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Abstract: Helium-atom scattering (HAS) spectroscopy from conducting surfaces has been shown to
provide direct information on the electron–phonon interaction, more specifically the mass-enhancement
factor λ from the temperature dependence of the Debye–Waller exponent, and the mode-selected
electron–phonon coupling constants λQν from the inelastic HAS intensities from individual surface
phonons. The recent applications of the method to superconducting ultra-thin films, quasi-1D high-index
surfaces, and layered transition-metal and topological pnictogen chalcogenides are briefly reviewed.

Keywords: electron-phonon interaction; superconductivity; topological insulator; topological materials;
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1. Introduction

Helium-atom scattering (HAS) from a conducting surface can exchange energy and momentum
with the lattice vibrations of the surface exclusively via the surface charge-density oscillations produced
by the atomic motion, i.e., via electron–phonon (e–ph) interaction. Although this mechanism has
been suggested since the early days of HAS spectroscopy [1], as a consequence of the discovery by
HAS of the ubiquitous anomalous longitudinal surface resonance at metal surfaces [2–5], only more
recent theoretical studies based on density functional perturbation theory (DFPT) [6,7] proved that the
inelastic HAS intensities from surface phonons are directly proportional to their specific e–ph coupling
constants λQν, inaugurating what has been termed as mode-lambda spectroscopy.

An interesting aspect of the e–ph mechanism is that subsurface phonons that produce a modulation
of the surface electron density can also be detected by HAS, the detection depth being equal to the
range of the e–ph interaction. Thus, a surface probe such as He atoms with incident energies in the
range of tens of meV that only tickle the surface where the electron density is ~10−4 a.u. [8], can even
measure the dispersion curves of phonons propagating at several atomic planes beneath the surface
(quantum sonar effect), e.g., at the interface of ultra-thin metal films with the substrate, provided the
e–ph coupling is sufficiently strong [7,9].
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A natural consequence of this mechanism is that the thermal mean-square distortion of the
surface charge-density profile, providing the Debye–Waller attenuation of the specular intensity
with increasing temperature, is proportional to the mean-square phonon displacement via the
total e–ph coupling, represented by the mass-enhancement factor λ. This permits the direct
derivation of λ from the temperature dependence of HAS reflectivity for any conducting surface, as
demonstrated in a recent series of papers devoted to metal surfaces [10], ultra-thin metal films [11],
layered transition-metal chalcogenides [12,13], topological semimetals [14,15] and one-dimensional
metals [16], multidimensional materials [17] and graphene [18]. The very high surface sensitivity of
HAS for surface dynamic corrugations of the order of 10−2 a.u. also permits the detection of surface
charge-density waves, undetectable by other current surface probes, together with the associated
charge density wave (CDW) excitations like phasons and amplitons [14,19,20].

This ability of HAS spectroscopy, including its comparatively high resolution in energy and
parallel momentum (see Chap. 9 of Ref. [1]), makes it a choice tool to investigate various aspects of the
e–ph interaction in two-dimensional (2D) superconductors. After a theoretical summary (Section 2),
with the relevant equations whose detailed derivation is found in refs. [7,10,11,15,17], a few examples
for different classes of 2D superconducting materials are discussed in the following sections.

2. The Electron–Phonon Theory of He-Atom Scattering from Conducting Surfaces

The repulsive part of the interaction between a He atom and a conducting surface is described to
a good approximation by the Esbjerg–Nørskov (EN) potential [21]

V(r) = An(r), (1)

where n(r) is the surface electron density, A = 364 eV a0
3 the EN constant, and a0 the Bohr’s radius [22].

Consider in Figure 1 an inelastic scattering process of a He atom from an initial state |i> of energy Ei and
wave vector ki = (Ki, kiz) into a final state <f | of energy Ef and wave vector kf = (Kf, kfz), where Ki and Kf
are the components parallel to the surface and kiz, kfz the respective normal components. The inelastic
scattering probability P(ki, kf) for one–phonon creation processes in the standard distorted wave Born
approximation takes the form (up to a constant factor) [23]:

P
(
ki, k f

)
∝ f (∆E)N(EF)

∑
Qν

λQνδ
(
∆E− εQν

)
, (2)

where N(EF) is the electron density of states (DOS) at the Fermi level, ∆E = Ef − Ei the energy gain,
εQν the phonon energy of wave vector Q = Kf − Ki and branch index ν, and λQν the mode-selected
e–ph coupling constants (mode lambdas) [24,25]. The coefficient

f (∆E) ≡
k f

|kiz|
∆E[1 + nBE(∆E)]A2

∣∣∣∣〈 f
∣∣∣ψ∗Kn(r)ψK+Qn′(r)

∣∣∣i〉∣∣∣∣2 , (3)

with nBE(∆E) the Bose-Einstein phonon occupation number, is proportional to the square matrix element
between final and initial He-atom wave functions of the electron density matrix, connecting two Fermi
level electronic states of bands n and n’ and wave vectors K and K + Q, respectively. Please note that
the He-atom wave-functions decay very rapidly as they penetrate into the surface electron density near
the classical turning point, far away from the first surface atomic plane, where the wave function ψKn(r)
decays asymptotically as e−κz. In the Wentzel-Kramers-Brillouin (WKB) approxi-mation, κ = (2m*φ)1/2h̄
where φ is the surface work function and m* the effective mass of the surface free electrons at the
Fermi level. Thus, the square matrix element in Equation (3) can be taken as independent of the
electronic band indices and of ∆E, the latter being much smaller than φ. Since at sufficiently high
temperature ∆E[1 + nBE(∆E)] � kBT, the coefficient f (∆E) is also approximately constant, and the
inelastic HAS intensity for a phonon (Q, ν) is just proportional to the mode-selected e–ph coupling
constant λQν. This conclusion enables inelastic HAS spectra to indicate which phonons are strongly
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coupled to electrons, and which are less so. As compared to other methods which permit an extraction
of the Eliashberg function, the information obtained from HAS spectroscopy is particularly relevant
for 2D Bardeen-Cooper-Schrieffer superconductors for providing, besides the frequency, the parallel
momentum Q and branch index ν of phonons that are mostly involved in pairing.
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Figure 1. Diagram representing the inelastic scattering of a He atom of incident wavevector ki and
final wavevector kf at the surface of a metal film, where a virtual electron-hole pair is created at the
scattering turning point well above the first atomic layer, and recombines into a phonon of wavevector
Q and branch index ν. The phonon displacement field produces an oscillation of the charge density via
the mode-selected e–ph coupling constant λQν (red/blue contour lines correspond to positive/negative
charge oscillations). The fairly long range of the e–ph interaction determines the depth at which
phonons can be created/annihilated by inelastic He-atom scattering (quantum sonar effect). The inelastic
amplitude is proportional to λQν (mode-lambda spectroscopy) [7].

Another important piece of information is obtained from the temperature dependence of HAS
reflectivity. Reflectivity, expressed by the ratio I(T)/Ii of the specular peak intensity to the intensity
of the incident beam, is attenuated with increasing surface temperature T due to lattice vibrations
that modulate the profile of the surface electron density. At conducting surfaces this modulation also
contains the contribution of thermal elementary excitations of the electronic Fermi sea, which is however
negligible at the usual surface temperatures of HAS experiments. Thus, only phonon excitations,
in a first approximation, are responsible for reflectivity attenuation, and this occurs via e–ph interaction.
The attenuation of the specular peak intensity is expressed by the Debye–Waller (DW) factor

I(T) = I0e−2W(k f ,ki;T), (4)

where I0 is the rigid surface intensity, and the so-called DW exponent for HAS from insulators, as well
as for other probes directly scattered by the atom cores like X-rays and neutrons, is simply related to
the mean-square displacement of surface atoms by

2W
(
k f , ki; T

)
= − ln[I(T)/I0] = < [(k f − ki) · u]

2 >T . (5)

For a conducting surface the vibrational displacement u must be replaced by the corresponding
modulation of the surface profile at the He-surface classical turning point, proportional to the
mean-square phonon displacement. Since the latter includes the contribution of all phonons weighted
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by the respective mode lambdas, it was shown that at sufficiently high temperature, where <u2>T
grows linearly with T [10,11] according to

2W(k f , ki, T) � N(EF)
h̄2(∆kz)

2

2m∗φ
kBT λ. (6)

For a two-dimensional electron gas (2DEG) the Fermi level DOS referred to the surface unit cell of
area ac, is given by N(EF) = m*ac/πh̄2. A multilayer system as considered in the following example is
conveniently viewed as a stack of ns 2DEGs, provided ns does not exceed the number nsat of layers
encompassed by the e–ph interaction range. With these definitions, the mass-enhancement factor λ
(also denoted λHAS when obtained from HAS DW data) can be written as

λ =
π

2ns
α , α ≡ −

4φ

ac(∆kz)
2

∂ ln I(T)
kB∂T

, ns ≤ nsat. (7)

3. Mode-Selected Electron–Phonon Coupling from HAS: Lead Ultra-thin Films

The early HAS studies of surface phonons in Pb(111) ultra-thin films (3–8, 10 and 50 monolayers
(ML)) grown on a Cu(111) substrate [26–28] showed something surprising: the number of dispersion
curves detected by HAS increases with the number of layers, well beyond the few dispersion curves
observed in the semi-infinite crystal. Due to the large acoustic mismatch between Pb and Cu (acoustic
impedance ratio ZPb/ZCu = 0.56), the observed phonons are confined within the film. Actually the
number of modes resolved by HAS reaches a maximum at about 8 ML, then it decreases to the four
typical surface phonon branches of the face-centered-cubic (111) metal surface localized on the surface
atomic bilayer, with prevalent shear-vertical (SV) or longitudinal (L) polarization. This suggests nsat � 8
for Pb(111). Figure 2a,b illustrates the HAS dispersion curves for 5 ML- and 7 ML-Pb(111)/Cu(111)
(filled circles) as compared to the theoretical dispersion curves calculated with DFPT calculations [7]:
substantially all branches with prevalent SV polarization are detected. The calculated eigenvectors
indicate that the highest mode (ε2) is localized on the surface bilayer, whose interlayer distance is quite
contracted, whereas the second highest mode (ε1) is localized near the film–substrate interface, a few
layers beneath the surface. This offers a clear demonstration of the quantum sonar effect.

The inelastic HAS spectra measured in the 90◦ planar scattering geometry along the scan curves
at incident angles of 37◦ and 39.5◦ for 5 ML (Figure 2a), and 35.5◦ and 37.5◦ for 7 ML (Figure 2b) are
displayed in Figure 2c,e, respectively. The spectra of the mode-lambdas λQν calculated with DFPT for
all the theoretical quasi-SV modes intersected by the scan curves (Figure 2d,f) compare very well with
the experimental inelastic spectra, thus demonstrating the approximate proportionality predicted by
Equation (2).

The calculated λQν for the different modes (ν = α1, α2, . . . , ε1, ε2) are plotted as functions of Q in
Figure 3 for both 5 ML and 7 ML. It is rather instructive that the maxima of λQν occur for the Q = 0
acoustic modes α1. These modes have a small but finite frequency at Q = 0 (Figure 2a,b), because of
the film–substrate interaction, and consist of an almost rigid translation of the whole film against
the substrate. Since the wave penetration into the substrate is quite small, due to the large acoustic
mismatch, the displacement field gradient, measuring the local stress, is concentrated at the interface,
and therefore a large contribution to the e–ph coupling comes in this case from the interface electrons.
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Figure 2. The experimental HAS phonon dispersion curves (•) for (a) 5 ML and (b) 7 ML of Pb grown
on a Cu(111) substrate compared with the theoretical DFPT dispersion curves. The heavier (red)
lines refer to quasi-shear-vertical modes, thin lines are for quasi-longitudinal modes, broken lines for
shear-horizontal modes, not observable in the planar HAS configuration. The intersections of the
two HAS scan curves with the dispersion curves for incident angles of 37◦ and 39.5◦ (a) and of 35.5◦

and 37.5◦ (b) provide the energy and momentum of the observed phonons. The corresponding HAS
energy-gain spectra (c,e) show some prominent peaks, approximately proportional to the respective
mode lambdas λQν calculated with DFPT (d,f); the colors correspond to those of the λQν plots in
Figure 3. E labels the diffuse elastic peaks (broken lines). a,b reproduced with permission from [7],
copyright 2011 by the American Physical Society. c-f from [9], with permission from The Royal Society
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Figure 3. Plots of the mode-selected e–ph coupling constants λQν for different branch indices ν as
functions of the wavevectors Q in the ΓM direction for 5ML-Pb/Cu(111) (a) and 7ML-Pb/Cu(111) (b),
calculated with DFPT [7] (reproduced with permission, copyright 2011 by the American Physical
Society). Indexed Greek letters label the same modes of Figure 2a,b; colors correspond to those of the
λQν bins in Figure 2d,f.
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Measurements of the temperature-dependent DW exponent during the layer-by-layer deposition
of Pb films on Cu(111) permit the obtaining of λ as a function of the number of layers via Equation (7)
(Figure 4a) [27]. Please note that due to oscillating surface relaxation where the interlayer distance
oscillates so as to form a sequence of atomic bilayers near the surface, the reflectivity peaks
actually occur at n = 1 (wetting layer), 3, 4.5, 6.5, 8 . . . ML. As appears in Figure 4a, λ < 0.8 for
a single Pb wetting layer and for 3 ML, then rises to values above 1 for n ≥ 4 ML, exhibiting
quantum-size oscillations [26]. This behavior corresponds quite well to what has been reported from
scanning-tunneling microscopy/spectroscopy (STM/STS) for the superconducting Tc of Pb ultra-thin
films grown on semiconductor surfaces (Figure 4b) [29–34].
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) and
theoretical (•) values ofλ shown in (a) for n≤ 8 ML are compared with the experimental superconducting
Tc of ultra-thin Pb films on Si(111) [9] (with permission from The Royal Society of Chemistry) for two
different equilibrium configurations of the 2 ML and for n = 4, 5 ML (open squares) [31] and of the
wetting layer, n = 1 ML (filled squares) [33].

For 3 to 8 ML (Figure 4b) the HAS data reproduce quite well the results of DFPT calculations [7].
For thicknesses of 15 to 24 ML, the HAS data in Figure 4a show quantum-size oscillations that look
different from those of the corresponding angle-resolved photoemission spectroscopy (ARPES) data [35].
It should be noted that ARPES values for λ are derived from the deformation of an electronic band
induced by the e–ph coupling near the Fermi surface, and therefore refer to that specific electronic band,
whereas the HAS values from the DW exponent are averages over all possible virtual phonon-induced
electronic transitions around the Fermi level, as considered in the definition of λ.

4. A Quasi-1D Metal: Bi(114)

Although bulk crystalline bismuth at normal pressure is not superconducting above 0.53 mK [36,37],
nanostructured [38] and amorphous bismuth [37] are reported to become superconductors with
critical temperatures above 1 K. It is, therefore, interesting to investigate the e–ph interaction in Bi
nanostructures by means of HAS. Of particular interest is the (114) surface of bismuth (Figure 5a).
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Bi(114) exhibits, in its stable reconstructed (1 × 2) form, resulting from a missing-row transition,
the features of a one-dimensional (1D) topological metal consisting of conducting atomic rows 28.4 Å
apart [15,38]. Below a critical temperature of ≈240 K, a CDW arises along the rows with a critical
exponent of 1/3 due to a Peierls dimerization along the chains [16], leading to a (2 × 2) reconstruction
with an oblique unit cell in real (Figure 5a) and reciprocal space (Figure 5b). The electronic structure in
the (1 × 2) phase, calculated by Wells et al. [39], is characterized at the Fermi level by carrier pockets
at the zone center Γ and the zone-boundary points X (Figure 5c). The Γ-X intervalley e–ph coupling
explains the (2 × 2) reconstruction.
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Figure 5. (a) STM image of the (1 × 2) Bi(114) surface resulting from a missing-row reconstruction,
leading to parallel atomic rows in the x-direction, 28.4 Å apart, that confers a quasi-1D metallic character
to the surface [39]. Below ≈140 K the atomic rows undergo a Peierls dimerization with an oblique
(2 × 2) unit cell in real (a) and reciprocal space (b). Dimerization is due to intervalley nesting between
Fermi level pockets at Γ and X points of the (2 × 1) Brillouin zone (c). The transition is monitored by
the intensity of HAS diffraction from semi-integer CDW G-vectors (d) as a function of temperature.
The inset of panel (d) shows that the order parameter grows with a critical exponent β � 1/3 [15]
published 2020 by the American Chemical Society).

The HAS diffraction spectra of Bi(114) along the row direction, reported in [15,16], show the
temperature evolution of the CDW peaks, the most prominent being that at (±3/2,0); an example,
measured at 113 K, is shown in Figure 5d. The best fit of the order parameter, proportional to
[ICDW(T)/ICDW(0)]1/2 for the CDW peak (inset of Figure 5d), yields a CDW critical temperature of
242 ± 7 K and a critical exponent β = 0.32 ± 0.03, consistent with the universal exponent of 1/3 as
predicted in the presence of fluctuations [40,41], and in agreement with the critical exponent for other
CDWs in layered chalcogenides and quasi-1D systems [17,42–45].

The e–ph coupling constantλ can be derived from the temperature dependence of the DW exponent,
Equation (7), with the experimental parameters taken from Ref. [16]: ac = 129 Å2, (∆kz)2 = 54.24 Å−2,
φ = 4.23 eV (for Bi), −∂lnI(T)/kB∂T = 104.3 eV−1 and ns = 1 (assuming that only the surface atomic rows
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contribute). This gives λ = 0.40, to be compared with the HAS value 0.57 for Bi(111) [10]. A slightly
larger value for Bi(114), λ = 0.45, is obtained when treated as a 1D free-electron gas system, as discussed
in Ref. [17]. This value is probably more reliable, in consideration of the quasi-1D metallic nature of
Bi(114)(1 × 2), although the difference is well within the uncertainty of the present method.

5. Superconducting Layered Chalcogenides

The large family of layered chalcogenides includes several superconductors. Although their
superconductivity generally occurs at fairly low temperatures and under special conditions
(proximity, pressure, high doping, low dimensionality), their great interest is related to the frequent
coexistence/competition with CDWs and the interplay of electron-electron and e–ph interactions.

The high sensitivity and resolution of HAS permit detection of CDWs where other conventional
surface probes fail, and measurement of the dispersion curves of their collective excitations [14,16,19].
The additional possibility to directly estimate the e–ph interaction makes HAS an excellent tool to
investigate superconducting (SC) layered chalcogenides.

5.1. 1T-TaS2(001)

Tantalum di-chalcogenides as superconductors exemplify the special conditions mentioned above.
The SC critical temperature of 1T-TaS2(001), originally reported by Wilson et al. to be about 0.5 K [46],
was later determined to be about 1.5 K at normal pressure [47]. Pressure was shown by Sipos et al. [48]
to produce a large increase of Tc up to 5 K at 5 GPa and then to keep it about constant at larger values
up to 25 GPa. A raise of Tc can also be obtained, as recently demonstrated [49,50], by reducing the
sample thickness to a few layers, and even in a monolayer an increase of Tc up to 3.61 K is induced
by the formation of structural defects [51]. An alternate stacking of the 1T and 2H layers of TaS2

to form the so-called 4Hb polytype was also shown to raise Tc to 2.7 K [52]. The coexistence of the
CDW with superconductivity in 1T-TaS2 has been investigated by Sipos et al. [48] and more recently
by Ritschel et al. [53]. Wagner et al. [54] reported on the interesting observation that a Cu doping of
2H-TaS2 raises the SC Tc from 0.5 K of the undoped material to a maximum of 4.5 K for a 4% doping,
while dramatically reducing the CDW coherence length by a factor ten.

The complex CDW structure of 1T-TaS2, as described by Wilson et al. [46,55], Coleman et al. [56],
and more recently by Yu et al. [57], has been studied with HAS by Cantini et al. [58] and by
Heimlich et al. [59,60]. The slopes of the HAS specular intensity as a function of temperature, shown in
Figure 6a [59] for increasing temperature in the low-T commensurate CDW (C-CDW), intermediate-T
nearly commensurate CDW (NC-CDW) and high-T incommensurate CDW (I-CDW) regions, permit to
obtain from Equation 7 the respective e–ph coupling constant. With the input data kiz

2 = 14.58 Å−2 [60],
φ = 5.2 eV [61], ac = 9.43 Å2 [62] and ns = 2, from a Thomas-Fermi screening length not exceeding
1 nm [57], the observed specular intensity slopes giveλ(C-CDW) = 0.61± 0.06, λ(NC-CDW) = 0.91± 0.09,
and λ(I-CDW) = 0.61 ± 0.10 for the three phases. The data for decreasing temperature, presented in [52],
give for the I-CDW and NC-CDW comparable values within the experimental error. For the low
temperature C-CDW phase, the McMillan formula yields, with µ∗ = 0.20 [63] and a Debye temperature
ΘD of 249 K [46,64,65], a superconducting critical temperature Tc = 1.2 K, in fair agreement with the
value at normal pressure of 1.5 K reported by Nagata et al. [47].
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Figure 6. Thermal attenuation (Debye–Waller factor) data for scattering of He atoms from two
chalcogenide surfaces. The specular intensity is plotted as a function of temperature. (a) 1T-TaS2(001)
plotted on a linear scale, and (b) 2H-TaSe2(0001) plotted on a logarithmic scale. In (a), the crystal
was initially at low temperature and then heated, and the two vertical arrows indicate the charge
density wave transitions. The transition from incommensurate charge density wave (I-CDW) to
non-commensurate (NC-CDW) occurs at about 350 K, while the transition from the NC-CDW to the
commensurate (C-CDW) phase occurs at about 220 K. The three red segments indicate the slopes in the
C-CDW phase near the transition, and the average slopes in the NC-CDW and I-CDW phases. In (b) the
experimental data are also shown for increasing temperature from the C-CDW through the transitions
to the striped incommensurate (SI-CDW) at 92 K, the I-CDW at 113 K, and finally the normal phase at
122 K, as marked by the vertical lines. Also marked are the transition temperatures for decreasing T,
with relevant hysteresis effects: no SI-CDW is observed and the I-CDW to C-CDW occurs at 88 K [59]
(adapted from [17]). The red line is a smooth interpolation of the data points.

For the high-pressure (5 GPa) NC-CDW phase, Rossnagel derives from the McMillan formula
and the input data Tc = 5 K, µ∗ = 0.20 and ΘD = 249 K, an e–ph interaction constant λ = 0.85 [63],
also in agreement with the present value of λ for the NC-CDW phase, although HAS experiments are
performed in vacuum conditions. Density functional theory calculations by Amy Liu [66] also predict
a dramatic effect of pressure, with λ varying from 2.09 at 5 GPa (Tc = 16 K) to 0.69 at 30 GPa (Tc = 5.9 K).
Please note that the Debye temperature, here corresponding to a phonon energy of 21.6 meV, is adopted
in the McMillan formula as an average energy of phonons contributing to λ, and may have little to
do with that derived from the specific heat, according to Debye theory. Moreover, this theory has
been conceived for monoatomic crystals with only three acoustic phonon branches, whereas for the
additional flat optical branches of polyatomic crystals the Einstein model would be more appropriate.
The simple fit of the Debye theory to polyatomic crystals with high-energy optical phonon branches
leads to an important temperature dependence of ΘD. Since in general Tc << ΘD, it is implicit that
ΘD should be conveniently taken in its low-T limit. In the present three-atomic case, the Debye
phonon energy εD = kBΘD = 21.6 meV falls just above the acoustic region but well below the optical
phonon region (27–40 meV), according to pseudo-charge model calculations for the C-CDW phase
in its (

√
13 ×

√
13)R13.9◦ superstructure (1T-TaS2) [67]. This is indicative of a relevant contribution of
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acoustic phonons to the e–ph interaction, consistently with the fact that HAS measurements of the
surface phonon dispersion curves of 1T-TaS2 show the Rayleigh wave branch with several umklapp
replicas corresponding to CDW reciprocal lattice vectors [68].

5.2. 2H-TaSe2(0001)

HAS reflectivity data for 2H-TaSe2 (Figure 6b) show a decrease for increasing temperature
similar to that of 1T-TaS2, with imperceptible discontinuities at the CDW transition temperatures.
The HAS intensities of the CDW diffraction peaks [59,60] show instead clear features at the transition
temperatures, from the C-CDW to the striped-incommensurate (SI-CDW) phase (92 K), from the
SI-CDW to the I-CDW phase (113 K) and from the I-CDW to the normal phase (122 K), in agreement
with previous McWhan et al. X-ray data [69]. Similar agreement is found for the transition temperatures
during cooling, with hysteresis at the I-CDW→ C-CDW transition (88 K). The decay slopes of the
specular intensity for increasing temperature (Figure 6b) in the C-CDW linear region (70–90 K) and in
the (SI + I) – CDW region (90–122 K) are about the same, within the experimental uncertainty. With the
input data kiz

2 = 68.45 Å−2 [59,60], φ = 5.5 eV [70], ac = 10.22 Å2 [71] and ns = 2 (from a spherically
averaged coherence length of ≈14 Å [72], vs. the unit cell thickness including two Ta layers of 12.70 Å),
a single value for λ = 0.57 ± 0.08 is obtained. The data for decreasing temperature displayed in [59]
show a smaller slope in the I-CDW region (122–88 K), giving λ = 0.30 ± 0.06, but approximately the
same slope in the C-CDW region (<88 K). The factor of two difference in λ found in the incommensurate
phase between heating and cooling data may reflect the structural dependence on the thermal history,
as suggested by the fact that the SI phase is observed when heating and not when cooling the sample.
In any case the superconducting temperature resulting from McMillan’s formula, with a Debye
temperature of 140 K [73], µ∗ = 0.20, and λ = 0.57 for the C-CDW phase is equal to 410 mK. The C-CDW
values of λ and the corresponding Tc are larger than those found in the literature, e.g., λ = 0.49 reported
by Rossnagel [64], 0.39 by Bhoi et al. [73], 0.4 by Luo et al. [74], and correspondingly rather small values
of Tc, such as 200 mK by Kumakura et al. [75] and 130 mK by Yokota et al. [76].

As in the case of 1T-TaS2 the interplay between CDW and superconductivity is an interesting
issue, as discussed in recent works by Lian et al. [77], Wu et al. [78], Liu et al. (for 1T-TaSe2−xTex) [79],
etc. Similarly, a large rise of Tc up to above 2 K has been demonstrated as an effect of doping [80] or ion
gating (intercalation) [78], as well as of film thickness reduction down to 1 ML. For example, Lian et al.
have shown that a value of λ = 0.4, valid for bulk 2H-TaSe2 and giving a Tc of 100 mK, rises to λ = 0.74
in a single monolayer, with a Tc = 2.2 K [78]. Thus, the larger values of λ observed with HAS clearly
refer to the surface, more precisely to the surface bilayer (ns = 2).

The conjecture, originally formulated for graphite, that in layered crystals with weak interlayer
van der Waals forces the surface phonon dispersion curves should be almost coincident with those of
the bulk, proved invalid for layered chalcogenides (Figure 7) [1]. A specific role of e–ph interaction at
the surface of 2H-TaSe2, and in general of transition-metal chalcogenides, has been surmised since
the early HAS measurements of the surface phonon dispersion curves [43,81,82]. An intriguing HAS
observation in 2H-TaSe2 was a temperature-dependent Kohn anomaly in the Rayleigh wave (RW ≡ S1)
dispersion curve at about 1

2 ΓM [82], whereas the bulk longitudinal acoustic (Σ1) mode, as measured
with inelastic neutron spectroscopy [70], shows a T-dependent anomaly at 2/3ΓM(Figure 7a). Moreover,
the maximum softening observed in the bulk Σ1 mode occurs at the normal-to-CDW transition
(≈120 K), whereas the deepest S1 Kohn anomaly occurs at ≈110 K. Actually the HAS intensities of the
CDW diffraction peaks [43] exhibit hysteresis loops around the I↔SI transition temperature (113 K),
which would associate in some way the SI phase to the surface region, within the penetration depth
of the RW at 1

2 ΓM. As mentioned above, HAS data on the temperature dependence of the CDW
diffraction peaks also provided the order-parameter critical exponent for the CDW transition at 122 K
equal to the universal β = 1/3 [42], as generally found for CDW transitions driven by e–ph interaction
in this class of materials.
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Figure 7. (a) The Rayleigh wave dispersion curve (S1) in 2H-TaSe2 measured with HAS (larger
dots) [81,82] at 140 K along the ΓM direction (bottom) and at different temperatures around 1

2 ΓM (top),
where a Kohn anomaly develops with a minimum at 110 K (upward filled arrow), close to the I-CDW
→ SI-CDW transition. For comparison the deep anomaly in the bulk longitudinal acoustic mode
(Σ1) (broken lines) is located at 2/3ΓM and reaches its minimum at about the I-CDW→ N transition
temperature of ~120 K (open downward arrow) [71]. (b) A similar situation is found in HAS data
for 2H-NbSe2 measured at 160 K [83], where the shift from the bulk anomaly at about 3/4ΓM [71]
(open downward arrow) to the surface anomalies at 2/3ΓM in both the Rayleigh wave (S1) and the
optical S3 branches (filled black arrows) is smaller than in 2H-TaSe2, although the anomalous S1 mode
softens at lower temperature down to zero [84,85].

The shift of the surface phonon anomaly to a wave vector different from that for the bulk phonon
anomaly may be ascribed to a different nesting of the Fermi level surface electronic states with respect
to that for the bulk states. A similar behavior is found with HAS in 2H-NbSe2 (Figure 7b), where the
dip in the dispersion curve of the bulk Σ1 phonon also falls at ≈0.76 Å−1 while the dips of both S1 and
S3 surface phonons branches, as measured by HAS, are shifted to a smaller wave vector, ≈0.65 Å−1.
It is unfortunate that this HAS data, originally measured in 1986 by Brusdeylins and Toennies and
reproduced in [83], have not been extended to lower temperatures, where, as found with inelastic
X-ray spectroscopy (IXS) [84,85], the S1 frequency at ≈0.65 Å−1 vanishes at about 33 K. The Weber et al.
analysis based on state-of-the-art ab-initio calculations indicate the wave vector dependence of the e–ph
coupling as the driving mechanism for CDW formation in 2H-NbSe2 [85]. Considering the superior
resolution of inelastic HAS spectroscopy in the meV range with respect to IXS, and its ability to obtain
direct information on e–ph coupling constants, revisiting with HAS the CDW phases and transitions in
this class of 2D superconductors would be highly desirable. Recent examples in this direction are the
HAS measurements of λ in 2H-MoS2 [12], 1T-PtTe2 [13] and 1T-PdTe2 [86].

5.3. Pnictogen Chalcogenides

Layered pnictogen chalcogenides, with a bulk electronic band gap and a cone of topological Dirac
states localized at the surface and crossing the Fermi level, are topological insulators (TI) unsuitable
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to be superconductors at any temperature. They can however become so by intercalating donor
atoms [87–89], doping [90], by interfacing with conventional superconductors via the proximity
effect [91–96], or under pressure [97–99]. Although critical temperatures of induced superconductivity
are in the best cases in the range of a few Kelvin, the involvement of surface topologically protected
states confers a particular stability against external disturbances. This would make pnictogen
chalcogenides and their heterostructures particularly suitable for device applications. Moreover,
TI-superconductor heterostructures have provided a quantum playground for some fundamental
advances, e.g., the evidence of Majorana fermions in condensed matter with promising applications to
quantum computing (for brief accounts see, e.g., [100–102]).

A successful option was looking for Majorana fermions in the vortices of a 2D chiral topological
superconductor [103–109]. Xu et al. [110], were able to detect with STM/STS a Majorana mode
in a heterostructure made of the topological insulator Bi2Te3 and the superconductor NbSe2.
The spin-selected Andreev reflection effect [111] was exploited by Sun et al. [112] in a similar
2D heterostructure where five quintuple layers of the topological insulator Bi2Se3 are interfaced to
a NbSe2 superconductor, which enabled unveiling Majorana zero modes by probing the vortex core
states with spin-polarized-STM/STS. An important issue is the coexistence of superconductivity with
the topological order [113–115]. The recent HAS observation of diffraction features attributed to
long-period CDWs in Bi2Se3 [19] raises another coexistence issue, as mentioned above for layered
transition-metal chalcogenides, with the corresponding question about the origin and role of e–ph
interaction in topological pnictogen chalcogenides.

HAS reflectivity measurements on Bi2Se3(111), Bi2Te3(111), Bi2Te2Se(111) [15,116,117] and
Sb2Te3(111) [118] have permitted obtaining λ from the temperature dependence of the DW exponent
and Equation (7) (λHAS in Figure 8b). Their respective values are 0.23, 0.19, 0.14 and 0.08, all with
an experimental uncertainty of around 10%. The large range of values as compared to the similarity
of these compounds can be understood by considering their electronic structure at the Fermi level,
as resulting from the ARPES data for the bismuth chalcogenides used in HAS experiments [15,19,116]
and from ab-initio calculations for Sb2Te3(111) [118] (Figure 8a,c). The substantial differences in the sets
of topological states concurring to the e–ph interaction can qualitatively account for the values of λ
and indicate which Fermi level transitions contribute most.

In Bi2Se3(111) the Fermi level cuts the Dirac cone arising from the Dirac point, as well as pairs of
topological quantum-well states and the bottom of the conduction band; in Bi2Te3(111) the Dirac cone
and apparently only the conduction-band bottom; in Bi2Te2Se(111) only the Dirac states, in Sb2Te3(111),
where the Dirac point is above the Fermi level and there are altogether six hole pockets (three spin-up
and three spin-down, as indicated by arrows in Figure 8c), there is an intervalley e–ph coupling,
in addition to the contribution from Dirac holes. It appears that the Dirac states alone contribute little
to the total e–ph interaction, and that larger contributions come from the surface quantum-well states
and the bottom of the conduction band at the surface. The observation that λHAS increases when
quantum-well and conduction-band states are involved agrees with the result of DFPT calculations of λ
as a function of the Fermi level position recently reported by Heid et al. [119]. The above values of λHAS
are also in agreement with the corresponding values from other sources: for Bi2Se3(111) λ = 0.17 [120],
0.25 [121], 0.26 [122]; for Bi2Te3(111) λ = 0.19 [120], for Bi2Te2Se(111) λ = 0.12 [15]. No other value of λ
to compare with λHAS is available, to our knowledge, for Sb2Te3(111), though it is noted in [123] that in
Sb2Te3 the e–ph interaction from ab-initio calculations is weaker than in Bi2Te3, as actually found here.
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Figure 8. ARPES data for the (111) surface of n-type pnictogen chalcogenides: (a) Bi2Se3 and Bi2Te3 and
(c) Bi2Te2Se, with decreasing binding energy of the Dirac point (D) and of the surface conduction-band
minimum (from 0.15 eV in Bi2Se3 to 0.08 eV in Bi2Te3 and ≈0 in Bi2Te2Se (adapted from [15] published
2020 by the American Chemical Society)). For comparison ab-initio calculations of the surface band
structure of Sb2Te3 (111) [118], where in addition to the Dirac cone, hole pockets of opposite spin are
also found (upward and downward arrows). (b) The DW exponent slopes obtained from HAS specular
intensity measured as functions of temperature with the scattering plane in the ΓM direction for the
four samples. The corresponding e–ph coupling constants λ ≡ λHAS decrease from Bi2Se3(111) to
Bi2Te2Se(111), suggesting a dominant role in the e–ph interaction of the conduction-band quantum-well
electronic states over the Dirac electrons and the intervalley transitions.

6. Conclusions

In this brief review HAS from conducting surfaces has been shown to provide quantitative
information on the electron–phonon (e–ph) coupling constants in some classes of 2D superconductors.
Although the temperature dependence of HAS reflectivity, expressed via the DW exponent, allows for
the determination of the global e–ph interaction through the mass-enhancement factor λ, inelastic HAS
intensities from single phonons turn out to be proportional to the mode-selected e–ph coupling
constants λQν (mode-lambda spectroscopy). The latter possibility has been illustrated by the study of Pb
ultra-thin films of 5 and 7 monolayers, while the derivation of λ from the temperature dependence
of the DW exponent has been discussed for Pb films 1 to 24 ML thick, as well as for a high-index,
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quasi-1D bismuth surface and for superconducting layered chalcogenides. Concerning transition-metal
dichalcogenides, an important aspect that HAS spectroscopy can help elucidate is whether and where the
coexistence of CDWs and superconductivity is competitive or cooperative. Pnictogen chalcogenides,
where topological superconductivity can be induced by pressure, intercalation, or proximity to
superconductors, offer possible scenarios of coexistence with CDWs, after the recent observation of
CDWs in some of these materials. The values of λ obtained by HAS in n-type Bi chalcogenides permit
the appreciation of the role of surface quantum well and conduction-band states with respect to that of
Dirac states.

In view of these potentialities it would be desirable to investigate by HAS various classes
of high-Tc superconductors, in particular cuprates. No HAS study addressing e–ph interaction
has been carried out so far in these materials. E–ph interaction in perovskites has been shown in
the 1980s by Heinz Bilz and his school to receive an important contribution from the non-linear
polarizability of oxygen ions [124], and to be therefore responsible for ferroelectricity [125–129] and
other structural phase transitions [130,131], with possible implications for high-Tc superconductivity in
perovskites [131]. Given the layered structure of these materials and the good quality of their surfaces,
high-resolution HAS studies of their complex phonon structure and of mode-selected e–ph coupling
constants would certainly help to further advance the understanding of high-Tc superconductivity.
The simultaneous information on dynamics and structure of the surface electron density that can be
obtained with HAS would also be instrumental in investigating certain aspects of high-Tc materials,
e.g., phase separation [132], heterogeneity [133,134] and the superstripes landscape [135–137] made
of multiscale puddles of CDWs from 3 nm to hundreds of nm [138] controlled by doping and elastic
strain [139]. The nanoscale CDW texturing has been observed in 1T-TiSe2 [140] where by Ti self-doping
the Fermi level is tuned near a Lifshitz transition in correlated multi-band systems as was predicted
theoretically [141]. Moreover, it has been confirmed that the CDW texture in Sr doped Bi2Se3 [142] can
be manipulated by uniaxial strain to control superconductivity.

Inelastic HAS spectroscopy, besides measuring single surface phonon frequencies and the
related λQν, allows for the observation of low-energy collective electronic excitations like phasons,
amplitons and acoustic surface plasmons (ASP) [1,19,20,143] due to the direct “mechanical” interaction
(Pauli repulsion) of He atoms with the surface electron density. When the ASP dispersion curve
(linear in the long-wavelength limit [144]) enters the surface-projected phonon density, there are
avoided crossings with the surface phonon dispersion curves and a robust renormalization of ASP
phase velocity, all driven by e–ph interaction. Actually, a strong ASP-phonon interaction is at the basis
of a recent prediction by Shvonski et al. [145] of polaron plasmons as possible hybrid excitations at
topological metal surfaces, reviving the old concept by Lemmens and Devreese [146] of collective
excitations of the polaron gas. In view of the importance that has been attributed to polaron pairing
(bipolarons) in the early days of high-Tc superconductivity [147–150], the strong e–ph coupling in
cuprates has been confirmed experimentally by the anomalous doping dependent isotope effect: (i) on
the superconductivity critical temperature [151], which shows the proximity of the chemical potential
to a Lifshitz transition at 1/8 doping [152], (ii) on the polaronic CDW ordering temperature T* [153] and
(iii) the kink in the electronic dispersion from angle-resolved photoemission spectra [154]. Therefore,
the study of exotic collective polaron excitations in topological superconductors by HAS could have
many surprises in store.
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