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Abstract: We investigate the role of kinetic energy for the stability of superconducting state in
the two-dimensional Hubbard model on the basis of an optimization variational Monte Carlo
method. The wave function is optimized by multiplying by correlation operators of site off-diagonal
type. This wave function is written in an exponential-type form given as ψλ = exp(−λK)ψG

for the Gutzwiller wave function ψG and a kinetic operator K. The kinetic correlation operator
exp(−λK) plays an important role in the emergence of superconductivity in large-U region of the
two-dimensional Hubbard model, where U is the on-site Coulomb repulsive interaction. We show
that the superconducting condensation energy mainly originates from the kinetic energy in the
strongly correlated region. This may indicate a possibility of high-temperature superconductivity
due to the kinetic energy effect in correlated electron systems.

Keywords: strongly correlated electrons; mechanism of superconductivity; high-temperature su-
perconductor; two-dimensional Hubbard model; optimization variational Monte Carlo method;
Hubbard model

1. Introduction

It is important and challenging to clarify the mechanism of high-temperature super-
conductivity in cuprates. It has been studied intensively for more than three decades [1].
In the study of cuprate high-temperature superconductivity, it is important to understand
the ground state phase diagram. For this purpose, we should investigate electronic models
with strong correlation.

It is certain that the CuO2 plane plays an important role in the emergence of high-
temperature superconductivity [2–8]. The CuO2 plane contains oxygen atoms and copper
atoms; thus, the CuO2 plane can be modeled by the d-p model (or the three-band Hub-
bard model) [9–25]. The single-band Hubbard model [26–28] is important since it can be
regarded as a simplified model of the three-band d-p model and may contain important
physics concerning high-temperature superconductivity [29–49]. The Hubbard model was
first proposed by Hubbard to describe the metal-insulator transition [50] and has been one
of the important fundamental models in condensed matter physics up to now. It may con-
tain important physics concerning high-temperature cuprates, such as antiferromagnetic
insulator, superconductivity, stripes [51–58], and inhomogeneous states [59–62].

We employ an optimization variational Monte Carlo method to investigate the ground
state of the 2D Hubbard model. In a variational Monte Carlo method, we use variational
wave functions with strong correlation between electrons [33,34,36–39]. A variational wave
function is improved by introducing correlation operators. The wave function used in this
paper is obtained by multiplying the Gutzwiller function by exp(−λK) operators, where
K is the kinetic part of the Hamiltonian [47,48,63,64]. We can optimize the wave function
further by multiplying by exponential-type operators again [63]. The ground-state energy
is lowered greatly with this wave function [47].
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The kinetic energy-driven mechanism of superconductivity has been examined in
the study of cuprate superconductors for the Hubbard model [42,65–67] and the t-J
model [68–70]. This is an interesting subject since there is a possibility that kinetic en-
ergy pairing occurs in high-temperature cuprates. In this paper, we discuss the role of
kinetic energy based on the improved wave function for the Hubbard model. We evaluate
the superconducting condensation energy as a sum of the kinetic and Coulomb energy con-
tributions, and we show that the kinetic energy contribution dominates the condensation
energy in the strongly correlated region of large U.

2. Hubbard Hamiltonian

We investigate the two-dimensional Hubbard model. The Hamiltonian of the Hubbard
model is

H = ∑
ijσ

tijc†
iσcjσ + U ∑

i
ni↑ni↓, (1)

where tij indicates the transfer integral, and U is the strength of the on-site Coulomb
interaction. The transfer integral is tij = −t when i and j are nearest-neighbor pairs 〈ij〉.
We put t′ = 0 in this paper, where tij = −t′ when i and j are next-nearest neighbor pairs.
N and Ne denote the number of lattice sites and the number of electrons, respectively. The
energy unit is given by t. We define the non-interacting part as K:

K = ∑
ijσ

tijc†
iσcjσ. (2)

When two electrons with spin up and down are at the same site, the energy becomes
higher by U. This simple interaction may cause many interesting phenomena, such as the
metal-insulator transition, antiferromagnetic magnetism, and superconductivity.

The metal-insulator transition occurs at half filling when U is as large as the bandwidth.
The effective Hamiltonian is given by the Heisenberg model when U is large in the half-
filled case, which leads to the t-J model when holes are doped. Magnetic properties of
materials may be described by the Hubbard model by introducing suitable magnetic orders.
We discuss superconductivity in the strongly correlated region in this paper. The emergence
of superconducting state in this region is closely related to the kinetic energy gain that
increases as U increases.

3. Optimized Wave Function

In a variational Monte Carlo method, we calculate the expectation values of physical
properties by using a Monte Carlo procedure. We start with the Gutzwiller wave function
to take account of electron correlation. The Gutzwiller wave function is

ψG = PGψ0, (3)

where PG is the Gutzwiller operator PG = ∏j(1− (1− g)nj↑nj↓), where g is the variational
parameter in the range of 0 ≤ g ≤ 1. ψ0 indicates a one-particle state, such as the Fermi
sea, the BCS state, and the antiferromagnetic state.

We improve the wave function by multiplying by the correlation operator given
as [47,63,71–75]

ψλ = exp(−λK)ψG, (4)

where K is the kinetic part of the Hamiltonian, and λ is a real variational operator [39,63,72].
There are other methods to improve the Gutzwiller wave function by using Jastrow-

type operators [41,76,77]. This operator is written as

PJdh = ∏
j

(
1− (1− η)∏

τ

[
dj(1− ej+τ) + ej(1− dj+τ)

])
, (5)
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where dj is the operator for the doubly-occupied site given as dj = nj↑nj↓, and ej is that for
the empty site given by ej = (1− nj↑)(1− nj↓). η is the variational parameter that takes the
value in the range of 0 ≤ η ≤ 1. τ indicates a vector connecting nearest-neighbor sites. The
Jastrow-type wave function is written as ψJ = PJdhψG. An important difference between ψλ

and ψJ is that PJdh is the site-diagonal operator, while ψλ is the site-off diagonal operator.
The one-particle state ψ0 is written in the form

ψ0 = ∑
j

a0
j ϕ0

j , (6)

where {ϕ0
j } is a set of basis functions of the one-particle state in the site representation on

a lattice, with j being the label for the electron configuration. ψλ and ψJ are given as

ψλ = ∑
j

a0
j e−λKPG ϕ0

j , (7)

ψJ = ∑
j

a0
j PJdhPG ϕ0

j . (8)

Since PG and PJdh are diagonal operators, ψJ is written as

ψJ = ∑
j

aJ
j ϕ0

j , (9)

where aJ
j = aJ

j (g, η) is determined by parameters g and η. ψJ is given by a wave function,

where the coefficients {a0
j } are modified in the one-particle state. Instead, ψλ is not so

simple because e−λK generates other basis states from ϕ0
j , which means that off-diagonal

elements 〈ϕ0
i Kϕ0

j 〉 are effectively taken into account. We write ψλ as

ψλ = ∑
j

aλ
j ϕj, (10)

where the set of basis states {ϕj}may contain basis states which are not included in {ϕ0
j }

since some coefficients a0
`s may vanish accidentally.

The expectation values are calculated numerically by using the auxiliary field method
following a Monte Carlo algorithm [63,78]. We show the ground-state energy per site as
a function of U for ψG and ψλ in Figure 1. The energy is lowered due to the exponential
factor e−λK. In the region of large U, the energy lowering mainly comes from the kinetic
energy gain, as shown later.
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Figure 1. Ground-state energy as a function of U on a 10× 10 lattice, where we set Ne = 88 and
t′ = 0 with the boundary condition in one direction, and the antiperiodic one in the other direction.
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4. Correlated Superconducting State

The correlated superconducting state is obtained by multiplying the BCS wave func-
tion by a correlation operator. The BCS wave function is

ψBCS = ∏
k
(uk + vkc†

k↑c
†
−k↓)|0〉, (11)

with coefficients uk and vk that appear in the ratio uk/vk = ∆k/(ξk +
√

ξ2
k + ∆2

k), where
∆k is the gap function with k dependence, and ξk = εk − µ is the dispersion relation of
conduction electrons. We adopt the d-wave symmetry for ∆k, and we do not consider other
symmetries in this paper since an SC state with other symmetry unlikely becomes stable in
the simple single-band Hubbard model. The Gutzwiller BCS state is given by

ψG−BCS = PNe PGψBCS, (12)

where PNe indicates the operator to extract the state with Ne electrons. Here, the total
electron number is fixed, and the chemical potential in ξk is regarded as a variational pa-
rameter.

The improved superconducting wave function is written as

ψλ = e−λKPGψBCS. (13)

In the formulation of ψλ, we cannot fix the total electron number, and we should use
a different Monte Carlo sampling procedure. We perform the electron-hole transformation
for down-spin electrons:

dk = c†
−k↓, d†

k = c−k↓, (14)

and not for up-spin electrons: ck = ck↑. In the real space, we have ci = ci↑ and di = c†
i↓.

The electron pair operator c†
k↑c

†
−k↓ is transformed to the hybridization operator c†

k dk.
Then, we can use the auxiliary field method after this transformation in a Monte Carlo
simulation. This is performed by expressing the Gutzwiller operator in the form [72].

PG = ∏
i
(1− (1− g)c†

i ci(1− d†
i di))

= ∏
i

exp(−αc†
i ci + αc†

i cid†
i di)

=

(
1
2

)N

∑
si=±1

exp
[
∑

i
(2asi − α/2)(c†

i ci − d†
i di)

]
, (15)

where g = e−α, cosh(2a) = e−α/2, and si is the auxiliary field that takes the value of ±1.
By using this form, the expectation value is calculated as a sum of terms with respect to
auxiliary fields, for which we apply the Monte Carlo procedure [63,72].

5. Kinetic Energy in the Superconducting State

In this section, we discuss the role of kinetic energy in the superconducting state in
the two-dimensional Hubbard model. We consider the large-U region, where the kinetic
energy of electrons would play an important role. Here, large-U means that U is much
larger than the band width. The ground-state energy is determined by the balance of
the kinetic energy and the Coulomb energy. We show the energy expectation values as
a function of λ in Figure 2, where Eg/N is the ground-state energy per site, Ekin/N is the
expectation value of the non-interacting part of the Hamiltonian Ekin = 〈ψλKψλ〉/〈ψλψλ〉,
and EU denotes the Coulomb energy given by EU = U〈ψλ ∑i ni↑ni↓ψλ〉/〈ψλψλ〉. Eg has a
minimum value for a finite value of λ.

The kinetic energy part gives a large contribution to Eg when U is large. This is shown
in Figure 3. When U > 10t, EU for ψλ almost agrees with that for ψG. The difference of
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Ekin for ψλ and ψG increases for U > 10t. The region that may be called the ’kinetic energy
phase’ exists when 10 < U/t.
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Figure 2. Ground-state energy Eg/N, kinetic energy Ekin/N, and the expectation value of the
Coulomb interaction EU/N as a function of λ on a 10 × 10 lattice with the periodic boundary
condition in one direction, and the antiperiodic one in the other direction. We set Ne = 88, U = 18t
and t′ = 0.
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Figure 3. Kinetic energy Ekin/N and the Coulomb energy EU/N as a function of U on a 10× 10 lattice.
The boundary conditions are the same as in Figure 2. The electron number is Ne = 88, and we put
t′ = 0. Open circles indicate the results for the Gutzwiller function, and solid circles are those for the
improved ψλ.

Let us consider the the difference of the kinetic energy defined as

∆Ekin = Ekin(ψG)− Ekin(ψλ), (16)

where Ekin(ψG) and Ekin(ψλ) denote the kinetic energy for ψG and ψλ, respectively. Since
ψG = ψλ=0 with vanishing λ, we can write ∆Ekin = Ekin(λ = 0)− Ekin(λ) for the optimized
value λ. We show ∆Ekin/N as a function of U in Figure 4, where the hole doping rate x is
x = 0.12. ∆Ekin begins to increase when U is of the order of the band width U ∼ 8t. ∆Ekin
has a broad peak when 15t < U < 20t. We define the SC condensation energy ∆Esc and
the kinetic energy condensation energy ∆Ekin−sc as
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∆Esc = Eg(∆ = 0)− Eg(∆ = ∆opt), (17)

∆Ekin−sc = Ekin(∆ = 0)− Ekin(∆ = ∆opt), (18)

where ∆ = ∆sc is the superconducting order parameter, and ∆opt is its optimized value. We
assumed the d-wave symmetry for ∆k: ∆k = ∆(cos kx − cos ky). ∆Ekin−sc/N is also shown
in Figure 4. The figure indicates that ∆Ekin−sc increases for large U, showing a similar
behavior to ∆Ekin. ∆Ekin−sc can change the sign when U is small, which is consistent with
the analysis for Bi2Sr2CaCu2O8+δ [79].

In Figure 5, we show ∆Ekin/N and ∆Ekin−sc/N for x = 0.20. ∆Ekin for x = 0.20 is
smaller than that for x = 0.12. The kinetic energy condensation energy ∆Ekin−sc is also
reduced for x = 0.20 compared to that for x = 0.12. This result inevitably leads to the
decrease of the SC condensation energy [48]. Hence, the kinetic energy effect becomes
weak when the hole doping rate is large.

The Coulomb energy gain in the presence of the SC order parameter ∆EU−sc is also
evaluated, where

∆EU−sc = EU(∆ = 0)− EU(∆ = ∆opt). (19)

∆EU−sc is the Coulomb energy contribution to the SC condensation energy; namely, we
have

∆Esc = ∆Ekin−sc + ∆EU−sc. (20)

Our result shows that

∆Ekin−sc > 0, ∆EU−sc < 0, (21)

for the improved state ψλ−BCS. We show the SC condensation energy ∆Esc(∆sc) and the
Coulomb energy part ∆EU−sc(∆sc) as a function of ∆sc in Figure 6 where ∆Esc(∆) = Eg(∆ =
0)− Eg(∆) and ∆EU−sc(∆) = EU(∆ = 0)− EU(∆). The positive ∆Ekin−sc > 0 indicates
that the SC state ψλ−BCS becomes stable due to the kinetic energy effect.
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Figure 4. Kinetic-energy difference ∆Ekin/N and the kinetic energy difference in the SC state
∆Ekin−sc/N (×25) as a function of U on a 10 × 10 lattice. Since ∆Ekin−sc/N is small compared
to ∆Ekin/N, we multiplied ∆Ekin−sc/N by 25. The boundary conditions are the same as in Figure 1.
The electron number is Ne = 88 (n = 0.88) and we put t′ = 0.
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Figure 5. Kinetic-energy difference ∆Ekin/N and the kinetic energy difference in the SC state
∆Ekin−sc/N (×25) as a function of U on a 10× 10 lattice for Ne = 80 (n = 0.80) and t′ = 0. The
boundary conditions are the same as in Figure 1.
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Figure 6. SC condensation energy ∆Esc(∆sc)/N and its Coulomb energy part |∆EU−sc(∆sc)/N| as
a function of ∆sc on a 10× 10 lattice for Ne = 88 (n = 0.88) and U = 18. We set t′ = 0. ∆EU−sc is
negative for this set of parameters. The boundary conditions are the same as in Figure 1.

6. Summary

We investigated the ground state of the two-dimensional Hubbard model by using the
optimization variational Monte Carlo method with focus on the strongly correlated large-
U region. The ground-state energy is greatly lowered due to the exp(−λK) correlation
operator. The optimization variational Monte Carlo method is effective even in strongly
correlated regions where U is much larger than the bandwidth.

In the large-U region, the kinetic energy term becomes dominant in the ground state,
and the kinetic energy effect dominates the antiferromagnetic correlation. The kinetic
energy difference ∆Ekin = Ekin(ψG)− Ekin(ψλ) increases when U > 10t and has a broad
peak. The kinetic condensation energy ∆Ekin−sc behaves like the kinetic energy difference
∆Ekin for U > 10t. There is a correlation between ∆Ekin−sc and ∆Ekin. The condensation
energy ∆Esc mainly comes from the kinetic energy part ∆Ekin−sc and there is a competition
between the kinetic energy and the Coulomb energy. Hence there are two competitions
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in the Hubbard model; one is that between superconductivity and antiferromagnetism
and the other is that between kinetic energy effect and Coulomb repulsive interaction.
As a result of competitions, superconducting transition occurs. The result shows that
superconductivity in the strongly correlated region is induced by kinetic energy effect.
We expect that high-temperature superconductivity would be realized in the strongly
correlated region of the two-dimensional Hubbard model.
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