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Abstract: The Kitaev chain model exhibits topological order that manifests as topological degeneracy,
Majorana edge modes and Z2 topological invariant of the bulk spectrum. This model can be obtained
from a transverse field Ising model(TFIM) using the Jordan–Wigner transformation. TFIM has neither
topological degeneracy nor any edge modes. Topological degeneracy associated with topological
order is central to topological quantum computation. In this paper, we explore topological protection
of the ground state manifold in the case of Majorana fermion models which exhibit Z2 topological
order. We show that there are at least two different ways to understand this topological protection
of Majorana fermion qubits: one way is based on fermionic mode operators and the other is based
on anti-commuting symmetry operators. We also show how these two different ways are related
to each other. We provide a very general approach to understanding the topological protection of
Majorana fermion qubits in the case of lattice Hamiltonians. We then show how in topological phases
in Majorana fermion models gives rise to new braid group representations. So, we give a unifying
and broad perspective of topological phases in Majorana fermion models based on anti-commuting
symmetry operators and braid group representations of Majorana fermions as anyons.

Keywords: topological protection; emergent Majorana modes; Majorana fermion models; Majorana
fermion braiding

1. Introduction

In this paper, we take an approach to understanding the topological protection of
Majorana fermions qubits based on Majorana zero mode operators that are odd normalized
zero modes. Similar to even mode operators in many-body localization( MBL), we show
that odd zero-mode operators are also integrals of motion and the emergent symmetry
operators of the Hamiltonian. Our approach brings out new aspects of the topological
protection in Majorana fermion models especially the connection to emergent symmetry
operators. What is novel about our approach to topological protection is that we relate
Majorana zero mode operators with symmetries of the Hamiltonian which gives us more
scope to understand the topological protection.

Normalized zero modes have attracted a lot of attention recently not only in topolog-
ical phases of matter but also in many-body localization (MBL) where they offer a very
intuitive language for understanding MBL phenomenology [1–7]. Normalized zero-modes
can be even or odd depending on whether they commute or anti-commute with the parity
operator for the quantum system. Even zero-modes are also called pseudo-spins in MBL
literature. In this paper, we have explored Majorana zero mode operators which are an
important indicator and manifestation of the topological phases in one-dimensional Hamil-
tonians like the Kitaev Chain model. Conventionally, phases of matter were introduced
within the symmetry breaking framework in which ordered phases emerge out of the
symmetry breaking. However, the quantum Hall effect provided a counterexample to this
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framework. Quantization of Hall conductance in quantum Hall effect is associated with
topological invariants and can not be understood based on Landau’s symmetry breaking
framework. Recently, a plethora of new topological phases has been discovered. One of
the main interests in these topological phases comes from the quantum computation side
because these phases offer the possibility of doing fault-tolerant computation. The ground
state of the corresponding Hamiltonians has topological degeneracy. This degeneracy is
topological in the sense that no local perturbation can lift it and hence there is topological
protection of the ground state manifold. Topological degeneracy gives rise to a topological
qubit for topological quantum computation. By degeneracy as used in this paper, we mean
spectral degeneracy of a given Hamiltonian which refers to having more than one eigen-
states corresponding to an eigenvalue of the Hamiltonian. In this paper, we will explore the
protection of topological qubits in the context of Majorana fermions. Majorana fermions
have recently emerged as promising candidates for topological quantum computation.
Consequently, Majorana Fermions have been on the research frontiers in condensed matter
physics, and especially in topological quantum computation. One main mathematical
difference between Majorana fermions and standard fermions is that the latter satisfy
Grassmann algebra while the operator algebra of Majorana Fermions is a Clifford algebra.
Clifford algebra of Majorana fermions attributes them with anyonic statistics—which is
central for their role in topological quantum computation. The Clifford Braiding Theo-
rem [8] gives a rigorous way to understanding this relation of Clifford algebra and anyonic
statistics.

In [9], Kitaev introduced a quadratic Hamiltonian for fermions in one dimension,
which has a topological phase in which there are Majorana modes at the edges of the chain.
Kitaev employed a Majorana fermion representation to diagonalize the Hamiltonian and
showed that there are Majorana edge modes. The Kitaev model is not an entirely new
model. It can be obtained from the transverse field Ising model(TFIM) using a Jordan-
Wigner transformation(JWT). JWT is a non-local transformation that maps spin operators
to fermion operators and has been very crucial for solving lattice spin models. So what
Kitaev did is to take fermions as degrees of freedom instead of spins. This novel point of
view opened up the way to understand topological order in a well-known system. TFIM
exhibits only Landau order, and the ordered phase arises due to the symmetry breaking of
the model. The immediate question that one can ask is what corresponds to which Landau
order on the fermionic side once the Jordan–Wigner transformation is done?

The relation between these two models has been studied in a recent work [10]. There
it is concluded that the spectral properties of the two models are the same, which we will
find below is not correct. Using dualities and a bond-algebra approach and holographic
symmetries, there is already an understanding of how topological order in the Kitaev chain
model is related to Landau order in the corresponding spin model [11]. Under the duality
transformation, local variables of spin models get transformed to non-local observables
which are important for topological order in the fermionic model. The work [11] also
shows that Hamiltonians that exhibit topological order have holographic symmetries.
In an another work, [1] Fendley has found an algebraic approach for topological order
in a Majorana chain, and more generally for a parafermion chain. In Fendley’s paper,
a fermionic mode operator is defined and it is shown that in the topologically-ordered
phase, there are these fermionic mode operators that, for the Kitaev chain model, are the
Majoarana mode operators. As with Fendley, we also find that in the topologically ordered
case, there are emergent symmetry operators that are actually Majorana mode operators.

The rest of this paper is organized as follows: First, we briefly review the Kitaev chain
model, its symmetries, and topological order. Then in the next section, we put together the
various algebraic aspects of Majorana fermions with a special focus on Clifford algebra.
This sets the algebraic background that we use later on to the prove the new results. We
have deliberately given background in the first two sections so that this paper can be both
an exposition and a research paper. In Section 3.1, we discuss one of the important results
of this paper. We explicitly write down the super-symmetry generator. A very interesting
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aspect of this generator is that it is related to the emergent Majorana modes. In Section 4, we
extend the analysis of Lee and Wilczek [12] and show that their emergent Majorana fermion
is actually a fermionic zero mode operator. We then go ahead to establish the relation
between emergent Majorana mode operators and the Z2 topological order for the general
case of odd-numbered Majorana fermion models. In Section 5.1, we extend our results
for an odd number of Majorana fermions both without interaction as well with quartic
interactions. In Section 6, we show how the fermionic mode operator-based approach can
be put in the larger context of symmetry algebra. This unification is important because it
opens the ways to understand the topological protection from symmetries of the lattice
models. In Section 7, we explore the relation between topological order and the braiding
representation of Majorana fermions. We show that this braid group representation has
extra symmetry where the Majorana mode operators are the symmetry generators. Finally,
we summarize our results in Section 8.

2. Kitaev p-Wave Chain

To study the relation between Landau order and topological order we introduce two
Hamiltonians that are related to each other by a Jordan–Wigner transformation. The two
models are a transverse field Ising model (TFIM) and the Kitaev p-wave chain model.
Following Kitaev, we will diagonalize the Kiatev chain model using a Majorana fermion
representation and show that, in its topological phase, the Kitaev chain model has a Majo-
rana edge model and also topological degeneracy. Majorana fermions are very important
in our study, and we will look closely at their algebra and how, as a quantum system, they
are different from the standard(Dirac)fermions.

The Hamiltonian for the transverse field Ising model is [13]:

H = −J
N−1

∑
i=1

σx
i σx

i+1 − hz

N

∑
i=1

σz
i , (1)

where J is the ferromagnetic exchange constant and hz is the Zeeman field in the Z direction
and σi is the Pauli spin matrix at the i-th site. This model has Z2 symmetry, due to which
the global symmetry operator ∏i σz

i commutes with the Hamiltonian.[
∏

i
σz

i , H

]
= 0. (2)

The global symmetry operator flips all the spins. There is a doubly degenerate ground
state. This model exhibits two phases that can be understood on the basis of Landau’s
symmetry-breaking theory. There is a ferromagnetic phase that arises when the symmetry
of the model is broken. There is a disordered phase in which symmetry is intact. We will
now apply the Jordan-Wigner transformation to this model to map it to a fermionic model
that will turn out to be the Kitaev chain model. The Jordan–Wigner transform maps the
spin operators into fermionic ones:

ci = σ†
i

(
i−1

∏
j=1

σz
i

)
c†

i = σ−i

(
i−1

∏
j=1

σz
i

)
(3)

H = −t
N−1

∑
i=0

(c†
i ci+1 + h.c.) +4

N−1

∑
i=0

c†
i c†

i+1 + h.c.− µ
N

∑
i=0

c†
i ci,
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where t, ∆, µ are hopping strength, superconducting order parameter and chemical poten-
tial respectively. Kitaev employed a Majorana fermion representation to diagonalize this
Hamiltonian.

ci =
γ1,i − iγ2,i√

2
c†

i =
γ1,i + iγ2,i√

2
. (4)

In the Majorana fermion representation, the Hamiltonian gets transformed to:

H = it
N−1

∑
i=0

(γ1,iγ2,i+1 − γ2,iγ1,i+1)+

i∆
N−1

∑
i=0

(γ1,iγ2,i+1 + γ2,iγ1,i+1)− µ
N

∑
i=0

(
1
2
− iγ1,iγ2,i). (5)

The Hamiltonian has a trivial phase and topological phase. Trivial phase is obtained
for the choice of parameters: t = ∆ = 0. In this case two Majorana fermions at each site
couple together to form a complex fermion, and there is no topological phase as there are
no Majorana edge modes. Choosing µ = 0 and t = ∆ the Hamiltonian becomes.

H = 2it
N−1

∑
i=0

γ1,iγ2,i+1. (6)

One can see that Majorana fermions from sites i and i + 1 are pairing together. Using
the Majorana fermions from adjacent sites, we can define a complex fermion:

ai =
γ2,i+1 − iγ1,i√

2
. (7)

The Hamiltonian becomes:

H1 =

(
t

N−1

∑
i=0

a†
i ai −

1
2

)
. (8)

Looking carefully through the Hamiltonian, we discover that two Majorana fermions
γ2,0 and γ1,N have been left out. These two Majorana fermions reside at the ends of the
chain. These are the Majorana modes of the Hamiltonian which characterize the topological
phase. Taking them together, we can form a non-local fermion.

ã =
γ1,N − iγ2,0√

2
. (9)

The two Majorana modes are the symmetries of the Hamiltonian. They commute with
the Hamiltonian because they are not part of the Hamiltonian. [H1, γ2,0] = 0 = [H1, γN,1].
The ground state of H1 is doubly degenerate because the two states with Majorana modes
present and absent have the same energy. These two ground states correspond to even and
odd parity of the Majorana mode operators:

ib
′
b
′′ | ψ

′
0〉 =| ψ

′
0〉 ib

′
b
′′ | ψ

′′
0 〉 =| ψ

′′
0 〉, (10)

where b
′
= γ2,0 and b

′′
= γ1,N . ψ

′
0 and ψ

′′
0 are two degenerate ground states of the

Hamiltonian H1. This is an example of topological degeneracy and it is preserved as long
as the system has Majorana zero modes. In the long chain limit, there is no coupling
between two edge modes and hence they are pinned at zero energy. However, for any finite
system, the two Majorana edge modes get coupled together and hence pick up finite energy.



Condens. Matter 2021, 6, 11 5 of 22

Majorana Fermions versus Complex Fermions

Majorana fermions can be taken algebraically as building blocks of (standard) fermions.
The algebra of Majorana fermions makes them very different from the usual fermions.

γ = γ† γ2 = 1 γ1γ2 = −γ2γ1 P = iγ1γ2, (11)

where γ is the Majorana fermion operator and P is parity operator for two Majorana
fermions. More compactly, we can write:

{γi, γj} = 2δij. (12)

Majoranas are very different from the complex fermions because they are self-Hermitian
and hence the creation and annihilation operators are the same, which means that a Majo-
rana fermion is its own anti-particle. A fermionic vacuum can not be defined for Majorana
fermions because there is no well-defined number operator, or in other words, the number
of Majorana fermions is not a well-defined quantity, and hence not a quantum number that
can be used to label Majorana fermions. Majorana fermions don’t have U(1) symmetry, and
hence a number operator can not be defined for them. However, they have Z2 symmetry;
parity is conserved for Majorana fermions.

Complex fermions can be mapped to Majorana fermion operators. Let γ1 and γ2 be
two Majorana fermion operators, then corresponding complex fermion operators are:

c =
1√
2
(γ1 + iγ2) c† =

1√
2
(γ1 − iγ2). (13)

When taken abstractly, Majorana fermions appear to be very unrealistic particles, but
physically they can appear as Bogolibouv quasiparticles which exist as zero modes in
topological superconductors. They are zero energy solutions of the BdG equation and are
different from Majorana spinors which are solutions of the Dirac equation.

Fermions obey the Grassmann algebra:

{ci, c†
i } = δij c2

i = (c†
i )

2 = 0 N = c†c N2 = N, (14)

where c†, c and N are the creation, annihilation and number operators for a fermion.

| 1〉 = c† | 0〉 | 0〉 = c | 1〉 (15)

c | 0〉 = c† | 1〉 = 0. (16)

Fermions have a vacuum state. Creation and annihilation operators are used to
construct the states of fermions. Fermions have U(1) symmetry, and hence the number of
fermions is conserved, and the occupation number is a well-defined quantum number. The
number of fermions in a state is given by the eigenvalue of the number operator. Here the
number operator is idempotent, and hence there are only two eigenvalues: 0, 1. Different
fermion operators anti-commute with each other and hence obey Fermi-Dirac statistics.

3. Algebra of Majorana Doubling

In this section, following [12] we will explore the full algebra of Majorana fermions.
In [12], Lee and Wilczek gave an illuminating analysis of the doubled spectrum of the
Kitaev chain model. They showed that the algebra that has been considered for the Kitaev
chain model is conceptually incomplete. Using the case of three Majorana fermions that are
at the edges of superconducting wires, we show that the Hamiltonian of these Majorana
fermions has extra algebraic structure that is physically significant. The difference lies in
another Majorana operator that has been called an Emergent Majorana for the reason that
it obeys all the properties of a Majorana fermion.
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In the Kitaev paper, the algebra of Majorana fermions is written as

{ai, aj} = 2δij. (17)

This equation defines the Clifford algebra of Majorana fermions. The full algebra is
generated by all the ordered products of these operators. For the case of three Majorana
fermions the full Clifford algebra is described below:

{1, γ1 = a1, γ2 = a2, γ3 = a3, γ12 = a1a2, γ23 = a2a3,

γ31 = a3a1, γ123 = a1a2a3}. (18)

The Clifford algebra of three Majorana fermions is eight-dimensional, with these eight
independent generators. There are three bivectors γ12, γ23, γ31 and one trivector (also
called a pseudoscalar) γ123. Bivectors are related to rotations. Trivector will turn out to be
very important for our discussion on topological order because it is a chirality operator
that distinguishes between even and odd parity. We refer to [14] for more discussion on
Clifford algebra of spin. In that paper, the relation between spin and fermionic systems has
been made clear. The reader will find seeds of the duality between Pauli matrices(spin)
and Clifford algebra(Majorana fermions).

Lee and Wilczek showed that when we take the full Clifford algebra of the Majorana
fermions into consideration, we arrive at very interesting mathematical and physical
implications. Let b1, b2 and b3 be three Majorana fermions that can occur at the ends of
three p-wave superconducting nano-wires. This situation is not artificial, rather it is crucial
for the topological Kondo effect [15] where three Majorana fermions give rise to non-local
spin-1/2 object which then couples to the conduction fermions in the leads. Similarly, three
such wire junctions have also been explored to study the Kitaev spin model [16,17].

{bj, bk} = 2δjk. (19)

We can write down a Hamiltonian for these interacting Majoranas coming from three
different wires.

Hm = −i(αb1b2 + βb2b3 + γb3b1). (20)

Now it is known that Majorana bilinears generate a spin algebra so one would naively
think that it is a spin Hamiltonian. However, the spin Hamiltonian neither has edge modes
nor any topological degeneracy. To understand this, one needs to realize that the Clifford
algebra generated by Majorana fermions is larger than what is present in Equation (19).
There are other generators of the algebra. The Hamiltonian given in Equation (20) has
parity symmetry due to which fermion number Ne is conserved modulo 2.

[Hm, P] = 0 P = (−1)Ne P2 = 1. (21)

Physically, the full implications of the parity operator need to be taken into considera-
tion to conceptually complete the algebra. There is a special operator Γ in the algebra which
we call as Emergent Majorana because it has all the properties of a Majorana fermion.

Γ ≡ −ib1b2b3 (22)

Γ2 = 1 [Γ, bj] = 0 [Γ, Hm] = 0 {Γ, P} = 0. (23)

The emergent Majorana operator commutes with the Hamiltonian, and hence there is
an additional symmetry present, as it anti-commutes with the parity operator and hence
it shifts among the parity states. Both the P and Γ operators commute with Hamiltonian
but anti-commute with each other due to which there is a doubling of the spectrum. The
presence of this extra symmetry leads to the doubled spectrum. This doubling is different
from Kramer’s doubling [18] because no time-reversal symmetry is needed. In the basis in
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which P is diagonal with ±1 eigenvalues, the Γ operator takes the states into degenerate
eigenstates with eigenvalues ∓1. It is very suggestive to write the parity operator for
Hm in terms of a Γ operator in line with [19,20]. The case of an odd number of Majorana
fermions can always be thought of as a combination of complex fermions (c fermions) and
one Majorana fermion so that the parity operator can be written as P = ∏i(1− 2c†

i ci)γ.
This parity operator constitutes the local parity operator of reference [19].

Two Majorana fermions combine together to give a Dirac fermion. Three Majorana
fermions are the simplest case that shows non-trivial Majorana physics. So Equation (20)
gives the simplest Hamiltonian that we can write down for Majorana fermions having non-
trivial spectral and hence physical properties. We have seen for this Hamiltonian that there
are additional symmetries that lead not only to the topological degeneracy for the ground
state, but the Hamiltonian has a doubling for the whole spectrum including excited states.
This is a very powerful implication of the existence of emergent Majorana fermions and
hence of the emergent symmetry operators. We can not talk about the topological order for
three Majorana fermions, but later on, we will see that it is the presence of these emergent
fermionic symmetries which leads to the topological order in Majorana fermion models.

Emergent Majorana fermions were considered in [19] and global parity was expressed
in terms of these operators. In [20], authors have also studied the Hamiltonian given in
Equation (20) and using the anti-symmetry property of the Hamiltonian arrived at what
we call emergent Majorana fermions.

The doubled spectrum of the Kitaev chain Hamiltonian comes from this algebraic
structure which leads to extra symmetries. This algebraic structure is non-perturbative,
and hence is robust to perturbations as long as they preserve the discrete symmetry.

3.1. Emergent Supersymmetry in Majorana Fermions Models

In this section, we will present one of the novel results of this paper. We will show
that the existence of the emergent Majorana operator, Γ, leads to the supersymmetry in the
Majorana fermion model. We will explicitly write down the supersymmetry generator in
terms of the Γ operator and parity operator.

Supersymmetry has been studied in lattice models for fermions [21] (and references
therein). Recently, there has been some interest in searching for the supersymmetry in
lattice models for Majorana fermions [22–24]. However, in those situations SUSY arises
only at the critical point of the model. In our case, we find emergent supersymmetry which
is tied to topological order because we need Γ operator which exists only in the topological
phase. Emergent supersymmetry was also found in [25] for Majorana fermion models with
translational symmetry. The difference with our case is that we need to have a Majorana
mode operator Γ rather than translational symmetry to have emergent SUSY.

We once again consider a system of an odd number of Majorana fermions so that we
can define the Γ operator. For the quadratic Hamiltonian for Majorana fermions, parity is
conserved and hence we can define parity operator, P which commutes with Hamiltonian.
We define the supersymmetry generator, Q which commutes with Hamiltonian and hence
shows that Majorana fermion Hamiltonian has supersymmetry.

Q =
√

H
(

1 + P
2

)
Γ (24)

Q2 = 0 [Q, H] = 0
{

Q, Q†
}
= H. (25)

It needs to be noted that we did not need to have translation symmetry to have
supersymmetry in our Hamiltonian. So in that sense, we show that supersymmetry is
a feature of Majorana fermion Hamiltonians and is also tied to their topological order
because we need the existence of the Γ operator.

The supersymmetry that we have found in the section has been further explored
in [26,27]. In [26], the authors have explored a special case of the supersymmetry generator
which we have found. They consider the Hamiltonian for three Majorana fermions as
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discussed in [12]. For this Hamiltonian, they have shown that our SUSY generator can
be embedded within Cl(1, 3) which is Clifford algebra for a 3 + 1 dimensional metric
space with Lorentz signature(+ + +−). In [27], the authors have extended the inves-
tigations of our supersymmetry generator for a finite temperature situation using the
thermofield formalism.

4. Majorana Zero Modes and Γ Operator

In this section, we extend the analysis of Lee and Wilczek and present results about
emergent Majorana fermion that go beyond their work [12]. In this section, we will intro-
duce zero-mode operators and show that how emergent Majorana fermion as described in
Section 3, is actually a zero-mode operator for a special case of a system of three Majorana
fermions.

Zero modes are an important manifestation of the topological phases in one-dimensional
lattice models [1]. What we have already found is that the complete algebra of Majorana
fermions has extra operators that have been called emergent Majorana fermions and rep-
resented by Γem operators. For the case of three Majorana fermions we find that the Γem
operator is the emergent Majorana fermion and is also the symmetry of the Hamiltonian.
In this section, we will see that the Γ operator is also the zero-mode operator of the Hamil-
tonian. First, we give a definition of the zero-mode operator, and then we show how that is
related to Emergent Majorana fermions or the Γem operator. Following [1], a fermionic zero
mode is an operator Γ such that Γ

• Commutes with Hamiltonian: [H, Γ] = 0
• anti-commutes with parity: {P, Γ} = 0
• has finite “normalization” even in the L→ ∞ limit: Γ†Γ = 1.

The last condition may not be always satisfied for zero-mode operators. So, it can be
relaxed in those cases. A zero-mode operator that satisfies all three conditions is called a
strong zero-mode operator.

Now, let us consider a system of three Majorana fermions. We denote these Majorana
fermions as γ1, γ2 and γ3. For this system of three Majorana fermions, the emergent
Majorana Γem is defined as Γem = −iγ1γ2γ3. Parity of Majorana fermions is defined by
P = (−1)Ne where Ne is the number of the fermions. To write down the global parity
operator for this system, we will add one more Majorana fermion f which does not have
any pairwise interaction with other Majorana fermions and hence does not enter the
Hamiltonian. Using f Majorana fermion, the global parity of our system is given by
P = iΓem f Now, we state our mathematical result about the emergent Majorana fermions
as a theorem.

Theorem 1. The emergent Majorana fermion Γem for a system of three Majorana fermions is the
strong zero-mode of the system.

Proof. As defined above, zero-mode is represented by an operator that commutes with
the Hamiltonian and anti-commutes with the parity operator. Now, we show that for the
case of three Majorana fermions, the emergent Majorana fermion Γem is the zero-mode
operator.

The Hamiltonian for the three Majorana fermions can be written as

H3 = −i(γ1γ2 + γ2γ3 + γ3γ1). (26)
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First, we show that Γem commutes with this Hamiltonian. To do that we show that
Γem commutes with one of the terms of the Hamiltonian. The same result holds for the
other two terms of the Hamiltonian.[

Γem,−iγ1γ2
]

(27)

=
[
− iγ1γ2γ3,−iγ1γ2

]
(28)

=(−i)(−i)
(
γ1γ2γ3γ1γ2 − γ1γ2γ1γ2γ3

)
(29)

=(−i)(−i)
(
γ1γ2γ1γ2γ3 − γ1γ2γ1γ2γ3

)
= 0. (30)

In the last step, we have passed γ3 through γ1γ2 because a Majorana fermion operator
commutes with a bilinear of Majorana fermion operators.

Now we show that emergent Majorana operator Γem anti-commutes with Parity
operator. To do that, we will also need to show that Γem anti-commutes with f Majorana
fermion.

{Γem, f } (31)

= −iγ1γ2γ3 f + f (−iγ1γ2γ3) (32)

= +i( f γ1γ2γ3)− f (iγ1γ2γ3) = 0, (33)

where in the last line we have used the fact the f Majorana fermion will pick up a minus
sign when swapped through odd Majorana fermions. Now using this relation {Γem, P} = 0,
we can calculate the anti-commutator of Parity and Γem operators.

{Γem, P} (34)

= {Γem, iΓem f } (35)

= iΓemΓem f − iΓem f Γem (36)

= i f + i f = 0. (37)

In the second last line we have used the property of Γem operator that it squares to unity
and also it anti-commutes with the f Majorana fermion. Using the anti-commutators which
we calculated above through Equations (31) to (37), it not difficult to see [Γem, P] = 2i f
where f is the Majorana fermion.

Hence we have showed that Γem satisfies the defining properties of the zero mode
operator. Now, we show the Γem squares to unity and hence is normalized.

Γ2
em = (−i)(−i)γ1γ2γ3γ1γ2γ3 (38)

(−1)γ1γ2γ1γ2γ3γ3 (39)

(−1)(−1)γ1γ1γ2γ2 = 1. (40)

That concludes our proof of all the conditions for Γem being a strong zero-mode
operator. Even though we have explicitly proved this result only for the case of three
Majorana fermions, it can be easily generalized to an arbitrary odd number of Majorana
fermions and that proof has been given in Section 6. The reason being that the Clifford
algebra of Majorana fermions allows that a given Majorana fermion can either commute or
anti-commute with a string of Majorana fermions which exclude that particular Majorana
fermion. This property of the Majorana fermions follows from the Z2 grading of Clifford
algebra in which we can define the various generators of the Clifford algebra into two
classes with even and odd grading depending on whether they commute or anti-commute
with a given Majorana fermion [28].

5. Zero-Mode Operators for a General Case

In this section, we generalize the results of the previous section and obtain new results
about topological order in Majorana fermion chain models using Clifford algebraic methods.
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We consider the general case of an odd number N > 3 of Majorana fermions. We will
find that, as for the case of three Majorana fermions, there are emergent Majorana fermions
and their Majorana mode operators are the symmetries of the Hamiltonian. For the case of
three Majorana fermions, there was only one emergent Majorana mode operator. However,
for the general case, there are many more Majorana mode operators as shown in [29]. We
will focus just on the generalized case of the Γ operator considered in the previous section.

We consider a system that has 2N + 1 Majorana fermions. These Majorana fermions
will span a vector space of dimensionality 22N+1 corresponding to the number of linearly
independent generators of the Clifford algebra [28,30]. These generators can be written as

1, γ1, γ2..., γ2N+1,

γ1γ2, γ1γ3.... (41)

γ1γ2γ3.... (42)
... (43)

γ1γ2.....γ2N+1. (44)

In addition to the Majorana fermion operators, all the higher-order products are also
the generators of the Clifford algebra corresponding to 2N + 1 Majorana fermions. It
is these higher-order generators of the Clifford algebra that also play a very important
role in the dynamics of the Majorana fermion systems. Based on these generators of the
Clifford algebra of Majorana fermions, we can write down the Hermitian operators which
will commute with the Hamiltonian and hence are the symmetries of the Hamiltonian.
These symmetries are the extra symmetries in addition to the Z2 symmetry present in any
quadratic Majorana fermion Hamiltonian. These symmetries are the emergent symmetries
generated by higher-order Majorana fermion generators.

The most general local quadratic Hamiltonian for the Majorana fermions can be
written as

H = i ∑
ij

hijγiγj. (45)

Due to the anti-commuting nature of the Majorana fermions, hij = −hji, this Hamilto-
nian has manifest Z2 symmetry and consequently the Hamiltonian can be diagonalized
in the parity eigenbasis. Since the Hamiltonian is bi-linear in Majorana fermion opera-
tors, all the elements of the algebra(of Equation (44)) with an even number of Majorana
fermion(even grading) will commute with Hamiltonian and hence are the emergent sym-
metries of it. To have topological order, there must exist Majorana mode operators as
defined in Section 3. As we defined the Majorana mode operator for the case of three
Majorana fermions, similarly we find that there is a corresponding emergent Majorana
fermion operator as written below:

Γ = i(2N+1)2Nγ1γ2...γ2N+1 Γ2 = 1 [Γ, H] = 0. (46)

Being the product of all Majorana fermions, it commutes with the Hamiltonian. It
also squares to unity and anti-commutes with the parity operator. Hence it satisfies all the
properties of a Majorana mode operator, and hence we show that the quadratic Majorana
fermion model exhibits topological order. There are other Majorana mode operators in
addition to the ones that we have written down above as shown in [20,29]. Since the
emergent Majorana mode as written down in Equation (46) is a general one valid for any
system of odd number of Majorana fermion, we will state our results as a theorem:

Theorem 2. The emergent Majorana fermion for a systems of odd number of Majorana fermions is
the zero mode operator of the system.
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Proof. Now, we show that the emergent Majorana mode satisfies the two defining prop-
erties of a zero mode operator. For the proof, we do not include the phase factor of the
emergent Majorana mode because that is going to change. So, let us write down the
generalized emergent Majorana operator without phase factors for system with n Majorana
fermions where n being odd:

Γem = γ1γ2...γn (47)

It is the operator form of this emergent Majorana which is going to be important for the
proof of the theorem. First, we show that this operator commutes with the Hamiltonian as
given in Equation (45) which basically translates to proving that Γem operator commutes
with Majorana fermion bilinears.

Γemγiγj (48)

= (γ1γ2...γi...γj...γn)γiγj (49)

= (−1)n−i(γ1γ2...γi−1γ̂iγi+1...γj...γn)γj (50)

= (−1)n−i(−1)n−j(γ1γ2...γ̂i...γ̂j...γn) (51)

= (−1)i+j(γ1γ2...γ̂i...γ̂j...γn) (52)

The operators with the hats are not the actual operators rather each one of them is unity
which we get as the outside Majorana fermions on the rightmost are swapped until they
reach the corresponding Majorana fermion with same index. Now, we need to prove other
side of the equation,

γiγjΓem (53)

= γiγj(γ1γ2...γi...γj...γn) (54)

= (−1)j−1γi(γ1γ2...γi...γ̂j...γn) (55)

= (−1)j−1(−1)i−1γi(γ1γ2...γ̂i...γ̂j...γn) (56)

= (−1)i+j(γ1γ2...γ̂i...γ̂j...γn) (57)

As can be seen from Equations (52) and (57), the emergent Majorana operator commutes
with the Majorana fermion bilinears and hence with the Hamiltonian, that itself being a
sum of Majorana fermion bilinears.

Now, we show that emergent Majorana operator anti-commutes with the parity
operator. For that we need to recall from Section 4 that for odd number of Majorana
fermions, parity operator itself can be defined in terms of the emergent Majorana fermion.
P = iΓem f where P is the parity operator and f is the extra Majorana fermion which is
not part of the Hamiltonian. Once again we will drop the phase factors needed for the
Hermiticity of the parity and emergent Majorana operators because they being scalars
commute with all operators. So, for our purposes we just keep the operator structure of the
parity operator which is P = γ1γ2...γn f . f being Majorana fermion squares to unity and
anti-commutes with other Majorana fermions. f 2 = 1 f γ = −γ f

ΓemP (58)

= γ1γ2...γnγ1γ2...γn f (59)

PΓem (60)

= γ1γ2....γn f γ1γ2...γn (61)

= (−1)nγ1γ2...γnγ1γ2....γn f (62)
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In the last equation, f Majorana fermion has been passed through n Majorana fermions, to
take it to the rightmost end which leads to the phase factor in front.

Combining two sides of the equation, we get

ΓemP = (−1)nPΓem (63)

Now, n being an odd number in our case, we see that Parity operator anticommutes with
the Γem.

ΓemP = −PΓem (64)

ΓemP + PΓem (65)

{Γem, P} = 0 (66)

That completes the proof of our theorem.

We have proved that emergent Majorana operator Γem for the general case of n odd
Majorana fermions commutes with the Hamiltonian and anti-commutes with the parity
operator and hence Γem is the zero mode operator.

The quadratic Majorana fermion model as given in Equation (45) has manifest Z2
symmetry but there are additional symmetries as shown above. We call these symmetries
emergent symmetries while the Z2 symmetry is the microscopic symmetry of the Hamil-
tonian, and it leads to the parity(fermion number) conservation. In the parity basis, the
Hamiltonian takes quite a nice form as given in [16].

H = ε(| e〉〈e | + | o〉〈o |), (67)

where | e〉 ,| o〉 are even and odd parity states. In this notation, Majorana mode operators
take the conceptually intuitive form:

Γ = (| e〉〈o | + | o〉〈e |). (68)

This form of Γ brings out its property of flipping the parity state because it anti-
commutes with the parity operator. So the matrix structure of the Majorana fermion model
is not just block-diagonal with even and odd parity blocks, rather it has two more blocks
corresponding to the identity operator and Γ operator, both of which occupy a single
element block in the Hamiltonian matrix.

Based on our analysis of the quadratic Majorana model, we can now understand
why there is topological order in the Kitaev chain model. Note first that Z2 symmetry
is present in both the Kitaev chain model and its Jordan–Wigner dual-spin model. We
have also seen that for the special case of parameters of the Kitaev chain model, it reduces
to a quadratic Hamiltonian of the kind that we have studied above, and hence the same
analysis holds true for it also. We can now see that the topological phase arises in the
Kitaev chain model because there are Majorana mode operators that commute with the
Hamiltonian and anti-commute with the parity operator. For the spin model, there are no
such symmetries that can lead to topological order. So we find that topological order in the
Kitaev chain model arises due to the enrichment of the emergent symmetries generated
by higher-order products of the Majorana fermion operators. What we have found goes
beyond the duality between Landau order in TFIM and the Kitaev chain model. Based on
duality, there is a transformation of local observables to non-local observables but we can
not find the generators of the emergent symmetries that lead to topological order in the
Kitaev chain model.

In other words, in the case of the Majorana fermion Hamiltonian, there are many
conserved quantities whose Liouvillian vanishes and they are conserved under Liouvillian
dynamics. This picture can be compared to the one presented in [31] where the protection
of the Majorana edge modes has been shown to be related to prethermalization.
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5.1. Interactions

Now we consider the Hamiltonian with quartic fermion terms and show that emergent
Majorana operators exist in the presence of interactions as well.

H = i ∑
ij

hijγiγj + ∑
ijkl

Vijklγiγjγkγl . (69)

The first term of the Hamiltonian is the same as Equation (45). The second term is
the interaction term where Vijkl is real and anti-symmetric under odd permutations. A
first thing to be noted is that the interaction term does not break parity symmetry and
hence we can still decompose the Hamiltonian into even and odd parity blocks. However,
due to the interaction effects, Majorana mode operators are no longer the same as the
ones for the mean-field Hamiltonian, as calculated in Section 2 above. In presence of the
interactions, the zero-mode operator will get many-body character because it will be a
zero-mode for an interacting Hamiltonian which means that the zero-mode operator has to
commute with the interaction term as well. To arrive at the operator form for the many-
body zero-mode, we will use Wegner’s flow equation method which is a renormalization
method for quantum many-body Hamiltonians [32,33]. This method has been recently
used to calculate the zero-mode operator (also called l-bits) for Hamiltonians which exhibit
many-body localization.

Within Wegner’s method, the flow equation for the Hamiltonian is given by

dH
dl

= [η, H], (70)

where l is the flow parameter that runs from zero to infinity, zero index referring to the
initial bare or unrenormalized Hamiltonian. η is the generator of the renormalization flow
and within Wegner’s scheme it is given by

η = [H0, Hint]. (71)

H0 being the diagonal part of the Hamiltonian and Hint is the off-diagonal or the
interaction part of the Hamiltonian. One of the appealing features of Wegner’s flow
equation method is that one can get the flow equations for the observables also using the
same generator. The method also allows us to make the ansatz for the operator form of a
given observable.

Using Wegner’s flow equation method, we can write down the ansatz for the many-
body Majorana zero mode operator:

γMB = ∑
i

uiγi + ∑
ijk

uijkγiγjγk + ... (72)

where the three dots refer to the higher-order products of odd Majorana fermions. ui and
uijk and their higher-order versions are the coupling constants for this operator flow and
their numerical values get determined by the flow equations. These coupling constants
grow or decay depending on how physically relevant they are for the flow of γMB The
ansatz which we have arrived at using the flow equation method is in line with the
numerical studies of such an operator [16]. The particular agreement with [16] is about the
many-body character of this renormalized zero-mode operator.

6. Symmetry Algebra of Topological Protection

In the previous section, we have seen that topological order in one-dimensional
lattice models of Majorana fermions, can be understood in terms of fermionic zero modes
which is characteristic of such topological phases. These fermionic zero modes and the
corresponding operators are the emergent symmetries of the Hamiltonian as well. In this
section, we will put our earlier results in a larger mathematical framework to understanding
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topological order especially the topological protection of the ground state, on the basis
of symmetries.

Topological protection of the ground state manifold is an important feature of topolog-
ically ordered systems. The long-range topological order(true topological order) has been
mostly approached from a topological approach which identifies a topological invariant
using algebraic topology or using topological quantum field theories that offer the effective
description of topologically-ordered systems. Recently, miscroscopic Hamiltonians have
been introduced which exhibit topolgical order. Kitaev’s Toric code and Levin–Wen model
are two very well-known examples of these Hamiltonians. It is known that topological
order can not be captured in terms of local order parameters because, in such systems,
long-range quantum entanglement plays an essential role. Unlike long-range topological
order, Short-range topological order is always protected by symmetries. We are interested
in taking a symmetry algebra approach to short-range topological order especially the one
exhibited by Majorana fermion Hamiltonians which are the focus of this paper. We show
this symmetry algebra necessitates the ground state degeneracy which is topologically
protected in the sense that no local perturbation can lift this degeneracy.

We will generalize our results from Section 3 and reformulate them in the symmetry
algebra framework. Let us consider a system where we have N Majorana fermions, N
being an odd number. Like in Section 4, we can write down a quadratic Hamiltonian that
describes the nearest neighbor interactions between Majorana fermions. We can define a
local parity operator Ploc = iγjγk for any j-th and k-th Majorana fermion pair. However, to
define global parity for this system, we will need a stray Majorana fermion as discussed
in [20]. Global parity operator can be now defined as Ptot = iΓ f where Γ is the emergent
Majorana mode operator as defined in Equation (44) and f is the extra Majorana fermion.
As parity operator, P2

tot = 1 and hence has two eigenvalues λ = ±1 which correspond to
two parity states, even parity and odd parity. Now, we can easily identify two operators
that both commute with the Hamiltonian and hence are symmetries of the Hamiltonian.

P = iΓ f Q = Γ [P, Q] = [Q, H] = 0. (73)

If P and Q would also commute with each other, then we can simultaneously diagonal-
ize all the three operators. However, P and Q do not commute; rather, they anti-commute
with each other.

{iΓ f , Γ} = 0 {P, Q} = 0. (74)

So, Hamiltonian can be simultaneously diagonalized only with either of P and Q
operators. Since P and Q operators do not commute, so the ground state of the Hamiltonian
can not be non-degenerate. In the eigen-basis of the parity operator Ptot, the Hamiltonian
will have two ground states corresponding to the even and odd parity. The Hamiltonian
will become block diagonal in the parity basis. Additionally, if we also require P and Q
operators to square to unity, then the order of the degeneracy will be two only and we will
have a double degenerate ground state.

{P, Q} = 0 P2 = Q2 = 1. (75)

It is interesting to note that P and Q operators generate Clifford algebra among
themselves. So, the symmetry operators of the Hamiltonian are actually Clifford algebra
generators.

To elucidate, how the symmetry algebra of Γ and Ptot lead to degeneracy for the
Hamiltonian HMaj, lets take a closer at the physical implications of the algebra. Let |e >
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and |o > be even and odd parity eigenstates of the parity operator Ptot. We can diagonalize
the Hamiltonian in this parity basis.

H | e〉 = εe | e〉 H | o〉 = εo | o〉. (76)

Since P and Q anti-commute with each other, we would like to apply both of them to
the parity eigenstates:

P | e〉 = +1 | e〉 P | o〉 = −1 | o〉 (77)

Q(P | e〉) = Q(+1 | e〉) (78)

− P(Q | e〉) = Q | e〉 (79)

P(Q | e〉) = −(Q | e〉). (80)

Since there is already a unique parity state corresponding to −1 eigenvalue, therefore
Q | e〉 is actually odd parity state, Q | e〉 =| o〉. So, the effect of the Q operator is to take
an even parity state to an odd one and vice versa. In that sense, the Q operator is a cyclic
permutation operator. It is the Q operator that leads to the transitions between even and
odd parity sectors; otherwise, the parity symmetry of the Hamiltonian does not allow any
such transitions between even and odd parity sectors.

We have seen that symmetry algebra necessitates that eigenstates of the Hamiltonian
come in pairs. Corresponding to each eigenvalue of the Hamiltonian, there will be two
eigenstates with even and odd parity respectively. Now, we will show that this pair of
states actually has the same energy eigenvalue and hence are degenerate. To do that, all we
need to look at is the fact that the Q operator which permutes even and odd parity states,
is also the symmetry operator of the Hamiltonian.

QH | e〉 = εe(Q | e〉) (81)

H(Q | e〉) = εe(Q | e〉) (82)

H(| o〉) = εe | o〉, (83)

where in the last line we have we have used the fact that Q operator changes even parity to
odd parity state. From Equation (80), it is obvious that εe = εo, that even and odd parity
states have same energy and hence are degenerate.

So, we have shown that for the quadratic Hamiltonian for a system of an odd number
of Majorana fermions, the symmetry algebra generated by global symmetry operator Γ
and parity operator Ptot leads to the doubly degenerate ground state. However, what is
even more interesting is that this double degeneracy is present not only in the ground state
but the whole excitation spectrum of the Hamiltonian such that corresponding to each
eigenstate of the Hamiltonian with even parity there is another eigenstate with odd parity.

This degeneracy which we have obtained from the symmetry algebra is different
than the one which we have for a quantum system whose Hamiltonian commutes with
various symmetry operators. Those degeneracies are susceptible to a local perturbation that
leads to the lifting of the degeneracy. This degeneracy is protected by non-local symmetry
operators and these symmetries can not be broken by local perturbations. The algebraic
structure of Equations (73) and (74) ensures the topological protection of the ground state
and the encoded information. As long as these symmetries as represented by P and Q
operators are present, quantum information stored in the degenerate ground state is also
preserved.

The symmetry algebra which we have introduced in this section is very general and
is not only applicable for Majorana fermion Hamiltonians which exhibit Z2 topological
order but it can also be applied for lattice spin models which have exhibit long-range
topological order as considered in [34]. Our route to the symmetry algebra is different
than [34] because our motivation and starting point is Majorana zero modes which are
important elements in our symmetry algebra. It should be noted that the Majorana zero
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modes which enter symmetry algebra are not only the ones that are edge modes but more
importantly the ones that are the global symmetry operators of the Hamiltonian.

7. Topological Order and Yang-Baxter Equation

Majorana fermions have been the focus of interest in research in topological quantum
computation because as shown in [35–37] that Majorana fermions have non-abelian braid
statistics and generate a representation of braid group. Kitaev chain realization of Majorana
fermions have given ways to engineer Majorana fermions and there has already been some
progress on that front [38]. It has also been realized [39] that the Majorana representation
of the braid group is different than the ones known in the literature. This representation
has been called a type-II representation. Now the question which has been asked is
that is the topological order which arises from quantum entanglement is also related to
topological entanglement which arises from the solutions of the Yang–Baxter equation.
Majorana fermions give new solutions to Yang–Baxter equations and hence the new type
of topological entanglement. When there is topological order, we get a representation
of the braid group and also solutions to YBE. We will first briefly review the Majorana
fermion representation of the braid group [37,40]. Then we will discuss the new solution
of Yang–Baxter equation (YBE) which has been called the type-II solution. One important
property of the type-II solution is its R matrix commutes with the Γ operator which is the
Majorana edge mode operator.

Braiding operators arise from a row of Majorana Fermions {γ1, · · · γn} as follows: Let

σi = (1/
√

2)(1 + γi+1γi). (84)

Note that if we define

λk = γi+1γi (85)

for i = 1, · · · n with γn+1 = γ1, then

λ2
i = −1 (86)

and

λiλj + λjλi = 0, (87)

where i 6= j. From this it is easy to see that

σiσi+1σi = σi+1σiσi+1 (88)

for all i and that

σiσj = σjσi, (89)

when |i− j| > 2. Thus we have constructed a representation of the Artin braid group from
a row of Majorana fermions. This construction is due to Ivanov [37] and he notes that

σi = e(π/4)γi+1γi (90)

In [39] authors make the further observation that if we define

R̆i(θ) = eθγi+1γi . (91)

Then R̆i(θ) satisfies the full Yang–Baxter equation with rapidity parameter θ. That is,
we have the equation

R̆i(θ1)R̆i+1(θ2)R̆i(θ3) = R̆i+1(θ3)R̆i(θ2)R̆i+1(θ1). (92)
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This makes if very clear that R̆i(θ) has physical significance, and suggests examining
the physical process for a temporal evolution of the unitary operator R̆i(θ).

In fact, following [39], we can construct a Kitaev chain based on the solution R̆i(θ) of
the Yang–Baxter Equation. Let a unitary evolution be governed by R̆i(θ). When θ in the
unitary operator R̆i(θ) is time-dependent, we define a state |ψ(t)〉 by |ψ(t)〉 = R̆i|ψ(0)〉.
With the Schrödinger equation ih̄ ∂

∂t |ψ(t)〉 = Ĥ(t)|ψ(t)〉 one obtains:

ih̄ ∂
∂t [R̆i|ψ(0)〉] = Ĥ(t)R̆i|ψ(0)〉.. (93)

Then the Hamiltonian Ĥi(t) related to the unitary operator R̆i(θ) is obtained by
the formula:

Ĥi(t) = ih̄ ∂R̆i
∂t R̆−1

i . (94)

Substituting R̆i(θ) = exp(θγi+1γi) into Equation (94), we have:

Ĥi(t) = ih̄θ̇γi+1γi. (95)

This Hamiltonian describes the interaction between i-th and (i + 1)-th sites via the
parameter θ̇. When θ = n× π

4 , the unitary evolution corresponds to the braiding progress
of two nearest Majorana fermion sites in the system as we have described it above. Here n
is an integer and signifies the time of the braiding operation. We remark that it is interesting
to examine this periodicity of the appearance of the topological phase in the time evolution
of this Hamiltonian. For applications, one may consider processes that let the Hamiltonian
take the system right to one of these topological points and then this Hamiltonian cuts
off. One may also think of a mode of observation that is tuned in frequency with the
appearances of the topological phase.

In [39] authors also point out that if we only consider the nearest-neighbour interac-
tions between Majorana Fermions, and extend Equation (95) to an inhomogeneous chain
with 2N sites, the derived model is expressed as:

Ĥ = ih̄
N

∑
k=1

(θ̇1γ2kγ2k−1 + θ̇2γ2k+1γ2k), (96)

with θ̇1 and θ̇2 describing odd-even and even-odd pairs, respectively.
They then analyze the above chain model in two cases:

1. θ̇1 > 0, θ̇2 = 0.
In this case, the Hamiltonian is:

Ĥ1 = ih̄
N

∑
k

θ̇1γ2kγ2k−1. (97)

The Majorana operators γ2k−1 and γ2k come from the same ordinary fermion site k,
iγ2kγ2k−1 = 2a†

k ak − 1 (a†
k and ak are spinless ordinary fermion operators). Ĥ1 simply

means the total occupancy of ordinary fermions in the chain and has U(1) symmetry,
aj → eiφaj. Specifically, when θ1(t) = π

4 , the unitary evolution eθ1γ2kγ2k−1 corresponds
to the braiding operation of two Majorana sites from the same k-th ordinary fermion
site. The ground state represents the ordinary fermion occupation number 0. In
comparison to 1D Kitaev model, this Hamiltonian corresponds to the trivial case of
Kitaev’s. This Hamiltonian is described by the intersecting lines above the dashed
line, where the intersecting lines correspond to interactions. The unitary evolution of
the system e−i

∫
Ĥ1dt stands for the exchange process of odd-even Majorana sites.

2. θ̇1 = 0, θ̇2 > 0.
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In this case, the Hamiltonian is:

Ĥ2 = ih̄
N

∑
k

θ̇2γ2k+1γ2k. (98)

This Hamiltonian corresponds to the topological phase of 1D Kitaev model and
has Z2 symmetry, aj → −aj. Here the operators γ1 and γ2N are absent in Ĥ2. The
Hamiltonian has two degenerate ground state, |0〉 and |1〉 = d†|0〉, d† = e−iϕ/2(γ1 −
iγ2N)/2. This mode is the so-called Majorana mode in 1D Kitaev chain model. When
θ2(t) = π

4 , the unitary evolution eθ2γ2k+1γ2k corresponds to the braiding operation of
two Majorana sites γ2k and γ2k+1 from k-th and (k + 1)-th ordinary fermion sites,
respectively.

Thus the Hamiltonian derived from R̆i(θ(t)) corresponding to the braiding of nearest
Majorana fermion sites is exactly the same as the 1D wire proposed by Kitaev, and θ̇1 = θ̇2
corresponds to the phase transition point in the “superconducting” chain. By choosing
different time-dependent parameters θ1 and θ2, one finds that the Hamiltonian Ĥ corre-
sponds to different phases. These observations of Mo-Lin Ge give physical substance and
significance to the Majorana Fermion braiding operators discovered by Ivanov [37], putting
them into a robust context of Hamiltonian evolution via the simple Yang–Baxterization
R̆i(θ) = eθγi+1γi . Yu and Mo-lin Ge [39] make another observation, that we wish to point
out. In [40], Kauffman and Lomonaco observe that the Bell Basis Change Matrix in the
quantum information context is a solution to the Yang-Baxter equation. Remarkably this
solution can be seen as a 4× 4 matrix representation for the operator R̆i(θ).

This lets one can ask whether there is a relation between topological order and quan-
tum entanglement and braiding [40] which is the case for the Kitaev chain where non-local
Majorana modes are entangled and also braiding.

The Bell-Basis Matrix BI I is given as follows:

BI I =
1√
2


1 0 0 1
0 1 1 0
0 −1 1 0
−1 0 0 1

 =
1√
2

(
I + M

) (
M2 = −1

)
(99)

and

Mi Mi±1 = −Mi±1Mi, M2 = −I, (100)

Mi Mj = Mj Mi,
∣∣i− j

∣∣ ≥ 2. (101)

Remark 1. The operators Mi take the place here of the products of Majorana Fermions γi+1γi in
the Ivanov picture of braid group representation in the form

σi = (1/
√

2)(1 + γi+1γi).

This observation of authors in [39] gives a concrete interpretation of these braiding
operators and relates them to a Hamiltonian for the physical system. This goes beyond the
work of Ivanov [37], who examines the representation of Majoranas obtained by conjugating
by these operators. The Ivanov representation is of order two, while this representation is
of order eight. The reader may wish to compare this remark with the contents of [41] where
we associate Majorana fermions with elementary periodic processes. These processes can
be regarded as prior to the periodic process associated with the Hamiltonian of Yu and
Mo-Lin Ge [39].
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Remark 2. We write down a Majorana fermion representation of Temperley–Lieb algebra(TLA)
which is related to the Braid group representation discussed above. We define A and B as A =
γiγi+1, B = γi−1γi where A2 = B2 = −1. Note the following relations:

U = (1 + iA) V = (1 + iB), (102)

U2 = 2U V2 = 2V, (103)

UVU = V VUV = U. (104)

Thus, a Majorana fermion representation of TLA is given by:

Uk =
1√
2
(1 + iγk+1γk), (105)

U2
k =
√

2Uk, (106)

UkUk±1Uk = Uk, (107)

UkUj = UjUk f or|k− j| ≥ 2. (108)

Hence we have a representation of the Temperley–Lieb algebra with loop value√
2. Using this representation of the Temperley-Lieb algebra [8,42], we can construct

(via the Jones representation of the braid group to the Temperley–Lieb algebra) another
representation of the braid group that is based on Majorana Fermions. It remains to be
seen what is the physical significance of this new representation.

Topological Order and Topological Entanglement

One of the main aims of this paper is to understand the relation between the topologi-
cal order which comes from quantum entanglement and topological entanglement which
comes from braid group representation and Yang–Baxter equation. This is an extension
of the work [40,41] in which it was shown how quantum entanglement is related to the
braid group and Yang–Baxter equation. So it became natural to understand topological
order based on the approach of [8,40,41]. In this section, we will show that the Yang–Baxter
equation-based approach opens new ways to understand the topological order in case of
Majorana fermion models. However, this approach is not restricted to Majorana fermions
only rather it is a very general approach that is not limited to quadratic Hamiltonians
and hence offers a new method for the classification of the topological phases, which goes
beyond K theory and Berry phase-based methods.

To understand the relation between quantum entanglement in the Kitaev chain model
and the corresponding topological entanglement which manifests as braid group repre-
sentation, we point out that it is only in the topological phase of the Kitaev chain model
that braid group representation arises while as in topologically trivial phase there are no
Majorana edge modes and hence no braid group representation. To see this relation mathe-
matically, we rewrite the Kitaev chain Hamiltonian corresponding to the topological phase.

H = 2it
N−1

∑
i=0

γ1,i+1γ2,i, (109)

and now find out that for Majorana representation as shown by Ivanov we need the
operator of the form 1+γi+1γi√

2
which arises only in the topological phase. So this brings

out the relation between topological order and topological entanglement(braiding). The
solution of the Yang–Baxter equation which arises in the topologically ordered phases of the
Majorana fermion models is different than the ones which arise from the other Hamiltonians
which do not exhibit topological order. Majorana fermion solutions are called type-II while
the other ones are called type-I solutions [39]. Hence the Majorana fermion braiding
solutions of the Yang–Baxter equation characterizes and classifies the topologically ordered
phases. Using this relation we give a new characterization of topological order. A system



Condens. Matter 2021, 6, 11 20 of 22

is said to be topologically ordered if it gives a type-II solution to Yang–Baxter equation.
This characterization is very general and just depends on the braiding properties of anyons
(Majorana fermions in this case) and hence should apply to other systems as well.

8. Summary

In this paper, we have taken a novel approach to explore the topological protection of
qubits in Majorana fermion systems. We have explored the topological protection based
on the fermionic mode operators which lead to the emergent symmetries of the Majorana
fermion Hamiltonians. We have shown the existence of these fermionic mode operators
is related to the Clifford algebra of Majorana fermions. The existence of the fermionic
mode operators as integrals of motion for the Hamiltonian has been shown to an essential
feature for topological protection. These fermionic mode operators correspond to the
non-local symmetries which can not be broken by local perturbations and hence guarantee
the topological protection of the qubits. For the generalized case of Hamiltonian with an
odd number of Majorana fermions, we have explicitly written down the fermionic mode
operator(s) which are necessary for the topological protection of the qubits.

In this paper, we have also unified the fermionic mode operators in the larger mathe-
matical approach based on symmetries. This unified approach helps us to better understand
the topological protection based on the symmetries of the Majorana fermion Hamiltonians.
Our approach can be extended easily extended to other lattice models of Majorana fermion
in higher dimensions.

We have also explored the effect of interactions on the Majorana mode operators
and hence on the topological order. We find that in the presence of the interactions,
the Majorana mode operators become dressed and become the linear combination of
all Majorana fermion operators with odd parity. In the presence of the interactions, the
Majorana fermion Hamiltonian has a four-block structure, two of them being even and
odd parity blocks. The other single element blocks are those of the identity and the Γ
operator, which both commute with Hamiltonian. We also notice the similarity between
the proliferation of the conserved quantities in the topological order in Majorana fermion
models and many-body localized phase (MBL) which is characterized by the existence of
the local integrals of motion. This similarity is suggestive of some similar phenomenon
leading to these seemingly unrelated phenomena. In that regard, we find the recent work of
Fendley and collaborators quite insightful. They have shown that the existence of Majorana
mode operators and hence the topological order in these models is a non-equilibrium
dynamical phenomenon and is related to pre-thermalization.

We also explored the implications of emergent symmetries of Majorana fermion
models on the braid group representation. We find that braid group generators commute
with the Majorana mode operator and hence give a new solution to the Yang–Baxter
equation, which has been called a type-II solution. We also write down a Majorana Fermion
presentation of Temperley-Lieb algebra. The fact that a Majorana fermion representation of
the braid group is different from the type-I solution, which is for spin models, shows that
we can distinguish between topological order and Landau order based on the solutions
of the Yang–Baxter equation. This gives a nice mathematical procedure to check for the
topological order. For the Majorana fermion models including the Kitaev chain model,
we notice that solutions to the Yang–Baxter equation exist only in the topological phase.
So the Yang–Baxter equation can be used to explore topological order in the quantum
Hamiltonians. The relation between the Yang–Baxter equation and topological order show
that the topological order that arises due to the quantum entanglement is related to the
topological entanglement of the braid group.
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