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Abstract: Internal energies, enthalpies, phonon dispersion curves, and superconductivity of atomic
metallic hydrogen are calculated. The standard use of pseudopotentials in density-functional
theory are compared with full Coulomb-potential, all-electron linear muffin-tin orbital calculations.
Quantitatively similar results are found as far as internal energies are concerned. Larger differences are
found for phase-transition pressures; significant enough to affect the phase diagram. Electron–phonon
spectral functions α2F(ω) also show significant differences. Against expectation, the estimated
superconducting critical-temperature Tc of the first atomic metallic phase I41/amd (Cs-IV) at 500 GPa
is actually higher.

Keywords: hydrogen; high pressure; phase diagram; superconductivity; density-functional theory;
Eliashberg equations

1. Introduction

Hydrogen is the simplest and most abundant element in the universe. Under pressure, it exhibits
remarkable physics. First it solidifies and crystallizes, and then it evolves through a series of
high-density solid phases. In 1935, Wigner and Huntington predicted [1] that sufficient pressure
would even dissociate hydrogen molecules, and that any Bravais lattice of such atoms would be
metallic. The problem of metallic hydrogen has received considerable attention, as reviewed in Ref. [2].
Herein, the structures and stabilities of atomic metallic hydrogen are considered. The background of
what is known (from calculations; as motivated below) and relevant to this work will be discussed
in context.

Initial interest in metallic hydrogen was primarily related to astrophysical problems [3]. Subsequently
and more recently, there has been significant interest in it at relatively low temperatures. This can be
attributed to the remarkable properties that are expected. This includes, for example, high-temperature
superconductivity [4–6]. This will be considered herein. The possibility of a zero-temperature liquid
ground-state has also been suggested [7]. In this case, hydrogen may have quantum-ordered states that
represent novel types of quantum fluids [8]. Applications of the expected remarkable physics could
revolutionize several fields. Possible scientific investigations and technological uses have been speculated
on in Refs. [9,10].

Despite experimental advances (e.g., diamond anvil cell (DAC) [11] experiments, even coupled
with single-crystal X-ray diffraction [12]), it is still extremely difficult to determine the crystal structure
of hydrogen under extreme conditions. In addition, novel experimental approaches have been and
continue to be necessary to extend higher the pressures possible to apply to hydrogen (in this context,
under static conditions). Dias and Silvera [13] use reactive ion etching, vacuum annealing, as well
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as aluminum as a hydrogen embrittlement barrier. Another recent method has been the use of
a small taurus on the cutlet [14]. Therefore, sophisticated calculations, often ab initio ones based
on density-functional theory (DFT) [15] have become a powerful theoretical tool to understand
high-pressure hydrogen and its physical properties.

Pseudopotentials, the focus of this work, are an essential ingredient of most of these calculations.
These potentials, which are smooth and nodeless, are used to replace the 1/r Coulomb potential,
to reach more rapidly convergent results. This same idea applies to the case of hydrogen, even though
it only has one electron.

For many properties, it is reasonable to assume that the pseudopotential should be almost
numerically identical to the Coulomb one, as long as the cut-off radius rc is chosen to be small.
Under high pressure, the distance between nearest-neighbor protons in atomic metallic hydrogen is
approximately two-fold of the Wigner–Seitz radius rs [V = (4π/3)r3

s a3
0, where V is the volume per

electron and a0 the Bohr radius]. According to the evolution of shortest (interatomic) H–H distance
under pressure, rs changes from 3.12 to 1.23 when the pressure increases from ambient to 500 GPa [16].
The concern comes to be whether the pseudopotential with cut-off radius is suitable to ensure minimal
core overlap.

The validity of the pseudopotential approximation in the above contexts has been discussed
by McMahon and Ceperley [17]. The internal energies of two structures, with Hermann–Mauguin
space-group notation I41/amd (c/a > 1) (the family of structures to which this belongs will be
considered further below) and R3̄m, with different cut-off radii (0.5 and 0.125 a.u.) of norm-conserving
Troullier–Martins pseudopotentials [18], were compared. Their study indicated that this approximation
has a very small impact on these calculations (subject to the above constraint). In another study [19],
the energy difference between face- (Fm3̄m; f cc) and body-centered cubic (Im3̄m; bcc) phases were
compared, by using a projector augmented wave (PAW) method pseudopotential [20,21] and an
all-electron one. This work showed that the error introduced for these calculations is insignificant.
The structures considered in these studies though have very high symmetry. Another important
consideration is whether using a pseudopotential will influence the calculation of properties, such as
the superconducting critical-temperature Tc. This was made long ago by Gupta and Sinha [22],
suggesting that the estimate of Tc may be considerably reduced by screening effects. This is based on
the idea [23] that in the vicinity of the proton the electron wavefunction is rigidly displaced together
with the proton, and hence is not involved in the electron–phonon interaction, i.e., the screening of the
bare Coulomb potential should result in a decrease of coupling constant λ. This will be discussed in
more detail further below.

There are still several open comments and questions concerning the use of the pseudopotential
method. Some specific ones are as follows: Compared with the f cc and bcc phases, which both
belong to the cubic system of crystal structures, lower-symmetry ones may be more representative and
convincing. How are the internal energies of these affected? Are transition pressures, being a function
of both energy and its change to first order, affected? Finally, is the superconductivity-physics affected?

The purpose of this work is to make a thorough analysis of the error made using pseudopotentials,
using modern calculation techniques. Calculations of internal energies, the first phase-transition
pressure, and superconducting properties of atomic metallic hydrogen under high pressures are
performed. Structures that come from different crystal systems (cubic, rhombohedral, tetragonal,
and orthorhombic) are considered. These quantities will be compared as calculated within the
pseudopotential method to the full-potential, all-electron linearized augmented plane-wave (LAPW)
method [24,25] one.

2. Methods

Both the pseudopotential and all-electron calculations were performed from first principles.
These were based on DFT [15]. Exchange–correlation effects were described using the generalized gradient
approximation (GGA), according to the Perdew–Burke–Ernzerhof (PBE) [26] form. Other settings were
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chosen similarly between the two methods, for as direct comparisons as reasonably possible. These are
described in the following.

The pseudopotential calculations were performed using QUANTUM ESPRESSO (QE) [27]. A PAW
pseudopotential [20,21] with a cut-off radius of 0.75 a.u. was used to describe the region near the
nucleus of hydrogen. Convergence tests (energy to within 1 meV/proton) required 57.5 and 345.5 Ry for
the plane-wave basis-set cutoffs (kinetic energy) for the wavefunction and charge density, respectively.

All-electron calculations were performed self-consistently using the full-potential LAPW method
as implemented in the Elk code [28]. A plane-wave cut-off of |G + K|max = 9/RMT

min (RMT
min is the

average of the muffin-tin radii in the unit cell) was used for the expansion of the wavefunction in
the interstitial region. The muffin-tin radius for hydrogen is 0.9 a.u., which is comparable to that in
the PAW pseudopotential. The cut-off for charge density, which is the maximum length of |G| for
expanding the interstitial density, was 2 |G + K|max + ε where ε = 10−6.

It is important to briefly recognize the difference between the all-electron and PAW methods.
Both consider a plane-wave basis set, but augmented in the region near the nucleus to describe the
atomic-like wavefunction while retaining or increasing efficiency. For the PAW method, however,
inside the augmentation region, the (pseudo) wavefunction will be much smoother than the all-electron
one; i.e., the physics in this region, for this method, are similar to what happens in the (standard)
pseudopotential approximation. The advantage of this is computational efficiency. The trade-off,
however, is the nonphysical description of electrons in this region. Whether this affects results depends
on the importance of this description. This is considered herein, for calculations of several properties.

Convergence (to the same criterion as above) with respect to the number of k points needed to
sample (integrate over) the irreducible Brillouin zone were tested individually between QE and Elk.
Values obtained for the considered structures were as follows: I41/amd (263 both), Cmcm (263 and
203 for QE and Elk, respectively), I4̄3d (263 and 283), and Fm3̄m (323). Smearing was used to improve
convergence (of the integrations): in QE, the scheme of Methfessel–Paxton [29] was used, with a value
of 0.02 Ry; in Elk, that of Fermi–Dirac [30], with a suggested value [31] of 0.001 Ha.

For the phonon calculations, the GGA functional is implemented with the finite-displacement
method (supercell method), but not with density-functional perturbation theory (DFPT) [32] in the
version of Elk that was used (6.3.2). To make the comparison under the same conditions, phonon
dispersions were calculated using the former approach with 4 × 4 × 4 supercell in both QE and
Elk, combined with the phonopy code [33]. Such a grid is sufficient for a quantitative determination
of the phonons in this system [5,6]. For phonon dispersions, paths between high-symmetry points,
covering all special points and lines necessarily and sufficiently, in the Brillouin zone were determined
automatically, using the SeeK-path tool [34].

For the superconductivity calculations, again in order to use the GGA functional, electron–phonon
coupling calculations were carried out using DFPT in QE and the supercell method in Elk.
These two methods should give (numerically) the same results, as long as the sampling in reciprocal
space (former method) is consistent with the supercell size (latter method); that is, the difference is one
of computational efficiency [35]. Considering this, a 4 × 4 × 4 q-point grid and supercell were used for
all calculations. This should be sufficient to make a quantitative comparison between the two methods,
even if only calculate approximate values of the superconducting parameters themselves [5,6].

Tc was estimated by numerically solving the nonlinear Eliashberg equations. Detailed derivation
of the isotropic Eliashberg gap equations have been presented by Allen and Mitrovic [36]. The following
corresponding numerical method has been explained in Refs. [37,38]. The expressions are for
the superconducting order parameter ∆n ≡ ∆(iωn) along the imaginary frequency axis (i =

√
−1),

the maximum value of which corresponds to the wavefunction of the superconducting condensate,
and wavefunction renormalization factor Zn ≡ Z(iωn),

∆nZn = π
β ∑M

m=−M
λ(ωn−ωm)−µ∗θ(ωc−|ωm |)√

ω2
m+∆2

m
∆m



Condens. Matter 2020, 5, 74 4 of 12

and
Zn = 1 + π

βωn
∑M

m=−M
λ(ωn−ωm)√

ω2
m+∆2

m
ωm

where β = 1/kBT where kB denotes the Boltzmann constant and T the temperature, µ∗ is the Coulomb
pseudopotential, θ is the Heaviside function, ωc is the phonon cut-off frequency, ωc = 3ωmax

where ωmax is the maximum phonon frequency, ωn = (π/β)(2n + 1) is the n-th fermion Matsubara
frequency with n = 0,±1,±2, . . . , the pairing kernel for electron–phonon interaction has the form

λ(ωn −ωm) = 2
∫ ωmax

0 dω
α2F(ω)ω

ω2+(ωn−ωm)2 where ω is the phonon frequency, and α2F(ω) is the Eliashberg

spectral function where F(ω) is the density of states of lattice vibrations (the phonon spectrum), and α2

describes the coupling of phonons to electrons on the Fermi surface. Ashcroft demonstrated [39],
via an ab initio calculation that µ∗ = 0.089 in metallic hydrogen. This value is used herein. These two
equations are iteratively solved self-consistently at a certain temperature T. Tc is defined as that at
which the Matsubara gap ∆n becomes zero. Herein, 2201 Matsubara frequencies (M = 1100) were used.

The most stable structures of atomic metallic hydrogen from 500 to 3000 GPa, as predicted
by calculations, were considered. These include I41/amd (Cs-IV) [17], Cmcm [40], and I4̄3d [40].
Lower-symmetry, related structures, essentially the same up to a distortion(s) (such as Fddd [19]
and C2221 [41] for the first two structures, respectively), were not considered. Fm3̄m was also
considered, for reference. The considered pressures cover the range from approximately the expected
molecular-to-atomic phase transition [42,43] to just above the first predicted atomic phase transition
I41/amd→ Cmcm [40].

3. Results and Discussion

The structures (themselves) of high-pressure hydrogen are extremely difficult to determine by
experiment. Based on first-principles calculations [17], a body-centered tetragonal (BCT) is considered
to be the most promising candidate, for the first atomic phase(s). Representations of structures from
this family are shown in Figure 1.

(a) c/a < 1
(β-Sn type)

(b) c/a ≈
√

2 (diamond) (c) c/a > 1
(Cs-IV)

Figure 1. (Color online) Body-centered tetragonal (BCT) representation of (some) structures of atomic
metallic hydrogen. These are characterized in terms of their c/a ratio. BCT lattices are depicted in
dotted red.

These can be characterized in terms of their c/a ratio, and they are often done so using an
“elemental” naming scheme. Specific ones of importance are c/a < 1 (β-Sn type), ≈

√
2 (diamond),

and >1 (Cs-IV).
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3.1. Internal Energy

Internal energies as a function of c/a ratio were calculated at six volumes. Zero-point energies
were not directly included in these (or below) calculations. This ratio was varied from 0.05 to 10,
for each volume. Volumes were determined by geometry optimizations with QE over the considered
pressure range (see above) in steps of 500 GPa. These volumes were then fixed, and used in both QE
and Elk. The results are shown in Figure 2.
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Figure 2. (Color online) Calculated internal energies per atom of the BCT structures of atomic hydrogen,
as a function of c/a ratio at six volumes. BCT structures pointed by arrows in (a) are, from left to right:
c/a� 1, < 1 (β-Sn), ≈

√
2, > 1 (Cs-IV), and c/a� 1, respectively. Pressures corresponding to these

volumes are discussed in the text.

For both sets of calculations, there are four energy minima: a shallow one at c/a� 1, the deepest
one at c/a > 1 (Cs-IV), and two deep ones at c/a < 1 (β-Sn) and c/a � 1. Notice that c/a ≈

√
2

(diamond) is always unstable. These c/a ratios are indicated with arrows in Figure 2a. From the
difference plot (Figure 2c), a few meV/proton difference (the PAW pseudopotential energies are,
in general, higher) occur on both sides of c/a ≈ 3.5. Although this difference does not change the
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relative stabilities of the (BCT) structures (see Figure 2a), it is still significant, considering the relative
magnitudes of energies.

Consider also the changes as a function of volume. The global energy minimum is always for
Cs-IV. As the volume decreases, c/a increases. For the pseudopotential calculations, this ranges from
2.53 to 3.03. For the all-electron ones, from 2.6 to 3.05. These ranges are in very good agreement.
For both sets of calculations, the energies of β-Sn and diamond decrease with increasing volume.

The above results show that as far as (relative) energies, structures, and both qualitative
and quantitative changes with volume are concerned, the replacement of Coulomb potential by a
pseudopotential appears to be reasonable. This is consistent with previous results [19], which focused
on structures with very high symmetries. In addition (in a way) to verifying the approach, the results
here extend and altogether generalize these conclusions for structures with low(er) symmetries.

3.2. Phase Diagram

To quantify the aforementioned considerations with volume, the pressure–volume (pV) phase
diagram was constructed. This is a more sensitive measure [than internal energies (above)], as the
free energy (enthalpy H, in this case) depends on both the energy and its first-order change via the
hydrostatic pressure,

−p =
∂E
∂V

(1)

where E is the internal energy. Pressures were calculated according to Equation (1), by derivatives
of the equation of state (EoS) with respect to volume (instead of directly calculating the trace of
external stress tensor). Specifically, once the volume dependence is known, the energy as a function
of volume can be constructed, then this data is fitted with the 3rd-order Birch–Murnaghan EoS [44],
and derivatives are calculated.

Results for the first predicted phases of atomic hydrogen are shown in Figure 3.
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Figure 3. (Color online) Calculated enthalpies H as a function of pressure of the predicted most stable
structures of atomic hydrogen, relative to the Fm3̄m phase. Values were calculated every 250 GPa.

Now using Hermann–Mauguin space-group notation (as common), these are, in order of
increasing pressure, I41/amd (Cs-IV), Cmcm, and I4̄3d. The pseudopotential results are in both
qualitative and quantitative agreement with earlier work [40]. The all-electron ones show some
important differences, however.



Condens. Matter 2020, 5, 74 7 of 12

Consider first the trends in relative enthalpy differences though. These are consistent with earlier
work. In particular, I41/amd becomes very unstable with increasing pressure, relative to a set of
structures with much flatter enthalpy changes.

Consider now the phase-transition pressures. That of the (first) I41/amd→ Cmcm transition
is 2300 GPa, which is in agreement with the approximate value of >2100 GPa calculated in Ref. [40]
(the latter based on a less-dense pressure grid). For the all-electron calculations, this transition occurs
at 2410 GPa. Compared to the above results (for the two pseudopotential calculations—herein and in
Ref. [40]), this difference (increase) is relatively small. However, this trend appears consistent with the
next (potential) phase transition, discussed below.

Consider finally the latter structures. It appears that a phase-transition Cmcm→ I4̄3d will occur.
(It does, but with consideration of zero-point energy. This is predicted [40] above 3.5 TPa.) Considering
this phase transition, a significant difference can be seen. Consistent with the first transition, it appears
that this one will also be pushed to even higher pressures. In this case, however, it is enough such
that this transition may not occur. This can be understood by calculating the difference in enthalpy
between these two structures, ∆H = HI4̄3d − HCmcm. The maximum value with the pseudopotential
approximation is 4.5 meV/proton at 1700 GPa, and this decreases to 2.2 meV/proton by 3000 GPa.
This is even qualitatively much different in the all-electron calculations, where ∆H increases from 7.6 to
7.8 meV/proton at these pressures. Therefore, a phase transition, in this case, seems unlikely.

Considering the results together, all-electron calculations seem to (at least, in this region of the
phase diagram considered) push phase-transition pressures higher. Relative stabilities may also change.
These results may be significant enough to affect the phase diagram.

3.3. Phonon Dispersion

An important consideration for phase stabilities (by zero-point energy), properties
(e.g., superconductivity), etc. is lattice vibrations. Throughout reciprocal space, these are illustrated
most clearly by phonon dispersions.

The dispersion relation of I41/amd (Cs-IV) at 500 GPa is considered, as an example. These results
are shown in Figure 4.
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Figure 4. (Color online) Phonon dispersion curves along high-symmetry directions of I41/amd (Cs-IV)
at 500 GPa. Solid black curves are from the all-electron calculation, and dashed red ones from the PAW
pseudopotential one.

Comparison shows that the results calculated by the two methods are similar. The most significant
difference is near the Γ point, where the frequencies of the optical modes as calculated with the
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pseudopotential approximation are much flatter. A possible explanation for this is that, with this
approximation, the electrons near the proton are not (as) bound with its motion (unlike the all-electron
method—see below). This would mean that the change in the electronic charge density become
noticeable, and hence its phonon density of states is large and phonon dispersion flat.

3.4. Superconductivity

Superconductivity of atomic metallic hydrogen is considered, in this section.
Superconductivity of I41/amd at 500 GPa is again used, as an example. Figure 5 shows a detailed

comparison of α2F(ω) and λ.
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Figure 5. (Color online) Eliashberg spectral function α2F(ω) and the electron–phonon pairing
parameter λ of I41/amd at 500 GPa. The results from the PAW calculation are consistent with those of
Ref. [5], calculated using another pseudopotential method.

There are significant differences in the quantities as calculated by the two methods, both
qualitatively and quantitatively. The pseudopotential calculations display significant and “peaked”
electron–phonon interaction at both (relatively) low and high frequencies, but much less at intermediate
ones. This can be compared to the broad spectral function, centered at intermediate frequencies,
as calculated by the all-electron method.

At high frequencies, this result is consistent with the work of Gupta and Sinha [22]. This interaction
is mainly due to that near the proton (in metallic hydrogen). (Consider the change in the bare Coulomb
interaction with r — this scales as 1/r2, and hence is largest for small r.) However, the electrons in this
vicinity are not at all free-electron-like; their motion is bound with that of the proton. These electrons
should therefore not significantly participate in the electron–phonon interaction.

Unlike the earlier expectation [22] of a decrease in λ though, it is actually found to increase by the
all-electron calculation. Figure 5 shows, by integration of α2F(ω)/ω, that this can be attributed to the
increased contribution at intermediate frequencies ω to α2F(ω).

The dependence of the maximum value of the order parameter ∆m=1 on temperature is shown
in Figure 6. The superconducting transition temperature is defined as that at which this parameter
vanishes, ∆m=1(Tc, µ∗) = 0. The obtained Tc is 352 K in the all-electron calculation, compared to 339 K
with the pseudopotential approximation.
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Figure 6. (Color online) Dependence of the maximum value of the order parameter ∆m=1 on
temperature T of I41/amd at 500 GPa. Calculations are shown by both the all-electron method
(solid black) and with the PAW pseudopotential approximation (dashed red).

4. Conclusions and Outlook

The reliability of the standard use of pseudopotentials to simulate atomic metallic hydrogen
was studied. This was done for calculations of internal energy, enthalpy, the phonon dispersion
spectrum, and superconductivity, by comparing pseudopotential to all-electron calculations. In the
case of calculating internal energy, as has been considered to some extent before, the accuracy that can
be obtained by pseudopotentials is sufficient. Differences occur for enthalpy and phonon dispersion
relations, however. These may be significant enough to affect the phase diagram, by both pushing
phase-transition pressures higher and changing relative stabilities. Significant differences also occur
for the calculation of (at least, some) properties. For superconductivity, for example, the magnitude of
the Eliashberg spectral function at both (relatively) low and high frequencies is considerably smaller
as calculated by the all-electron method than with the pseudopotential approximation, while that at
intermediate frequencies is increased. Together, these changes increase the value of λ, which causes
the calculated superconducting critical temperature to be higher.

The presented results are important for understanding metallic hydrogen; and will be so for future
studies, especially calculations, of this system. Discussed above were applications for which the use of
pseudopotentials in such calculations are expected to give accurate results. A further consideration is
whether (practical) improvements could be made, to extend their range of applicability. The results
suggest this to be the case for properties that depend mostly on electronic effects in the “valence” region
(internal energy, enthalpy, and phonon dispersions). Improvements could straightforwardly be made
by decreasing the pseudopotential cut-off radius, such that these electrons are more fully accounted
for. This is especially important at high pressures, where the distance between protons decreases.
For properties that depend more strongly on effects in the “core” region (e.g., superconductivity),
similar improvements are not as practical. Although the cut-off could be reduced even further
(with a limit of zero), the advantage of computational efficiency would be simultaneously reduced.
Both the pseudopotential and all-electron methods are therefore expected to remain useful for such
future studies. These studies should carefully consider the effects expected to contribute to their
results. Based on these, the results and discussion herein can then be considered in the choice of
calculation approach.
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Abbreviations

The following abbreviations are used in this Article:

DAC diamond anvil cell
DFT density-functional theory
fcc face-centered cubic
bcc body-centered cubic
PAW projector augmented wave (method)
LAPW linearized augmented plane-wave (method)
GGA generalized gradient approximation
PBE Perdew–Burke–Ernzerhof
QE QUANTUM ESPRESSO
DFPT density-functional perturbation theory
BCT body-centered tetragonal
EoS equation of state
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