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Abstract: The microscopic mechanism of charge instabilities and the formation of inhomogeneous
states in systems with strong electron correlations is investigated. We demonstrate that within a strong
coupling expansion the single-band Hubbard model shows an instability towards phase separation and
extend the approach also for an analysis of phase separation in the Hubbard-Kanamori hamiltonian as a
prototypical multiband model. We study the pairing fluctuations on top of an inhomogeneous stripe
state where superconducting correlations in the extended s-wave and d-wave channels correspond to
(anti)bound states in the two-particle spectra. Whereas extended s-wave fluctuations are relevant on
the scale of the local interaction parameter U, we find that d-wave fluctuations are pronounced in the
energy range of the active subband which crosses the Fermi level. As a result, low energy spin and charge
fluctuations can transfer the d-wave correlations from the bound states to the low energy quasiparticle
bands. Our investigations therefore help to understand the coexistence of stripe correlations and d-wave
superconductivity in cuprates.
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1. Introduction

Already in their groundbreaking paper on ‘Possible High Tc Superconductivity in the Ba-La-Cu-O
System’ [1] Bednorz and Müller discussed the possibility of ’superconductivity of percolative nature’ to
explain their observation. It may be that chemical inhomogeneity was in their immediate line of sight but
they also discussed granularity and 2D fluctuations associated with the superconducting wave function [1].
The discovery that high-temperature superconductivity results from hole doping of a 2D antiferromagnet
stimulated Sigmund and his group at the University of Stuttgart in close collaboration with Hizhnyakov
from the University of Tartu to study the problem of how doped charge carriers behave in a 2D magnetic
insulating lattice. According to their initial ideas, doped charge carriers are stabilized in the dilute
limit as localized magnetic polarons in a 2D fluctuating antiferromagnetic environment. On increasing
doping concentration, such polarons condense to form larger clusters (‘droplets’) and above a critical
concentration a percolating phase is formed, which then becomes superconducting [2–4]. This scenario
got early support (see Figure 1) from experiments on lanthanum cuprate phases which showed that an
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antiferromagnetic and a superconducting phase can exist simultaneously and their ratio can favorably be
modified by thermal quenching experiments [5,6]. In particular, the comparison of field- and zero field
cooled magnetization curves of La2CuO4+δ and La2−xSrxCuO4 demonstrated that it is rather the electronic
component (i.e., magnetic polarons) which is affected by the thermal treatment.

Figure 1. Gram-susceptibility of an ’as-prepared’ La2CuO4+δ (δ ∼ 0.01) sample as a function of temperature.
The sample was rapidly quenched from room temperature to the indicated temperatures and subsequently
the magnetization (Bext ∼ 9 mT) was collected by slowly cooling the sample. Beginning from the lowest
data set each curve was shifted upwards by a value of 5×10−7 cm3/g compared to the preceding one.
(Adapted from Figure 1a, Ref. [5,6] by permission from Springer/Nature/Palgrave).

X-ray scattering experiments on analogously quenched La2CuO4+y single crystals show that ordering
of the oxygen interstitials in the layers of La2CuO4+y is characterized by a fractal distribution of dopants up
to a maximum limiting size of 400 µm which appears with the dopants enhancing superconductivity to high
temperatures [7]. Evidence for charge segregation on a local scale came first from NMR [8] and NQR [9–11]
investigations (cf. also Baranov and Badalyan as well as Hammel et al. in Refs. [12,13]). Independently,
Emery and Kivelson emphasized that ’clumping’ of the holes is an important feature of cuprate
superconductors’ [14]. Since this early experimental and theoretical evidence numerous experimental and
theoretical accounts have appeared, discussing the importance of electronic inhomogeneity (’electronic
phase separation’) for high-Tc superconductivity.

Instead of analyzing the formation of electronic inhomogeneities from the low doping side,
an alternative theoretical approach is to investigate the phase separation instability of a correlated metal
from the overdoped side, eventually supplemented with an electron-phonon interaction (see for example
Refs. [15–20]). In this context, it was proposed [14,21,22] that the inclusion of long-range Coulomb
interactions is a crucial ingredient since they suppress long-wavelength charge density fluctuations
associated with phase separation favoring shorter-wavelength density fluctuations, giving rise either to
dynamical slow density modes [14] or to incommensurate charge density waves [22].
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Such incommensurate structures have been observed in La1.48Nd0.4Sr0.12CuO4 by Tranquada
and collaborators who detected a splitting of both spin and charge order peaks by elastic neutron
scattering experiments [23]. Their finding suggested that the doped holes arrange themselves in
quasi-one-dimensional aggregates, ’stripes’, which simultaneously constitute antiphase domain walls for
the antiferromagnetic order. While the neutron scattering experiments only provide indirect evidence for
charge ordering via the coupling to the lattice, bulk evidence for charge stripe order in the lanthanum
cuprates has been found in La1.875Ba0.125CuO4 and La1.8−xEu0.2SrxCuO4 by resonant X-ray scattering
(RXS) experiments [24,25]. The rapid improvement and development of this technique has meanwhile
led to the detection of charge order in a large variety of cuprate compounds, including YBCO, [26,27]
Bi2212, [28] and Bi2011 [29]. Moreover, charge order was also measured in YBCO by high-energy X-ray
diffraction [30] and quantum oscillations in both transport and thermodynamic experiments in magnetic
fields [31–33] sufficient to suppress superconducting long-range order.

Whereas there appears to exist consensus on the formation of stripes in high-Tc materials its relation
to the mechanism of superconductivity is controversial. In fact, long before the discovery of high-Tc

Balseiro and Falicov [34] have shown that static charge-density waves (CDW) and superconductivity
mutually suppress each other. Moreover, one-dimensional electronic correlations do not seem to be
compatible with two-dimensional superconductivity in the high-Tc compounds. On the other hand STM
and ARPES experiments on LaBaCuO [35] suggest the existence of a d-wave gap below the stripe ordering
temperature which is most pronounced for δ = 1/8, when Tc tends to zero. A subsequent study of the
same compound presented evidence from the temperature dependence of the in-plane resistivity that
this d-wave gap originates from superconducting fluctuations above a Kosterlitz-Thouless transition [36].
The authors conclude that the static stripe order is therefore fully compatible with two-dimensional
superconducting fluctuations.

The essential role of electronic heterogeneities for superconductivity in hole-doped cuprates and the
coexistence of multiple electronic components has been frequently pointed out by Alex Müller [37–39]
in particular related to the formation and ordering of (bi)polarons [40,41]. For the particular case of
stripes or CDW’s there have been several attempts to link them to the pairing mechanism in high-Tc

superconductors. In a series of papers the Bianconi group has investigated pairing in a superlattice of
quantum stripes where they found an amplification of superconductivity when the chemical potential is
tuned towards a so-called shape resonance [42–47] and the multiband electronic structure can also induce
an anomalous isotope effect [48]. In fact, formation of a CDW with the concomitant multiband structure
can significantly enhance the intraband pairing scattering while suppressing the interband pairing [49,50].
However, inclusion of local Coulomb correlations has a strong impact on the renormalization of the
electron-phonon vertex so that the interplay with CDW scattering can lead to both an enhancement or
suppression of the pairing interaction [50]. Also the choice of the cutoff in the pairing interaction (’original’
electrons vs. quasiparticles) plays a role in this regard.

Emery and coworkers have proposed a pairing mechanism [51] where holes on a charge stripe acquire
a spin gap via pair hopping into the adjacent Mott insulating environment. Long-range superconducting
phase coherence is then generated by Josephson coupling between the stripes. An alternative scenario
has been put forward by Castellani et al. [22] It relies on the existence of a quantum critical point (QCP)
near optimal doping. The QCP separates a homogeneous Fermi-liquid (in the overdoped regime) from
a symmetry-broken ground state on the underdoped side of the phase diagram. The low doping phase
was associated with incommensurate charge-density waves (ICDW). However, more exotic phases have
also been proposed in this context. The singular fluctuations in the particle-hole channel generated in the
vicinity of the QCP are reflected as divergent pairing correlations in the particle-particle channel. As has
been shown in Ref. [52] an ICDW-QCP is compatible with a d-wave superconducting order parameter.
More recently it was proposed [53,54] that superconductivity in the striped state occurs at a non-zero wave
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vector (’pair density wave’) which results in the suppression of the inter-layer Josephson coupling and
thus a dimensional reduction in agreement with transport measurements on La1.875Ba0.125CuO4. [36]

The aim of the present paper is twofold. First, we review in Section 2 the phase separation mechanism
due to the formation and attraction of spin polarons. Section 3 is devoted to the problem how a phase
separation instability in the Hubbard model can be realized without the additional involvement of phonons.
Phonons (or other bosonic degrees of freedom) rather support the energy equilibration between the two
phases which allows the phase separated state to be realized as a thermal state. Moreover, we show that
the same mechanism can also be invoked to understand phase separation in multiband models including
Hund exchange which is relevant for other oxide materials as for example manganites (cf. Ref. [55]).
Furtheron, we show in Section 4 how isotropic superconducting correlations can be realized on top of
an inhomogeneous electronic ground state. For this purpose we first review the pairing mechanism
due to long-range optical phonon modes as proposed by Hizhnyakov and Sigmund [56–58]. We then
exemplify the isotropy of superconducting correlations for a striped system where it turns out that
for both d- and extended s-wave symmetry the corresponding vertex contribution has only a marginal
orientational dependence.

2. Phase Separation in the Mean-Field Approximation

In the case of a homogeneous lattice, one of the sources of inhomogeneous charge distribution and
lattice distortions (stripes) may be strong electron correlations. It was shown [59,60] that this phenomenon
already takes place in the mean-field (Hartree-Fock) approximation of the three band Hubbard model.

In Refs. [59,60] we studied hole states in the antiferromagnetically (AF) ordered CuO2

planes of cuprate perovskites with a self-consistent calculation of the Cu spin polarization.
Both the Cu-O hybridization and the O-O transfer are taken into account. We used the following
Hamiltonian for charge carriers (holes) in the CuO2 plane, which follows from the original Hubbard
Hamiltonian in the Hartree-Fock (HF) approximation:

H = ∑
σ

Hσ
MF −U ∑

m
〈nd

m↑〉〈n
d
m↓〉, (1)

where

Hσ
MF = ∑

n

[
εd + U〈nd

n−σ〉
]

nd
nσ + εp ∑

m
np

mσ (2)

+T ∑
nm

(
d+nσ pmσ + h.c.

)
+ t ∑

mm′

(
p †

mσ p m′σ + h.c
)

,

d (d†) and p (p †) are electronic annihilation (creation) operators on Cu and O orbitals, U ≈ 8 eV, T ≈ 1 eV,
t ≈ 0.3 eV, ε = εp − εd ≈ 3 eV. In the AF ordered CuO2 plane the elementary cell is doubled (the
magnetic unit cell contains two CuO2 units ). The copper on-site energies are given by ε1σ = εd +U〈nd

1−σ〉,
ε2σ = εd + U〈nd

2−σ〉.
In what follows we are interested in the behavior of a large-size wave packet of extra holes added

to the AF ground state. The Hamiltonian (1) does not take into account the Coulomb repulsion of these
holes, assuming that it is compensated by attraction with sufficiently mobile doping ions.

In the AF-ordered state Cu2O4−elementary cells form a simple square lattice with the lattice constant
a′ = a

√
2 and with main directions along x′ = (x + y)/

√
2 and y′ = (x − y)/

√
2. Therefore, it is

convenient to use the site vectors ~m′ = (mx′ , my′) which count the elementary cells in the x′ and y′

directions (mx′ , my′ = 0,±1,±2, ...; ~m′ corresponds to the cell with coordinates x′ = a′mx′ , y′ = a′my′ ).
Within this choice the second hole band (empty in the undoped case) has 4 minima at the points (±π/a′, 0)
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and (0,±π/a′) in the Brillouin zone. The wave functions of the minima contain only negligibly small
(< 10−6/

√
N) amplitudes of the first states |d1〉m′ , corresponding to the Cu with the opposite spin;

neglecting these contributions, the wave function can be presented in the form [for the minimum at
~k′ = (π/a′, 0)]:

|ψmin〉 =
1√
N

∑
~m′
|ψ〉 ~m′ , (3)

where N is the number of elementary cells,

|ψ〉 ~m′ = (−1)mx′ (sin α|d2〉 ~m′ + cos α|P1〉 ~m′), (4)

|P1〉 ~m′ =
1
2
(|p1〉 ~m′ − |p2〉 ~m′ + i|p3〉 ~m′ − i|p4〉 ~m′), (5)

and sin α ≈ 0.39 (for U = 8T, t = 0.3T, ε = 3T); |pn〉 ~m′ denote the states of the 4 oxygens surrounding the
second Cu ion in the ~m′-th elementary cell, counted counterclockwise starting from the right position.

We construct the wave packet from the states close to (π/a′, 0), the minimum of the hole
band. This wave-packet can be presented in the form

|ψL〉 = ∑
~m′

c~m′ a
+
~m′ |0〉,

where |0〉 is the state with a filled lower Hubbard band, a+~m′ is a creation operator of the hole state |ψ〉 ~m′ ,
c~m′ is the corresponding probability amplitude. We choose c~m′ in the exponential form:

c ~m′ = AL exp[−2
(
|mx′ |+ |my′ |

)
a′/L + iπmx′ ], (6)

where AL = tanh(2a′/L); the oscillating multiplier exp(iπmx′ a′/L) accounts for the wave vector
~k′ = (π/a′, 0), of the (π/2a, π/2a) minimum of the hole-band. This shape of the wave-packet is close to
that of the soliton-type (∼ sech(x/L)) packet of the minimal energy for the given size L = (

∫
|ψ|4dx)−1/2.

The expectation values of polarization are obtained from the self-consistent equations

〈nd
σ〉 = ∑

k
| φik |2, (7)

where φik is the eigenvector of the Hamiltonian matrix, corresponding to the eigenvalues Ek. The second
band (empty in the undoped case) has 4 minima at the (±π/2a,±π/2a) points in the Brillouin zone.

Our solutions of the self-consistent Equation (7) show that for a single hole the lowest energy solution
corresponds to a spin-polaron of small size [61,62]. The free hole state is about 0.15 eV higher in energy.
We also found that in order to obtain such spin-polaron state from the state of a free hole it is necessary to
overcome an energy barrier of about 0.05 eV before the formation of the polaron can occur [62]. However,
at finite doping the spin-polaron states become less favorable and at a critical concentration c ∼ 0.5 they
turn out to be metastable.

We also have observed that already at small hole concentrations their spatial distribution changes
from homogeneous to a domain type. Such behavior of holes is expected from general considerations.
Indeed, in a two-dimensional lattice the self-energy of a large size (∼ L) hole wave packet caused by the
interaction with the surrounding Cu spins is ∝ |ψ|4. It depends on L as (−L−2), i.e., in the same way as its
kinetic energy, but with different sign [63]. Therefore, in case of a high effective hole mass the attractive
self-action dominates, thus leading to the formation of domains. According to our calculations the local
hole concentration in domains is ∼0.5–0.6. This result is demonstrated in Figure 2, where, for a system
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containing hole-enriched stripes, the dependence of the total energy on the concentration of holes in the
stripes is shown for the case of a total hole concentration c = 0.05. The free energy of the domain only
weakly depends on its shape. Consequently, the formation of stripe domains already takes place in the HF
approximation. The optimum hole concentration in domains obtained via this approximation is close to
the observed value of c = 0.5.

Similar results on phase separation were obtained using slave-boson, slave-fermion and large-N
expansions [16,64–67]. Within the tJ-model it has been shown [68] that phase separation supersedes
superconducting instabilities for large enough exchange coupling. Mechanisms of phase separation in
solids different from cuprates (e.g., manganites) were considered in Refs. [55,69–71].

Figure 2. Full energy of the crystal E vs hole concentration c in the hole-rich (stripe) region. Initial (mean)
hole concentration is 0.05. The dotted line corresponds to the rigid AF lattice.

3. Phase Separation and Fluctuations

In systems with strong electron correlations, phase separation takes place with the inclusion of charge
and spin fluctuations. This result was recently demonstrated in the one-band repulsive Hubbard model on
a two-dimensional square lattice [72]. It was shown that at low temperatures, regions of negative electron
compressibility (NEC), κ = x−2(dx/dµ) < 0, arise near certain values of the chemical potential µ. Here
x is the electron concentration. The source of this unusual behavior of κ is the crossing of the energy
levels in the Hubbard atom at these µ. A power series expansion around the atomic limit is the natural
investigation method in the case of strong correlations. This approach is called the strong coupling diagram
technique (SCDT) [73–77]. The convergence of the series expansion is confirmed by the summation of
infinite sequences of diagrams. Its validity follows from the successful comparison of its results with data
from Monte Carlo simulations, exact diagonalization and experiments with ultracold atoms in optical
lattices [76,77].

The Hamiltonian of the Hubbard atom reads

Hl = ∑
σ

[(U/2)nlσnl,−σ − µnlσ], (8)
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where U is the on-site repulsion, nlσ = a†
lσalσ is the occupation-number operator on the lattice site l with

the spin projection σ = ±1, a†
lσ and alσ are electron creation and annihilation operators. As seen from

Equation (8), the Hamiltonian has four eigenvectors |λ〉: the empty state |0〉 with the eigenenergy E0 = 0,
two singly occupied degenerate states |σ〉 with the energy E1 = −µ, and the doubly occupied state |2〉
with the energy E2 = U − 2µ. As follows from the energy expressions, with the change of µ, these states
become alternately the ground states of the atom: for µ < 0 it is |0〉, for 0 < µ < U the degenerate singly
occupied states are the lowest ones, and for U < µ the ground state is |2〉.

The terms of the SCDT series expansion for Green’s functions are products of hopping constants
and on-site cumulants [78] of electron creation and annihilation operators. In particular, the first-order
cumulant C(1)(τ) = 〈T a†

lσalσ(τ)〉0, i.e., the first term of the expansion for the one-particle Green’s function,
after Fourier transformation reads

C(1)(j) =
1
Z ∑

λλ′

e−βEλ + e−βEλ′

iωj + Eλ − Eλ′
〈λ|alσ|λ′〉〈λ′|a†

lσ|λ〉, (9)

where T is the time ordering operator, the subscript 0 of the averaging brackets indicates that the averaging
and time dependence are determined by Hamiltonian (8), the partition function Z = ∑λ exp(−βEλ) with
β = 1/T the inverse temperature, and j is the integer defining the Matsubara frequency ωj = (2j− 1)πT.
At low temperatures, due to the Boltzmann factors e−βEλ in Equation (9), the cumulant changes drastically
as µ goes from a region with one of the mentioned ground states to another one. Namely, for µ � −T,
C(1)(j) ≈ 1/(iωj + µ), while for T � µ and T � U − µ, C(1)(j) ≈ (1/2)[1/(iωj + µ) + 1/(iωj + µ−U)].
In the third region, T � µ−U, C(1)(j) ≈ 1/(iωj + µ−U). Similar sharp changes occur in other cumulants.
Since they enter into irreducible diagrams composing the irreducible part K(k, j), which defines the
one-particle Green’s function, [76]

G(k, j) =
{
[K(k, j)]−1 − tk

}−1
, (10)

sharp changes occur in spectral functions, densities of states, and band dispersions. Here k is the wave
vector and tk the Fourier transform of hopping constants. The drastic variation of electron bands near
µ ≈ 0 and µ ≈ U can be characterized as their pronounced non-rigidity—a strong dependence of the
electron dispersion on the chemical potential/electron concentration. This non-rigidity is the origin of the
NEC observed near these values of the chemical potential.

Figure 3 exhibits a cartoon image of one of the NEC regions. In the one-band Hubbard model,
the topmost point of this dependence may be close to x = 1 at low temperatures [72]. Let us suppose that
the crystal is divided into two parts with the electron concentration x1 and chemical potential µ1 in one of
them, and x2 < x1 and µ2 > µ1 in another. Representative points of these two parts are shown in Figure 3.
Both parts are considered to be macroscopic crystals. Hence the dependence x(µ) is described by the curve
in this figure. Let us suppose that we transfer an electron from part 2, with a smaller concentration, to part
1, with a larger concentration. Therefore, the concentration difference between the two parts is further
increased. Such a transfer is energetically favorable, since µ2 > µ1. Therefore, if there is a subsystem in
contact with the electron subsystem, which can absorb the energy µ2 − µ1, such an electron separation will
proceed spontaneously until the concentration and chemical potential in part 1 reach the topmost point
in the curve in Figure 3, while part 2 attains the lowermost point. The character of the curve prohibits
further separation.

In crystals, such an energy-absorbing subsystem is provided by phonons. Let us consider the
simplest model for vibrations – local lattice distortions ql linearly interacting with the electron density.
This interaction is described by the term Hi = −v ∑lσ qlnlσ. We use the adiabatic approximation. The two
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parts of the crystal are large enough, which allows us to suppose that at the bottom of the adiabatic potential
all local distortions are equal, ql = q. In this case, vq in Hi becomes a correction to the electron chemical
potential, and the adiabatic potential is easily calculated. Its minimization gives q = −vx/u with u the
elastic stiffness constant. Thus, the distortion in the electron-rich part is larger than in the electron-poor
one. We arrive at a state in which both electronic components and distortions are inhomogeneous. If there
is a predominant interaction of electrons with distortions of special symmetry, especially connected with a
softening phonon mode, one can expect the formation of stripes.

Hence in our approach with a fixed chemical potential, the assistance of phonons is needed for
phase separation. Ground states featuring phase separation were found in many works using different
optimization procedures (see, e.g., Refs. [79–81]). These procedures do not fix the energy of a solution,
but rather minimize it. Therefore, in such works, phase-separated ground states are obtained in purely
electronic systems, without the involvement of phonons.

The charge instability in the form of the NEC is observed in other models of strongly correlated
systems as well. In particular, we found such instability in the Hubbard-Kanamori (HK) model described
by the Hamiltonian [82,83]

H = −t ∑
〈ll′〉iσ

a†
l′iσaliσ + ∑

liσ

[
− µnliσ

+
U
2

nliσnli,−σ +
U − 2J

2
nliσnl,−i,−σ

+
U − 3J

2
nliσnl,−i,σ

+
J
2
(
a†

liσa†
li,−σal,−i,−σal,−i,σ

−a†
liσali,−σa†

l,−i,−σal,−i,σ
)]

, (11)

where the subscript i = ±1 labels two degenerate site orbitals and J is the Hund coupling. Hamiltonians
of this type are used for the description of transition metal oxides, iron pnictides, and chalcogenides.
In contrast to the simpler one-band Hubbard model with only two NEC regions, in the HK model with
two orbitals, there are four such regions. Two of them at µ = 0 and at µ = U − 3J = 1.5t are seen in
Figure 4. This dependence x(µ) was also obtained using the SCDT. The mechanism of the appearance of
these NEC regions is the same, as in the one-band model, i.e., the level crossing in the on-site terms of the
Hamiltonian (11) leads to sharp changes of electron bands (for more details see Ref. [84]). Indeed, phase
separation is inherent in crystals, for the description of which the HK Hamiltonian is applied [85–87].

Hence the appearance of NEC regions corresponds to the common mechanism of phase separation in
crystals with strong electron correlations.



Condens. Matter 2020, 5, 65 9 of 23

x

x1

x2

1 2

Figure 3. The dependence x(µ) near one of the NEC regions.
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Figure 4. The dependence x(µ) in the Hubbard-Kanamori model with two orbitals. U = 6t, J = 1.5t,
and T = 0.13t.
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4. Pair Correlations In Cuprates

The presence of electronic inhomogeneities resulting from competing interactions at the microscopic
level not only affects the normal state properties of strongly correlated materials. They also play a major role
for the existence of the superconducting state. There have been many attempts at determining the pairing
mechanism but no consensus has been reached in the community. As stated in the introduction, Sigmund
and Hizhnyakov pointed out early on the importance of taking into account electronic inhomogeneities in
the description of the superconducting state [2–4]. However, contrary to many they did not consider strong
correlations or electronic inhomogeneities as the driving mechanism of superconductivity per se, but rather
as modifying the conventional picture of superconducting pairing in ways that make the superconducting
state of these materials unique.

At the time when Alex Müller visited Sigmund and Hizhnyakov in Stuttgart, he was very interested
in the pairing mechanism proposed by the group and resulting from the transitive electron-phonon
interaction in one-dimensional, percolative, stripe-like inhomogeneities [2–4]. With time, Alex moved his
research in the direction of more local pair correlations, favoring the formation of bipolarons. He also
viewed the symmetry of the order parameter as resulting from the coexistence of two condensates with s-
and d-wave symmetry [88]. On the other hand, the authors developed a theory that involves electronic
inhomogeneities and long range interactions in the formation of Cooper pairs [56–58]. As explained below,
that model leads to a single condensate with anisotropic s-wave symmetry that changes into d-wave
symmetry when accounting for the local Coulomb repulsion [56–58,89].

In the following we consider two aspects of superconducting pairing in a strongly correlated system.
In the first, electronic inhomogeneities cause the electron-phonon coupling to have an essential long-range
component that sustains a superconducting state while the balancing between the resulting effective
attractive interaction with the local Coulomb repulsion determines the symmetry of the order parameter.
In the second, the superconducting pair fluctuations are considered on top of a symmetry-broken ground
state of stripes. The phase separated configuration and underlying interactions lead to pair correlations
that appear very isotropic despite the anisotropic inhomogeneous electronic state. Common to both
aspects of pair fluctuations is that they occur at low momentum transfer q but result from local electronic
correlations which determine the symmetry of the superconducting order parameter.

4.1. Pairing from Long Range Electron-Phonon Interaction

Electronic inhomogeneities are the expression of static or dynamic phase separation into hole rich and
hole poor regions. An essential aspect of these considerations is the time scale associated with different
components of the phase separated state. It is less the absolute time scale that matters: the electronic
inhomogeneities need not be static to result in the pairing mechanism discussed here. They may fluctuate
but with a time scale much larger than the motion of quasiparticles within the metallic component of the
inhomogeneous state. Furthermore, the inhomogeneities are on a microscopic scale and only in specific
situations become more macroscopic as for example the stripe phase at x = 1/8 in LBCO.

The particular model used to describes the inhomogeneous electronic structure is not crucial
for the considerations of this subsection. The important aspect is the reduction of screening effects.
This reduction is reinforced by the layered nature and anisotropic transport properties of high temperature
superconductors. As a result, there is poor screening along the c-axis, and the screening of the Coulomb
interaction has an important dynamic contribution. Unlike conventional three-dimensional metals,
low energy electronic collective modes appear in correlated layered materials [90–93]. These modes
are acoustic (ω ∼ q), although they may display a small gap at q → 0 that depends on the interlayer
hopping parameter. The gap, however, does not affect the physics of low energy collective modes in an
essential way [91–93]. Calculations demonstrate that low-energy plasmons contribute constructively to
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the pairing mechanism in a variety of novel superconductors [91–93]. Only very recently have low-energy
plasmons been observed experimentally using resonant inelastic X-ray scattering (RIXS) in electron doped
cuprates [94,95].

The unusual plasmon spectrum resulting from electronic inhomogeneities, the layered structure and
anistropic transport, have another implication that is essential for understanding the pairing mechanism in
high temperature superconductors. The attractive electron-ion interaction screening is reduced in the hole
poor region as compared to the hole rich phase. Hence, one expects two components to the electron phonon
interaction, Heph = Heph,S + Heph,L. The usual short-range, screened interaction Heph,S is dominant in most
metals. The long-range, weakly screened interaction Heph,L is reminiscent of what occurs in a polar crystal,
though high-Tc materials are rather in an intermediate case between these two extremes. The long-range
interaction Heph,L is unique to systems such as high-temperature superconductors since it results from the
presence of strong-correlation induced dynamic inhomogeneities of the electronic ground state.

Breathing and buckling modes, which are the A1g in-plane and the B1g, B2g out-of-plane
motion of oxygen atoms in the CuO2 planes, respectively, were shown to contribute most to the
phonon-mediated pairing interaction [96,97]. It was argued that correlations suppress charge fluctuations,
which leads to a reduction of the electron-phonon interaction [98,99]. This result was obtained for a
local interaction. Calculations using the time-dependent Gutzwiller approximation have shown that
correlations can enhance the transitive coupling to these optical phonon modes at small momenta q
[100,101]. Nevertheless, the amplitude of the coupling to the A1g mode is too small in absolute value
to lead to high critical temperatures. These considerations were made without taking into account the
fact that the screening along the c-axis is reduced and allows for a three-dimensional coupling of charge
carriers to long wave length optical phonons.

Sigmund and Hizhnyakov considered the pairing interaction resulting from long wave length optical
phonons, noticing three essential features. First, the long range interaction implies an averaging over the
smaller scale of electronic inhomogeneities and the interlayer distance, rendering the superconducting
state truly three-dimensional. Second, the anisotropy of the superconducting order parameter does not
result from the anisotropy of the pairing interaction which mixes states with close momenta k, but rather
from the band structure and in particular the anisotropic density of states at the Fermi surface [56–58].
Third, the pairing interaction determines the stability of the superconducting state and magnitude of the
superconducting order parameter. The symmetry of the latter is, however, not solely determined by the
pairing interaction. Account of the local, Hubbard like, Coulomb repulsion and the relative magnitude
of these two-particle interactions determines the symmetry; a relatively modest Coulomb repulsion
transforms an (anisotropic) s-wave symmetry into a d-wave symmetry [89]. These three features are
in stark contrast with most alternative models for the description of the superconducting state in high
temperature superconductors.

To be more specific, the BCS gap equation requires the knowledge of the electronic dispersion relation
and the pairing potential. The in-plane parametrization of the dispersion for conduction holes, εk, is
well-established [56–58,102]. Neglecting here the interlayer hopping, the density of states ρF = v−1

F
displays strong maxima along φ = nπ/2 (n = 0, 1, 2, 3) in the (kx; ky)-plane [56–58]. The strong anisotropy
bears resemblance to the superconducting order parameter anisotropy.

The pairing interaction resulting from the long range coupling to A1g, B1g and B2g optical phonon
modes was derived in Ref. [56–58] and take the form

VA1g

(
q‖
)
'

UA1g

κ2 + q2
x + q2

y
, (12)

VB1g

(
q‖
)

=
UB1g

κ2 + q2
x + q2

y
(cos kx − cos ky)

2. (13)
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Here q = k − k′ and k = (kx, ky) is the wave-vector component parallel to the CuO2 plane.
The coupling to the B2g mode is obtained from VB1g rotating the k-space basis by π/4. Because of
this rotation the squared parenthesis in Equation (13) is small in the antinodal regions and vice versa. As a
result, the contribution of this mode can be neglected. Hence, the maximum of the gap, ∆max and Tc are
determined by the A1g and B1g contributions to pairing. UA1g ,B1g and κ were estimated in Ref. [89] to be
UA1g ,B1g ∼ 100 meV and κ ∼ 0.3 and are the same parameters that allow describing the experimentally
observed phonon renormalization at the superconducting transition [103–105].

To solve the BCS gap equation one needs also to add the pairing interaction resulting from the
short-range part of the electron-phonon interaction He−ph,S [89]. Their expression is the standard dominant
pairing interaction found in conventional superconductors with its attractive and repulsive parts.

Using both the long-range and short-range contributions of the electron-phonon interaction and
Coulomb repulsion we solved the gap Equation [56–58,89]. Two important conclusions were obtained.
First, the magnitude ∆max and anisotropy of the superconducting gap ∆k are determined by the coupling
of charge carriers to the long range electron-phonon interactions at small q. The anisotropic density
of states indeed determines the k-dependence of the gap. The results are in excellent agreement with
the experimental determination of the order parameter. Second, the symmetry of the order parameter
is not determined by the pairing interaction but by the relative weight of competing attractive and
repulsive interactions. The long-range electron-phonon interactions lead to an anisotropic s-wave gap.
Accounting for a relatively modest local Coulomb repulsion transforms the s-wave gap to a d-wave gap,
without fundamentally affecting the magnitude or the overall k-dependence of the gap [89].

4.2. Pair Fluctuations in the Symmetry-Broken Ground State

Motivated by the coexistence of stripe order and a two-dimensional d-wave like gap in the stripe
phase of LBCO we proceed by investigating the structure of pairing fluctuations for static, metallic stripes,
i.e., deep in the symmetry broken ground state. In this regard our present study is in some sense
complementary to the work of Ref. [52] where SC has been obtained from ICDW fluctuations on top
of a homogeneous ground state. The problem is complex because the formation of stripes also alters the
spectrum of low energy charge and spin fluctuations which contribute to the correlations in the pairing
channel. Due to this complexity we will use the time-dependent Gutzwiller approach, [106] instead of the
SCDT, which conveniently allows also considering symmetry-broken solutions.

Our investigations are based on the one-band Hubbard model with hopping restricted to nearest
(∼ t) and next nearest (∼ t′) neighbors

H = −t ∑
〈ij〉,σ

c†
i,σcj,σ − t′ ∑

〈〈ij〉〉,σ
c†

i,σcj,σ + U ∑
i

ni,↑ni,↓. (14)

Here c(†)i,σ destroys (creates) an electron with spin σ at site i, and ni,σ = c†
i,σci,σ. U is the on-site

Hubbard repulsion.
As a starting point we treat the model Equation (14) within an unrestricted Gutzwiller approximation

(GA) as in Ref. [106]. Basically one constructs a Gutzwiller wave function |Ψ〉 by applying a projector to a
Slater determinant |SD〉 which reduces the double occupancy. The Slater determinant is allowed to have
an inhomogeneous charge and spin distribution describing generalized spin and charge density waves
determined variationally [107]. The advantage of the GA in the present context is that our saddle point
solutions reproduce several features of experiments [106,108] while the same would not be true if the
starting point where HF [106] for which stripes are not even the ground state for realistic parameters.

The parameters were fixed by requiring that (a) the linear concentration of added holes is 1/(2a)
according to experiment [23,109,110] and (b) a TDGA computation of the undoped AF insulator reproduces
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the experimental magnon dispersion [111] observed by inelastic neutron scattering. Condition (a) was
shown to be very sensitive to t′/t [106] whereas condition (b) is sensitive to U/t and t, the former parameter
determining the observed energy splitting between magnons at wave-vectors (1/2, 0) and (1/4, 1/4).
Ref. [111] Indeed, the splitting vanishes within spin-wave theory applied to the Heisenberg model which
corresponds to U/t→ ∞. We find that both conditions are met by t′/t = −0.2, U/t = 8 and t = 354 meV.

The results shown in this paper are for d = 4 bond-centered stripes oriented along the y-direction
calculated on a 40 × 40 lattice; see Figure 5 for a visualization of the charge and spin structure.
Figure 6 shows the corresponding band structure. Stripe formation induces two bands (B1 and B2,
cf. Figure 6) in the Mott-Hubbard gap and the chemical potential is located in the (half-filled) band
labeled B1.

Dynamical pairing fluctuations are computed on top of the inhomogeneous solutions within the
time-dependent GA [112,113] (TDGA). This scheme allows for the incorporation of particle-particle
correlations in a similar manner as the traditional ladder approximation based on Hartree-Fock (HF)
ground states. At the same time, it starts from a solution which incorporates correlations already at
mean-field level. In the particle-hole channel the TDGA has previously been shown to provide an accurate
description of magnetic fluctuations [114,115] and the optical conductivity [116] in cuprates.

JF

JAF

JAF

V

V

a)

b)

Figure 5. Spin (a) and charge (b) structure of d = 4 bond centered stripes at δ = 1/8. Also shown are
the interaction parameters used in the spin (JAF, JF) and charge (V) channel which determine the pairing
fluctuations in Equation (16).

Here we are interested in the dynamical order parameter correlation function

Pq(ω) =
1
ı

∫ ∞

−∞
dteıωt〈T ∆q(t)∆†

q(0)〉, (15)

where ∆q = 1/
√

N ∑k γkc−k−q,↓ck,↑ and γk specifies the symmetry of the order parameter fluctuations.
We focus on γk = (cos(kx) + cos(ky))/2 (extended s-wave) and γk = (cos(kx) − cos(ky))/2 (d-wave)
symmetries. For ω > 0 (ω < 0) the imaginary part of Pq(ω) yields the order parameter correlations for
two-particle addition (removal). Please note that a pole in Pq(ω → 0) signals the occurence of a long-range
ordered SC state for a given symmetry. Of interest is also the vertex contribution ∆Pq(ω) = Pq(ω)− P0

q (ω)

where P0 corresponds to the non-interacting pair-correlation function calculated with the bare Green’s
function on the GA level. For a given symmetry ∆Pq(ω) yields information on whether the order parameter
fluctuations at a given momentum and frequency are attractive or repulsive for the GA quasiparticles.
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Figure 6. GA band structure for d = 4 bond-centered stripes oriented along the y-direction. Shown are
the dispersions for q = 0 (black, solid) and q = π/4 (dashed). The energy is measured with respect to the
chemical potential (horizontal grey line) and the lattice constant is set to a ≡ 1. LHB/UHB: Lower and
upper Hubbard band.

Our ladder-type approach incorporates the pair correlations on a scale of U but unfortunately does
not properly take into account the energetically low lying collective excitations in the charge and spin
particle-hole channels. As shown for the case of ICDW scattering [22] these excitations couple back to the
particle-particle channel and thus can strongly enhance the low energy SC fluctuations. We incorporate
this effect by adding the operator

HFluc = −g ∑
ij

Jijδ〈c†
i,↑c

†
j,↓〉δ〈ci,↓cj,↑〉

+ g ∑
ij

Vijδ〈c†
i,↑c

†
j,↓〉δ〈cj,↓ci,↑〉. (16)

to the system which generates particle-particle scattering in the spin ((Jij)) and charge ((Vij)) channel but
does not alter the ground state solution. The parameter g is introduced to model vertex corrections which
for simplicity are assumed to be constant. The interaction parameters Jij in the spin channel are obtained
by calculating the magnetic excitations in the stripe phase within the TDGA [114,115]. The low energy
Goldstone mode emerging from the incommensurate wave-vectors can be fitted by linear spin-wave
theory applied to a Heisenberg model with site dependent interactions as shown in Figure 5a. We find
JAF = 0.4t between antiferromagnetically ordered spins and JF = −0.2JAF between the ferromagnetically
ordered bonds on the stripe legs. To obtain information about the interaction parameters in the charge
channel we calculate the charge profile of bond centered stripes within the following HF approximated
spinless fermion model

H = −t ∑
〈ij〉

f †
i f j − t′ ∑

〈〈ij〉〉
f †
i f j + ∑

ij
Vij(1− ni)(1− nj).

where the kinetic part is the same as in Equation (14) and Vij is a nearest-neighbor attraction acting on
holes on the stripe legs (Figure 5b). We find that a value of Vij = −0.25t reproduces the charge profile
obtained within the full GA calculation.

Figure 7a shows the instantaneous pairing correlations in the d-wave channel obtained from the
removal part 〈∆†,d

q ∆d
q〉 =

∫ 0
−∞ dωPq(ω) for coupling parameter g = 1. The correlations calculated from the

addition spectra (ω > 0) are similar. The shape reflects the quasi one-dimensionality of the underlying
ground state with the most pronounced correlations along (qx, qy ≈ 0) and the maximum at (0, 0).
However, when we substract the contribution of the non-interacting GA quasiparticles the resulting vertex
contribution (cf. Figure 7b) takes a different and much more isotropic shape. The correlations at q = (0, 0)
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are still attractive but the maxima now occur at (±π, 0) and (0,±π). The vertex contribution for extended
s-wave symmetry (cf. Figure 7c) is also rather isotropic but displays the maximum attraction at q = (0, 0).
Also the (instantaneous) attraction is by a factor of 3–4 larger than in the d-wave channel. The strong
reduction of the d-wave attractive fluctuations for small momenta can be traced back to the form factor
γk = cos(kx)− cos(ky) and occurs also in the homogeneous state in the absence of JAF, JF, and V (for
finite interaction parameters the homogeneous state has a pole at q = 0 and ω = 0 reflecting an instability
towards superconductivity).
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Figure 7. Instantaneous order parameter fluctuations for d-wave (a,b) and extended s-wave symmetry (c)
obtained from the removal part (ω < 0). Panel (a) corresponds to the TDGA ladder result for 〈∆d

q∆d
q〉 =∫

dωPq(ω) whereas panels (b) and (c) show the vertex contributions
∫

dω∆Pq(ω). Coupling parameter
g = 1.

It is important to know in which frequency range Pq(ω) contributes most to the instantantaneous
correlations. One can expect that a system with low energy order parameter fluctuations is more susceptible
towards the transition to a superconducting state than if these would occur at higher frequencies. In fact,
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we find pronounced differences between d-wave and extended s-wave symmetry as can be seen from
Figure 8. In the main panels we show the q = 0 pairing fluctuations for two-particle removal (ω < 0)
and addition (ω > 0) and a coupling parameter (g = 1). Also shown are the bare GA two-particle spectra
which correspond to a convolution of the single-particle bands shown in Figure 6. In the d-wave sector
(panel a) one observes two features in the uncorrelated removal part. The lower (higher) energy one is due
to the removal of two particles from the band B1 (B2) whereas interband correlations (which have weight
in between) are suppressed. For extended s-wave fluctuations (panel b) the GA removal part has only
weight in the energy range which corresponds to the removal of two particles from B2.
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Figure 8. Order parameter fluctuations at q = 0 for d-wave (a) and extended s-wave symmetry (b).
Red: TDGA; Black: GA. The inset covers the energy range around the bound states of the removal spectra.
Also shown (blue dashed) is the TDGA result without spin and charge attractive interactions (g = 0) and
the strong coupling case (green dashed dotted) for g = 2.

Including correlations within the TDGA ladder scheme leads to the appearance of bound (ω < 0)
and antibound (ω > 0) states similar to the physics of local pairs in the Hubbard model as relevant for
e.g., Auger spectroscopy [112,117,118]. In case of the d-wave removal fluctuations the bound state forms
at the bottom of the convoluted band B1. As can be seen from the inset to Figure 8a this bound state exists
even without the inclusion of additional interactions in the spin and charge channel (g = 0). The effect of
JF, JAF and V is to push the bound state toward lower energy, thus enhancing the mixing with the B1 band
states and strengthening the d-wave correlations inside the active band. In fact, for g = 2 the bound state
is no more visible as a separate feature and instead one observes a convoluted B1 band with increased
d-wave correlations as compared to the g = 0 case.
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By contrast, the bound state in the extended s-wave removal part occurs below the convoluted lower
Hubbard band (LHB, cf. Figure 6). Also in this case inclusion of JF, JAF and V leads to a shift of the
bound state to lower energies and induces also a smaller satellite. Upon increasing the coupling (g = 2)
this satellite increases in intensity and approaches the energy of the LHB. However, the formation of the
extended s-wave bound state is accompanied by a strong suppression of two-hole band states in contrast
to the d-wave case so that there are no low energy band states with extended s-wave correlations.

5. Conclusions

In this work, we investigated the mechanism of phase separation in systems with strong electron
correlations. The perturbation series expansion around the atomic limit is a reasonable approach for the
description of such systems. Therefore, processes of atomic-level crossing occurring at certain values of
the chemical potential play a key role in the evolution of their band structure with doping. An extreme
non-rigidity of the bands near these peculiar chemical potentials leads to the appearance of regions of
negative electron compressibility. Hence these regions are an inherent property of all strongly correlated
systems. We have demonstrated their occurrence in the one-band Hubbard and Hubbard-Kanamori
models widely used for the description of cuprate perovskites, transition metal oxides, and some other
crystals. The existence of these regions gives rise to the charge instability—the segregation of the crystal
into electron-rich and electron-poor domains. The energy released by their formation has to be absorbed
by phonons. This leads to different lattice distortions in the above domains. In the case of a predominant
interaction of electrons with distortions of special symmetry, for example, with a softening phonon mode,
the separation into two domains acquires the shape of stripes.

For such textures we have investigated the frequency and momentum structure of pairing
correlations in the d-wave and extended s-wave channels. It turns out that depsite the underlying
quasi one-dimensional electronic structure these correlations are quite isotropic, similar to the isotropy
of spin fluctuations which arise from stripe textures, [114,115] which therefore is compatible with the
observation of an isotropic superconducting gap in stripe ordered compounds [35]. While the present
approach was restricted to the evaluation of pairing fluctuations on top of the normal state it would be
interesting in future work to investigate directly the structure of superconducting order in the symmetry
broken stripe state.
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