first proceed like for the calculation of the standard OM fingerprint. We
find all the neighbors of the central atom within the sphere of some cutoff radius Rc and
then place a minimal basis set of four Gaussian type orbitals (GTOs) Gν(r−Ri) (i.e., radial
Gaussians times spherical harmonics) on each atom i in the sphere, namely one s-type
GTO (ν = 1), and 3 p-type GTOs (ν = 2, 3, 4). The width of the radial Gaussian is given by
the covalent radius of the element. Then, the overlap between all atoms in the sphere is
calculated as:

Sk
i,ν,j,µ =

∫
Gν(r−Ri)Gµ(r−Rj)dr (6)

To obtain the charge sensitive version of the fingerprint, we add the charge variations
for each atom in the sphere to the diagonal of S, i.e.,

Sk
i,ν,j,µ ← Sk

i,ν,j,µ + c(Qi − Q̄)δi,j (7)

where Qi is defined in Equation (2), c is some constant (c = 5 in our case) and Q̄ is the
average valence charge of the atoms, which is 4 for carbon. The remaining steps are again
identical to the case of the standard OM fingerprint. Each element Sk

i,j of this matrix is mul-
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tiplied by two amplitudes, fc(|Rk−Ri|) and fc(|Rk−Rj|), where fc(r) =
(

1− 1
4 (

r
w )

2
)2

is
a cutoff function which smoothly tends to zero at r = 2w = Rc. Beyond Rc, the amplitude
is zero. So, the only difference between CSOM and OM fingerprints is the second term in
Equation (7), where we added atomic DFT charges to move the points on the fingerprint
axis of the correlation between fingerprint and atomic energy upward. The vector fk con-
taining all the eigenvalues of this matrix is then the fingerprint of atom k. The fingerprint
distance between two atoms is again taken to be the Euclidean distance between the two
fingerprint vectors.

In the left panel of Figure 4, we show the correlation plot between OM and CSOM
fingerprints. There are no points on the x axis (OM axis), but there are some points on the y
axis (CSOM axis), which shows that the CSOM fingerprint does not loose any information,
and is in addition capable of distinguishing identical structural environments that have
different atomic charges. So, the CSOM fingerprint still has a strong sensitivity to the
geometrical structure, but in addition, a weak sensitivity to the charges.
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Figure 4. (Left): The correlation between OM and CSOM fingerprints. (Right): The correlation
between distances calculated with the charge-sensitive OM fingerprint (CSOM) and the atomic
energy differences.

As can be seen from the right panel of the same Figure 4, all the points which were in
Figure 2 close to the x-axis are moved upward when the CSOM fingerprint is used. Hence,
there are no more additional long range effects. This means that the charge transfer is the
basic long-range effect. Once this charge transfer is known, the total energy can be obtained
from purely local information.

4. Conclusions

This finding has important consequences for machine learning schemes. Charge
transfer is not possible in most of these schemes. Hence, they will necessarily be limited in
accuracy. For instance, the environment descriptors of the atoms at the end of the chains
in Figure 1 would have in all standard machine learning schemes a cutoff range which is
shorter than the length of the chain. Hence, the standard descriptor can not see whether the
chain is free standing or attached to the cage. Some long range fingerprints that might cope
with this deficiency have, however, also been proposed recently [14,37]. Non-local charge
transfer effects in combination with standard short range fingerprints can however be
described by the charge equilibration via neural network technique (CENT) [38,39], where
a machine learning scheme is combined with a charge equilibration scheme. Consequently,
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a scheme of this type has to be an integral part of any machine learning scheme that strives
to obtain very high accuracy also for systems where long range effects cannot be neglected.
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