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Abstract: The magnetic field hz of a moving Pearl vortex in a superconducting thin-film in (x, y)
plane is studied with the help of the time-dependent London equation. It is found that for a vortex at
the origin moving in +x direction, hz(x, y) is suppressed in front of the vortex, x > 0, and enhanced
behind (x < 0). The distribution asymmetry is proportional to the velocity and to the conductivity
of normal quasiparticles. The vortex self-energy and the interaction of two moving vortices are
evaluated.

Keywords: thin films; Pearl vortex

1. Introduction

The time-dependent Ginzburg–Landau equations (GL) are the major tool in modeling
vortex motion. Although this approach is applicable only for gapless systems near the
critical temperature [1], it is gauge invariant and reproduces correctly major features of the
vortex motion.

A simpler linear London approach has been employed through the years to describe
static or nearly static vortex systems. The London equations express the basic Meissner
effect and can be used at any temperature for problems where vortex cores are irrelevant.
Moving vortices are commonly considered the same as static which are displaced as a
whole.

However, recently it has been shown that this is not the case for moving vortex-
like topological defects in, e.g., neutral superfluids or liquid crystals [2]. This is not so
in superconductors within the time-dependent London theory (TDL) which takes into
account normal currents, a necessary consequence of moving magnetic structure of a
vortex [3,4]. In this paper, the magnetic field distribution of moving Pearl vortices in thin
films is considered. It is shown that the self-energy of a moving vortex decreases with
increasing velocity. The interaction energy of two vortices moving with the same velocity
becomes anisotropic; it is enhanced when the vector R connecting vortices is parallel to the
velocity v and suppressed if R ⊥ v. The magnetic flux carried by moving vortex is equal
to flux quantum, but this flux is redistributed so that the part of it in front of the vortex is
depleted, whereas the part behind it is enhanced.

In time-dependent situations, the current consists, in general, of normal and supercon-
ducting parts:

J = σE− 2e2|Ψ|2
mc

(
A +

φ0

2π
∇χ

)
, (1)

where E is the electric field and Ψ is the order parameter.
The conductivity σ approaches the normal state value σn when the temperature T

approaches Tc; in s-wave superconductors it vanishes fast with decreasing temperature
along with the density of normal excitations. This is not the case for strong pair breaking
when superconductivity becomes gapless, and the density of states approaches the normal
state value at all temperatures. Unfortunately, there is not much experimental information
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about the T dependence of σ. Theoretically, this question is still debated; e.g., [5] discusses
the possible enhancement of σ due to inelastic scattering.

Within the London approach |Ψ| is a constant Ψ0, and Equation (1) becomes:

4π

c
J =

4πσ

c
E− 1

λ2

(
A +

φ0

2π
∇χ

)
, (2)

where λ2 = mc2/8πe2|Ψ0|2 is the London penetration depth. By acting on this via curling,
one obtains:

−∇2h +
1

λ2 h +
4πσ

c2
∂h
∂t

=
φ0

λ2 z ∑
ν

δ(r− rν) , (3)

where rν(t) is the position of the ν-th vortex; z is the direction of vortices. Equation (3) can
be considered as a general form of the time-dependent London equation.

The time-dependent version of London Equation (3) is valid only outside vortex cores,
similarly to the static London approach. As such, it may give useful results for materials
with large GL parameter κ values in fields away from the upper critical field Hc2. On the
other hand, Equation (3) is a useful, albeit approximate tool for low temperatures where
GL theory does not work and the microscopic theory is forbiddingly complex.

2. Thin Films

Let the film of thickness d be in the xy plane. Integration of Equation (3) over the film
thickness gives, for the z component of the field, a Pearl vortex moving with velocity v:

2πΛ
c

curlzg + hz + τ
∂hz

∂t
= φ0δ(r− vt). (4)

Here, φ0 is the flux quantum; g is the sheet current density related to the tangential field
components at the upper film face by 2πg/c = ẑ× h; Λ = 2λ2/d is the Pearl length; and
τ = 4πσλ2/c2. With the help of divh = 0, this equation is transformed to:

hz −Λ
∂hz

∂z
+ τ

∂hz

∂t
= φ0δ(r− vt). (5)

As was shown by Pearl [6], a large contribution to the energy of a vortex in a thin film
comes from stray fields. In fact, the problem of a vortex in a thin film is reduced to that of
the field distribution in free space subject to the boundary condition supplied by solutions
of Equation (4) at the film’s surface. Outside the film curlh = divh = 0, one can introduce
a scalar potential for the outside field:

h = ∇ϕ, ∇2 ϕ = 0 . (6)

The general form of the potential satisfying Laplace equation that vanishes at z→ ∞ of the
empty upper half-space is

ϕ(r, z) =
∫ d2k

4π2 ϕ(k)eik·r−kz . (7)

Here, k = (kx, ky), r = (x, y), and ϕ(k) is the two-dimensional Fourier transform of
ϕ(r, z = 0). In the lower half-space, one has to replace z→ −z in Equation (7).

As is done in [3], one applies the 2D Fourier transform to Equation (5) to obtain a
linear differential equation for hzk(t). Since hzk = −kϕk, we obtain:

ϕk = − φ0e−ik·vt

k(1 + Λk− ik · vτ)
. (8)
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In fact, this gives distributions for all field components outside the film, its surface included.
In particular, hz at z = +0 (the upper film face) is given by

hzk = −kϕk =
φ0e−ik·vt

1 + Λk− ik · vτ
. (9)

We are interested in the vortex’s motion with constant velocity v = vx̂, so that we can
evaluate this field in real space for the vortex at the origin at t = 0:

hz(r) =
φ0

4π2

∫ d2k eik·r

1 + Λk− ikxvτ
. (10)

It is convenient in the following to use Pearl Λ as the unit length and measure the field in
units φ0/4π2Λ2:

hz(r) =
∫ d2k eik·r

1 + k− ikxs
, s =

vτ

Λ
. (11)

(we left the same notations for hz and k in new units; when needed, we indicate formulas
written in common units).

2.1. Evaluation of hz(r)

With the help of identity

(1 + k− ikxs)−1 =
∫ ∞

0
e−u(1+k−ikxs)du , (12)

one rewrites the field as

hz(r) =
∫ ∞

0
du e−u

∫
d2k eik·ρ−uk,

ρ = (x + us, y). (13)

To evaluate the last integral over k, we note that the three-dimensional (3D) Coulomb
Green’s function is

1
4πR

=
1

(2π)3

∫ d3q
q2 eiq·R =

1
8π2

∫ d2k
k

eik·r−kz. (14)

To do here the last step, we used R = (r, z), q = (k, qz) and

∫ ∞

−∞
dqz

eiqzz

k2 + q2
z
=

π e−k|z|

k
. (15)

It follows from Equation (14)∫
d2k eik·r−kz = −2π

∂

∂z
1√

r2 + z2
=

2πz
(r2 + z2)3/2 . (16)

Replace now r → ρ, z→ u, R→
√

ρ2 + u2 to obtain instead of Equation (13):

hz(r) = 2π
∫ ∞

0
du

u e−u

(ρ2 + u2)3/2 . (17)

After integrating by parts, one obtains:

hz = 2π

[
1
r
−
∫ ∞

0

du e−u√
ρ2 + u2

(
1 +

s(x + su)
ρ2 + u2

)]
. (18)
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For the Pearl vortex at rest s = 0, ρ = r, and the known result follows; see, e.g., [7]:

hz(r) = 2π

{
1
r
+

π

2
[Y0(r)− H0(r)]

}
, (19)

Y0 and H0 are second-kind Bessel and Struve functions.
Hence, we succeeded in reducing the double integral (11) to a single integral over u.

Besides, the singularity at r = 0 is now explicitly represented by 1/r, whereas the integral
over u is convergent and can be evaluated numerically.

The results are shown in Figure 1.
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Figure 1. The left panel: contours of hz(x, y) = const (hz is in units φ0/4π2Λ2 and x, y in units of Λ) for s = 2. The right
one: hz(x, 0) for s = 0.5 (dotted red), s = 1 (dashed green), and s = 2 (solid blue).

The field distribution is not symmetrical relative to the singularity position: the field
in front of the moving vortex is suppressed relative to the symmetric distribution of the
vortex at rest, whereas behind the vortex it is enhanced. This is an interesting consequence
of our calculations: the magnetic flux of the moving vortex is redistributed so that it is
depleted in front of the vortex and enhanced behind it.

We can characterize this redistribution by calculating the magnetic flux Φ+ in front of
the vortex:

Φ+

φ0
=

∫ ∞

0
dx
∫ ∞

−∞
dy hz(x, y)

=
∫ ∞

0
dx
∫ ∞

−∞
dy
∫ d2k

4π2
φ0eikr

1 + k− ikxs
. (20)

The integral over y gives 2πδ(ky), whereas when integrating over kx we use

∫ ∞

0
dx eikx x = i

(
P
kx
− iπδ(kx)

)
, (21)

where P indicates that the integral over kx in Equation (20) should be understood as the
principal value. Hence, we have

Φ+

φ0
=

i
2π

(
P
∫ ∞

−∞

dkx

kx(1 + |kx| − ikxs)
− iπ

)
. (22)
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The integration now is straightforward and we obtain

Φ+ =
φ0

2
− φ0

π
arctan s. (23)

Note that the total flux carried by vortex is given by Fourier component hz(k = 0) = φ0;
see Equation (9). I.e., φ0/2 is the flux through the half-plane x > 0 of the vortex at rest. The
flux behind the moving vortex is therefore

Φ− =
φ0

2
+

φ0

π
arctan s. (24)

2.2. Potential and London Energy of the Moving Vortex

The potential ϕ introduced above is useful not only as an intermediate step in the
evaluation of a magnetic field; it is directly related to the London energy (the sum of the
magnetic energy outside the film and the kinetic energy of the currents inside) [8].

The potential

ϕ(r) = − φ0

4π2Λ

∫ d2k eik·r

k(1 + k− ikxs)
. (25)

Employing again the identity (12), we have

4π2Λ
φ0

ϕ(r) =
∫ ∞

0
du e−u

∫ d2k
k

eik·ρ−uk

= 2π
∫ ∞

0

du e−u√
ρ2 + u2

(26)

with ρ2 = (x + us)2 + y2.

2.2.1. Self-Energy of a Moving Vortex

This energy is given by

ε0 = − φ0

4π
ϕ(r)|r→0 (27)

whereas the integral (26) in this limit is logarithmically divergent. As is commonly done,
we can approach the singularity at r = 0 from any side—e.g., setting x = 0 and y = ξ, the
core size is:

ε0 =
φ2

0
8π2Λ

∫ ∞

0

du e−u√
u2s2 + ξ2

c + u2

≈
φ2

0

8π2Λ
√

1 + s2
ln

Λ
√

1 + s2

ξ2 (28)

for the small dimensionless ξc = ξ/Λ. Compare this with the energy of a vortex at rest;
see, e.g., [8]:

ε0 ≈
φ2

0
8π2Λ

ln
Λ
ξ

, (29)

Hence, the vortex self-energy decreases with increasing velocity, a result qualitatively
similar to that of moving vortices in the bulk [4].
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2.2.2. Interaction of Moving Vortices

It has been shown in [8] that in infinite films the interaction is given by
εint = (φ0/8π)[ϕ1(2) + ϕ2(1)]; ϕ1(2) is the potential of the vortex at the origin at the
position r of the second. Using Equation (26) we obtain

8π2Λ
φ2

0
εint =

∫ ∞

0
du e−u

( 1√
(x + us)2 + y2 + u2

+
1√

(−x + us)2 + y2 + u2

)
. (30)

Clearly, εint(x, y) = εint(−x, y). This energy can be evaluated numerically and the result is
shown in Figure 2 for s = 2.
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Figure 2. Contours of constant interaction energy εint(x, y) for s = 2.

It is worth noting that in thin films the interaction is not proportional to the field of
one vortex at the position of the second. In our case the field of one vortex (see Figure 1) is
not symmetric relative to x → −x, whereas the interaction energy is.

2.3. Electric Field and Dissipation

Having the magnetic field (9) of a moving vortex, one gets for two vortices, one at the
origin and the second at R:

hzk =
φ0(1 + e−ikR)e−ikxvt

1 + kΛ− ikxΛs
(31)

(in common units). The moving, nonuniform vortex’s magnetic field causes an electric field
E out of the vortex core, which in turn causes the normal currents σE and the dissipation
σE2. Usually this dissipation is small relative to Bardeen–Stephen core dissipation [9],
but for fast vortex motion and high conductivity of normal excitations [5] it can become
substantial [3].

The field E caused by known h(t) is given by Maxwell equations i(k × Ek)z =
−∂thzk/c and k · Ek = 0:

Exk = −φ0v
c

kxky(1 + e−ikR)

k2(1 + kΛ− ikxΛs)
, (32)

Eyk =
φ0v

c
k2

x(1 + e−ikR)

k2(1 + kΛ− ikxΛs)
. (33)
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For a constant velocity, one can consider the dissipation at t = 0. The dissipation power is:

W = σd
∫

drE2 = σd
∫ d2k

4π2

(
|Exk|2 + |Eyk|2

)
=

φ2
0σdv2

π2c2

∫
d2k

k2
x cos2(kR/2)

k2[(1 + kΛ)2 + k2
xΛ2s2]

. (34)

The integral here is divergent at large k, but the London theory breaks down in the vortex
core of a size ξ, so one can introduce a factor e−k2ξ2

to truncate this divergence. We then
calculate the reduced quantity w(x, y) = W(πc2Λ2/φ2

0σdv2) shown in Figure 3.
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Figure 3. Contours of constant dissipation w(x, y) in the system of two moving vortices for s = 2.
At t = 0 one is situated at the origin and the second at (x, y).

We note that the dissipation w(x, y) develops a shallow ditch along the x axis. Hence,
for a fixed separation of vortices in the pair, the dissipation is minimal if they are aligned
along the velocity.

3. Discussion

We have shown that in thin films the magnetic structure of the moving Pearl vortex
is distorted relative to the vortex at rest. A similar formal procedure can be employed for
moving Abrikosov vortices in the bulk, see Appendix A. The flux quantum of a moving
vortex is redistributed and the back side of the flux is enhanced, whereas the front side is
depleted. Physically, the distortion is caused by normal currents arising due to changing in
time magnetic field at each point in space; the electric field is induced and causes normal
currents. Naturally, it leads to the suppression of the flux where it is increasing (in front
of the moving vortex) and to enhancement where it is decreasing (behind the vortex).
We characterize this asymmetry by the difference of fluxes behind (x < 0) and in front
(x > 0) of the moving vortex ∆Φ = Φ− −Φ+ = (2φ0/π) arctan s. For a realistic situation,
s = vτ/Λ � 1, although the relaxation time τ ∝ σλ2 where σ is the poorly-known
conductivity of above-the-gap normal excitations. Measuring ∆Φ one can extract σ, an
important physical characteristic of superconductors. There is an experimental technique
which, in principle, could probe the field distribution in moving vortices [10]. This is highly
sensitive SQUID-on-tip with the loop small on the scale of possible Pearl lengths.

Recent experiments have traced vortices moving in thin superconducting films with
velocities well exceeding the speed of sound [10,11]. Vortices crossing thin-film bridges
being pushed by transport currents have a tendency to form chains directed along the
velocity. The spacing of vortices in a chain is usually exceeded by much of the core size,
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so the commonly accepted reason for the chain formation, namely, the depletion of the
order parameter behind moving vortices, is questionable. However, at distances r � ξ the
time-dependent London theory is applicable. Another promising technique for studying
moving vortices is Tonomura’s Lorentz microscopy [12].

In this paper, we consider only properties of a single vortex and of interaction between
two vortices moving with the same velocity, It would be interesting to consider how these
results change if the quantization of the transverse electron motion is taken into account [13].
The problem of interaction in systems of many vortices is still to be considered.
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Appendix A. Abrikosov Vortex Moving in the Bulk

The field distribution of this case has been evaluated numerically in [3]. Here, we
provide this distribution in closed analytic form.

The magnetic field h has one component hz, so we can omit the subscript z. By
choosing λ as a unit length and measuring the field in units of φ0/4πλ2, we have:

h(r) =
∫ d2k eikr

1 + k2 − ikxs
, s =

vτ

λ
. (A1)

First, we use the identity

(1 + k2 − ikxs)−1 =
∫ ∞

0
e−u(1+k2−ikxs)du , (A2)

so that

h(r) =
∫ ∞

0
du e−u

∫
d2k eik·r−u(k2−ikxs)

=
∫ ∞

0
du e−u

∫
d2k eik·ρ−uk2

, ρ = (x + us, y). (A3)

Now, integrals over kx, ky are doable:∫ ∞

−∞
dkx eikxρx−uk2

x

∫ ∞

−∞
dky eikyy−uk2

y =
π

u
e−ρ2/4u (A4)

where ρ2 = (x + us)2 + y2. Hence, we have

h(r) = π
∫ ∞

0

du
u

e−u−ρ2/4u

= π
∫ ∞

0

du e−u

u
exp

[
− (x + us)2 + y2

4u

]
=

φ0

2πλ2 e−sx/2λK0

( r
2λ

√
4 + s2

)
. (A5)

The last line is written in common units. Note that for the vortex at rest, s = 0, and we get
the standard result h = (φ0/2πλ2)K0(r/λ) [14].
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This section is not mandatory, but may be added if there are patents resulting from
the work reported in this manuscript.
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13. Shanenko, A.A.; Orlova, N.V.; Vagov, A.; Milos̆ević, M.V.; Axt, V.M.; Peeters, F.M. Nanofilms as quantum-engineered multiband
superconductors: The Ginzburg-Landau theory. EPL 2013, 102, 27003. [CrossRef]

14. De Gennes, P. Superconductivity of Metals and Alloys; Benjamin: New York, NY, USA, 1966.

http://doi.org/10.3367/UFNr.0116.197507b.0413
http://dx.doi.org/10.1103/PhysRevLett.115.247801
http://www.ncbi.nlm.nih.gov/pubmed/26705656
http://dx.doi.org/10.1103/PhysRevB.97.094510
http://dx.doi.org/10.1103/PhysRevB.102.024506
http://dx.doi.org/10.1103/PhysRevB.101.134508
http://dx.doi.org/10.1063/1.1754056
http://dx.doi.org/10.1103/PhysRevB.63.144501
http://dx.doi.org/10.1103/PhysRevB.75.064514
http://dx.doi.org/10.1103/PhysRev.140.A1197
http://dx.doi.org/10.1038/s41467-017-00089-3
http://www.ncbi.nlm.nih.gov/pubmed/28729642
http://dx.doi.org/10.1038/s41467-020-16987-y
http://www.ncbi.nlm.nih.gov/pubmed/32620789
http://dx.doi.org/10.1103/PhysRevLett.70.2952
http://www.ncbi.nlm.nih.gov/pubmed/10053695
http://dx.doi.org/10.1209/0295-5075/102/27003

	Introduction
	Thin Films
	Evaluation of hz(r)
	Potential and London Energy of the Moving Vortex
	Self-Energy of a Moving Vortex
	Interaction of Moving Vortices

	Electric Field and Dissipation

	Discussion
	Abrikosov Vortex Moving in the Bulk
	References

