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Abstract: Both phenomena mentioned in the title were revealed by the electron paramagnetic
resonance (EPR) method. The first phenomenon was found in superconducting La metal with Er
impurities—the spin relaxation rate of the erbium impurities was sharply decreasing after transition
into the superconducting state instead of the expected, i.e., the well-known Hebel–Slichter peak.
The second unexpected phenomenon was discovered in the YbRh2Si2 compound—an excellent EPR
signal from the Yb ions was observed at temperatures below the Kondo temperature determined
thermodynamically, while according to the existing belief the EPR signal should not be observed at
these temperatures due to the Kondo effect. In this tribute to K. Alex Müller, I describe the nature of
the detected phenomena.
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1. Introduction

It is reasonable to remind readers that the electron paramagnetic resonance (EPR) study by Alex
Müller on transition metal ions in the SrTiO3 compound having the perovskite structure was the first
step on the way to the discovery of high-temperature superconductivity (HTSC) [1]. His similar EPR
study of different properties including the relation to their superconductivity in other perovskites gave
him an impulse to search for superconductivity with a higher critical temperature, see [2]. The result
is well known (1986). It is remarkable that Alex in his talk in 1969 at the International Conference
dedicated to the 25th year of the EPR discovery by E. K. Zavoisky at Kazan University described
advantages of the EPR method to study phase transitions, especially for their second type. For me, his
opinion was not new due to our meetings before at the AMPERE colloquiums.

Magnetic impurities in transition metals and intermetallic compounds were used a rather long
time ago as EPR probes to study the interactions and properties of these materials. It is useful for the
following discussion to give some necessary results of these investigations (details can be found in the
review by Barnes [3]).

In the case of a low concentration of impurities, their spin relaxation rate is defined mainly
by interactions with conduction electrons and phonons. The exchange coupling of impurities with
conduction electrons in the case of the axial symmetry can be presented by the following Hamiltonian:

Hex = −
∑

i

{
J⊥

[
Sx

i σ
x(ri) + Sy

i σ
y(ri)

]
+ J‖Sz

i σ
z(ri)

}
(1)

where J⊥, J‖ are the exchange integrals, Sx,y,z
i are the spin components of the impurity, and σx,y,z(ri) are

the spin density components of the conduction electrons at the ri position. The spin–lattice relaxation
rate of conduction electrons ΓσL is defined usually by their scattering on different defects of the lattice
and on phonons due to their spin–orbital and spin–phonon interactions. If this relaxation is effective
enough, the spin temperature of conduction electrons remains in the equilibrium state with other
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degrees of freedom. The EPR line width is defined in this case mainly by the relaxation rate ΓSS (the
so-called Korringa relaxation rate) due to the exchange interaction (Equation (1)). The spin–lattice
relaxation rate of impurities due to other interactions ΓSL in metals can be usually neglected. In the
simplest case where J⊥ = J‖ = J, the Korringa relaxation rate is given by the following equation:

ΓSS =
4π
} (ρF J)2kBT (2)

where ρF is the density of electronic orbital states at the Fermi energy level, kB is the Boltzmann
constant, and T is the temperature. The vice versa spin relaxation rate of conduction electrons to
the equilibrium state of impurities (the Overhauser relaxation rate) Γσσ and ΓSS satisfy the following
detailed balance equation:

Γσσ
ΓSS

=
χ0

Sg2
σ

χ0
σg2

S

; χ0
S = NS(S + 1)

(gSµB)
2

3kBT
, χ0

σ = ρF
(gσµB)

2

2
(3)

where χ0
S,χ0

σ are the spin susceptibilities of non-interacting impurities and the conduction electrons,
gS, gσ are the corresponding g-factors, and N and S are the concentration and spin of impurities,
respectively. However, a very different situation appears if the spin systems of impurities and conduction
electrons are strongly coupled and their Zeeman frequencies }ωS = gSµBH0, }ωσ = gσµBH0 are very
close (H0 is the external magnetic field). This case can be represented by the following relations:

ΓSS, Γσσ � ΓSL, ΓσL, |ωS −ωσ| (4)

In this situation, both spin systems cannot be considered in the equilibrium states. The motion
equations of magnetic impurities and conduction electrons are coupled by the additional coefficients
ΓSσ and ΓσS, which coincide in the isotropic case with Γσσ and ΓSS correspondingly. The spin relaxation
of the whole system is realized then by the two steps as follows: first, the spin systems of magnetic
impurities and conduction electrons achieve the common spin temperature and, second, they both
relax to the equilibrium state of the lattice (the electron bottleneck regime). The spin dynamics of both
spin systems in the bottleneck regime is also sufficiently changed since the collective spin excitations
of impurities and conduction electrons appear. We are interested in the EPR signal of the mode,
corresponding to the spin oscillations of impurities and conduction electrons in the same phase. In the
simplest case ωS = ωσ (gS = gσ) under the relaxation-dominated bottleneck regime, the spin relaxation
rate of this mode Γcoll can be presented as follows (neglecting ΓSL):

Γcoll = ΓSσB, B = ΓσL/(ΓσS + ΓσL) (5)

where B is the bottleneck factor—the less this factor, the stronger the bottleneck regime; in the case
B = 1, the bottleneck is absent. If the impurities’ concentration is large enough (χ0

S � χ0
σ), then Γcoll is

strongly reduced and proportional to temperature:

Γcoll '
ΓSσ
ΓσS

ΓσL =
χ0
σ

χ0
S

ΓσL = bT, b =
3kBρFΓσL

2NS(S + 1)
(6)

Since the spin–lattice relaxation of conduction electrons ΓσL does not depend on temperature,
the behavior according to (Equation (6)) imitates the Korringa relaxation rate (Equation (2)), despite the
bottleneck situation. Nevertheless, it should be mentioned that in the strongly anisotropic case (J⊥ , J‖)
it was found that the EPR line width narrowing is rather weak despite the bottleneck regime [4]. In the
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case of a parallel orientation of the external magnetic field to the symmetry axis for the spin relaxation
rate of the collective mode (instead of Equation (6)), roughly the following result was obtained:

Γcoll ∼
χ0
σ

χ0
S

ΓσL +
(J⊥ − J‖)

2(g2
⊥
+ g2

σ)

2J⊥ J‖g⊥gσ
ΓSσ (7)

If distances between impurities become relatively short, one should also take into account their
magnetic dipole–dipole interactions and the Ruderman–Kittel–Kasuya–Yosida (RKKY) spin–spin
interactions via conduction electrons. The latter indirect interaction between two impurities with spins
S1 and S2 at the distance R between them is as follows:

Hind(R) = Jind(S1S2) f (2kFR);

Jind = 9πZ2 J2

2EF
, f (x) = cos x

x3 −
sin x

x4 .
(8)

where kF is the electron wave vector at the Fermi surface, Z is the number of conduction electrons
per lattice atom, and EF is the Fermi energy. Although this interaction is rather long range, it
should be limited by the free path distance lp of the conduction electrons: f (x)→ f (x) exp(−R/lp) .
The dipole–dipole interactions give an additional broadening of the EPR signal from impurities, and
the RKKY interaction leads to its narrowing of the Anderson–Weiss type. This contribution to the EPR
line width is independent of temperature being responsible for the residual line width (at T = 0).

2. Peculiarities of the EPR Signal from Impurities in Superconductors

It is well known that NMR gives very important information about properties of superconductors
confirming the Bardeen–Cooper–Schrieffer (BCS) theory [5,6]. It was found that the Hebel–Slichter
peak appears due to a sharp increase of the nuclear spin relaxation rate to the superconducting electrons
via their hyperfine interactions HIσ:

HIσ = A
∑

i

{
Ix
i σ

x(ri) + Iy
i σ

y(ri) + Iz
i σ

z(ri)
}

(9)

According to the BCS theory, the observed jump of the Korringa-type nuclear spin relaxation
rate happens as a consequence of the sharp increase of the electron density states near the edge of the
superconducting energy gap and due to the coherence factor of the Cooper pairing. A further lowering
of temperature leads to an exponential decrease of the Korringa relaxation rate due to the thermal
depopulation of the electronic state above the mentioned gap. The BCS theory explains the NMR result
for the nuclear spin relaxation rate rather well (see Figure 1). In the case of superconductors of the
second type, an additional broadening of the NMR signal due to the inhomogeneous penetration of
the external magnetic field appears.
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Figure 1. The temperature dependence of the nuclear spin relaxation rates’ ratio in the 
superconducting and normal states of aluminum. The crosses and dots are results obtained in [6] and 
[7] accordingly. The solid line was obtained according to the Bardeen–Cooper–Schrieffer (BCS)
theory in [8] (after [5], Section 3.3).

Since the structure of the hyperfine interactions (Equation (9)) is identical to the exchange 
interactions of impurities (Equation (1)), it was quite natural to expect similar behavior of the 
Korringa relaxation rate of the localized electrons. The only thing to do, for the interpretation of the 
EPR signal from magnetic impurities, was to substitute the hyperfine parameter A for the exchange 
integral J. The first observations of the EPR signal from impurities in superconductors were similar 
to the NMR results [9,10]. It is clearly seen in Figure 2.  

Figure 2. The temperature dependence of the electron paramagnetic resonance (EPR) line width for 
the Gd3+ in the LaRu2 compound. The dots are the experimental results from [9,10], the solid line was 
calculated in [11] (after [11]). 

However, an opposite phenomenon was rather soon observed by the EPR on the Er3+ ions in 
lanthanum (b – phase)—the EPR line width, instead of an expected increase after transition into the 
superconducting state, was sharply narrowed [12]. Later, a more detailed investigation of such a 
behavior of the EPR signal was performed for the same system [13]. Experimental results of the EPR 
line width dependence as functions of the temperature for different concentration of the Er ions are 
shown in Figure 3. 

Figure 1. The temperature dependence of the nuclear spin relaxation rates’ ratio in the superconducting
and normal states of aluminum. The crosses and dots are results obtained in [6,7] accordingly. The solid
line was obtained according to the Bardeen–Cooper–Schrieffer (BCS) theory in [8] (after [5], Section 3.3).
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Since the structure of the hyperfine interactions (Equation (9)) is identical to the exchange
interactions of impurities (Equation (1)), it was quite natural to expect similar behavior of the Korringa
relaxation rate of the localized electrons. The only thing to do, for the interpretation of the EPR signal
from magnetic impurities, was to substitute the hyperfine parameter A for the exchange integral J.
The first observations of the EPR signal from impurities in superconductors were similar to the NMR
results [9,10]. It is clearly seen in Figure 2.
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Figure 2. The temperature dependence of the electron paramagnetic resonance (EPR) line width for the
Gd3+ in the LaRu2 compound. The dots are the experimental results from [9,10], the solid line was
calculated in [11] (after [11]).

However, an opposite phenomenon was rather soon observed by the EPR on the Er3+ ions in
lanthanum (β– phase)—the EPR line width, instead of an expected increase after transition into the
superconducting state, was sharply narrowed [12]. Later, a more detailed investigation of such a
behavior of the EPR signal was performed for the same system [13]. Experimental results of the EPR
line width dependence as functions of the temperature for different concentration of the Er ions are
shown in Figure 3.
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In order to understand this phenomenon, it was proposed that the superconducting transition
leads to a realization of the inequalities (Equation (4)) due to the increase of the spin relaxation
rate of impurities to the conduction electrons [14]. As a result, the spin relaxation process of the
total spin system transforms into the strong bottleneck regime with narrowing of the EPR signal.
The qualitative explanation of this effect can be given in the following way. The effective spin relaxation
rate in superconductors can be represented by the equation similar to Equation (5), with Bsc as the
superconducting bottleneck parameter:

Γsc
coll ' Γsc

SσBsc, Bsc = Γsc
σL/

(
Γsc
σS + Γsc

σL

)
(10)

In the case of Γsc
σS � Γsc

σL, the bottleneck regime is absent. The EPR line width in this situation is
defined by the Korringa relaxation rate with the Hebel–Slichter peak similar to the NMR results. In the
opposite case of Γsc

σS � Γsc
σL, we have the strong bottleneck regime and the effective spin relaxation rate

is proportional now to the spin–lattice relaxation rate of the superconducting electrons, as follows:

Γsc
coll '

(
Γsc

Sσ/Γsc
σS

)
Γsc
σL =

(
χsc
σ /χ0

S

)
Γsc
σL (11)

It was found earlier that the spin relaxation rate of superconducting electrons Γsc
σL becomes

temperature dependent and decreases by lowering the temperature [15]. The exchange integral of the
localized and the conduction electrons contained in the relaxation rates of the fraction (Equation (11))
is mutually canceled. The spin susceptibility of the superconducting electrons χsc

σ now also depends
on the temperature getting much lower due to the Cooper pairing. These qualitative arguments were
realized using the Feynman diagram technique, and it was shown that the Hebel—Slichter peak is
absent in the case of the strong bottleneck regime [16].

The detailed temperature dependence of the effective spin relaxation rate of magnetic impurities
in superconductors was investigated in [11] for different values of the bottleneck parameters Bn in the
normal state of superconductors. The result is shown in Figure 4 for the normalized effective spin
relaxation rate Rsc

coll = Γsc
coll/Γn

coll, with Γn
coll as the effective spin relaxation rate in the normal state and

for the particular set of the object parameters.
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The important role of the bottleneck regime in the normal state for the temperature dependence
of the spin relaxation rate and, therefore, for the EPR signal from impurities in the superconducting
state is now clearly seen. It must be mentioned that, in the case of nuclear spins, the bottleneck regime
cannot appear because of a great difference in the resonance frequencies of the NMR and the EPR and
very small nuclear spin susceptibility.

Another important contribution to the narrowing process of the EPR signal from impurities can
arise from the transformation of the RKKY interaction due to the superconducting transition. In the
superconducting state, in addition to the usual expression (Equation (8)), a non-oscillating long-range
term Hsc

ind of antiferromagnetic character appears [17]. Since the corresponding expression is rather
cumbersome, we mention only that this term slowly varies with distance and has the range of the order
of the superconducting coherence length ξ, roughly f sc(R) ∼ (1/R) exp(−R/ξ). The typical value of
the coherence length is rather large, i.e., ξ � a0, a0 is the lattice spacing. The detailed theory of the
RKKY narrowing of the EPR signal in superconductors was developed in [18]. This type of the EPR
line width narrowing has to be taken into account especially in the case of a weak bottleneck regime
when interpreting the EPR results in superconductors.

3. The EPR Signal below the Kondo Temperature

The Kondo effect appears in metals with magnetic impurities in the case of their antiferromagnetic
exchange interactions with conduction electrons (J < 0). To consider scattering of conduction electrons
by the impurity at the ri = 0 site, we use the secondary quantization for the conduction electrons in
(Equation (1)):

H0
ex = −

1
2

∑
k,k

′

[
J‖Sz

(
c+k↑ck

′

↑
− c+k↓ck

′

↓

)
+ J⊥S−

(
c+k↑ck

′

↓
+ S+c+k↓ck

′

↑

)]
(12)

where S± = Sx ± iSy and c+k↓, ck
′

↑
are operators of creation and annihilation of electrons with the

corresponding wave vectors and spin orientations. The probability of the electron transition from
the state |k1 ↑〉 into the state |k2 ↓〉 in first-order perturbation theory is defined by the matrix element
〈k2 ↓|H0

ex|k1 ↑〉 = −J⊥S+/2. To obtain the second order for this matrix element, it is convenient to use
the perturbation theory in the operator form [19]. We consider the energy band symmetric relative to
the Fermi level, the electron energy ξk measured from the latter in the range (−W, W). To simplify
calculations, it is reasonable to use the following case: kBT � W and S = 1/2, see [20]. Taking
into account the second-order contribution δH0

ex, one can obtain the following expression for the
isotropic symmetry:

〈k2 ↓|H0
ex + δH0

ex|k1 ↑〉 ≈ −(JS+/2)
{
1− ρF J ln[W/(kBT)]

}
(13)

It is clear that in the case of J < 0 the matrix element increases with the lowering of temperature.
The second term starts to exceed the first one approximately at the following temperature:

TK ∼ (W/kB) exp[−1/(ρF|J|)] (14)

which bears the name of Kondo, who obtained these results in order to explain the temperature
dependence of the resistivity [21]. The Kondo effect also becomes apparent in the temperature
dependences of the specific heat, magnetic susceptibility, and the EPR signal from magnetic impurities
(see [22]).

One can see that at the temperature T→ 0 the matrix element goes to infinity. It means that the
second order of the perturbation theory is not enough. For isotropic symmetry, it has been shown
that taking into account all orders of the logarithmic terms leads to very important consequences, i.e.,
below the Kondo temperature the magnetic moments of impurities are screened by the cloud of the
conduction electrons and the EPR line width is of the TK order (see [23,24]). These arguments created a
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widely accepted opinion that below the Kondo temperature the EPR signal cannot be observed on the
localized electrons in metals.

It was a great surprise for many experts to observe the EPR signal from the Yb3+ ions in the
YbRh2Si2 compound at the temperature T = 1.6 K and even below, whereas its Kondo temperature is
TK = 25 K [25,26], see Figure 5. It was also especially unexpected since this compound is a Kondo
lattice system with heavy fermions.
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An explanation of this phenomenon can be given on the basis of similar reasons leading to the
disappearance of the Hebel–Slichter peak in superconductors, described in the previous Section 2.
Since the matrix element (Equation (13)) strongly increases below the Kondo temperature, the same
should happen with the Korringa relaxation rate ΓSS. As a result, the bottleneck regime and the collective
spin excitation of the Yb3+ ions with the conduction electrons should appear. Then, the effective spin
relaxation rate can be described by Equation (6), where the exchange integral J is absent, that leads to a
sufficient reducing of Γeff and the corresponding narrowing of the EPR line width.

However, doubts about this scenario can appear due to the extremely anisotropic g-factors of the
Yb3+ ions (g⊥ = 3.56, g‖ = 0.17). It is related to the lowest Kramers doublet as a consequence of the
tetragonal symmetry of the crystal electric field. One can expect that exchange integrals J⊥ and J‖ have
similar anisotropy and that, for the effective spin relaxation rate, one should use Equation (7) instead
of Equation (6). It can lead to an increase of the EPR line width instead of its narrowing. In order to
understand the real situation, it was necessary to take into account all the orders of the perturbation
theory in calculations of the effective spin relaxation rate for the anisotropic case.

To solve this task, it was convenient to use the method known as “Poor Man’s Scaling” developed
by Anderson [27]. The main idea of this method was to incorporate the total contribution from the
high energy levels into the renormalized parameters of the starting Hamiltonian, in our anisotropic
case J⊥ → JR

⊥
and J‖ → JR

‖
. The second-order contribution for the initial anisotropic parameters is

the following:

δJ‖ = ρF J2
⊥ ln

( W
kBT

)
, J⊥δJ⊥ = J‖δJ‖ (15)

According to Anderson’s idea, we divide the energy band into the low and high energy levels:

0 < |ξk| < W̃, W̃ < |ξk| < W (16)
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For the renormalized contributions, we can obtain the following equations, representing the scaling law:

δ̃J‖ = ρF J̃2
⊥

[
ln

(
W

kBT

)
− ln

(
W̃

kBT

)]
= ρF J̃2

⊥
ln

(
W
W̃

)
,

J̃⊥δ̃J⊥ = J̃‖δ̃J‖.
(17)

These equations are valid in the range (kBT ≤ W̃ ≤W) for the running band value W̃. An integration of
the second equation gives the following:

J̃2
⊥ − J̃2

‖
= Const =J2

⊥ − J2
‖

(18)

The last equality can be accepted since this equation is valid for any values of W̃ in the range mentioned
above, including W̃ = W. To solve the first Equation (17), we consider it for the case of a small
difference W − W̃ = δW̃. Introducing the dimensionless values U⊥ = ρF J⊥ and U‖ = ρF J‖, we obtain
from Equations (17) and (18) the following equation:

δŨ‖ = Ũ2
⊥

ln
(

W̃+δW̃
W̃

)
= Ũ2

⊥

δW̃
W̃

=
(
Ũ2
‖
+ U2

0

)
δW̃
W̃

,

Ũ2
⊥
− Ũ2

‖
= U2

0 = ρF
(
J2
⊥
− J2
‖

)
.

(19)

The integration of this differential equation was performed in the following ranges of the running
values: U‖ ≤ Ũ‖ ≤ UR

‖
and kBT ≤ W̃ ≤W, where UR

‖
is the final result of the renormalization. The result

for renormalized parameters can be represented in a simple form as follows:

UR
‖
= U0 cotϕ, UR

⊥
= U0/ sinϕ;

ϕ = U0 ln
(

T
TGK

)
, TGK = W exp

[
−

1
U0

arc cot
U‖
U0

]
.

(20)

The parameter TGK is a scaling invariant which characterizes properties of the system at low
temperatures. Its index GK reminds us that the ground electronic state of the Yb3+ ions is a Kramers
doublet. In the case of J⊥ = J‖, this parameter coincides with the Kondo temperature (Equation (14)).
The renormalized Hamiltonian of the exchange interaction between impurities and conduction electrons
is obtained simply by substituting in Equation (12) of the initial exchange integrals by the renormalized
ones: J⊥ → JR

⊥
and J‖ → JR

⊥
.

Due to the extremely small g‖-factor, most of the EPR experiments on YbRh2Si2 were performed in
a geometry where both the static and alternating magnetic fields were perpendicular to the tetragonal
axis of the crystal. In this case, the renormalized Korringa and Overhauser relaxation rates are
the following:

ΓR
SS =

π
}U2

0kBT
(
cot2 ϕ+

3
4

)
, ΓR

σσ = ΓR
SS

g⊥
2gσρFkBT

. (21)

Here, we neglected the molecular field appearing due to the RKKY interactions. One can see that
both the relaxation rates are logarithmically divergent at temperatures approaching TGK from above
as follows: ΓR

SS, ΓR
σσ ∝ 1/ ln2(T/TGK). Nevertheless, such a behavior does not confirm the belief

mentioned above that an observation of the EPR signal is impossible below the Kondo temperature
because of its huge line width. This behavior just points out the strong coupling between the spin
systems of ions and conduction electrons, and we cannot consider them separately.

The renormalized coupling coefficients for their equations of motion were found to be as follows:

ΓR
σS =

π
4}U2

0
kBT

sin2(ϕ/2)
, ΓR

Sσ =
g⊥

2gσρFkBT
ΓR
σS (22)

These parameters are also divergent at T→ TGK in a way similar to Equation (21), ΓR
Sσ, ΓR

σS ∝

1/ ln2(T/TGK). The spin relaxation rates of both spin systems to the lattice (thermal bath) ΓSL and
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ΓσL remain the same. The result for the relaxation rate of the resonant collective mode at T > TGK is
the following:

ΓR
coll = ΓSL + Γeff

σL + Γeff
SS;

Γeff
σL = ΓσL

ΓR
SσΓR

σS

(ΓR
σσ)

2 , Γeff
SS =

(ΓR
SS)

2
−(ΓR

σS)
2

ΓR
SS

.
(23)

The most interesting aspect is the behavior of the relaxation rate at temperatures approaching TGK

from above. In this temperature region, we have U0 ln(T/TGK) = ϕ→ 0 . After substitution of the
renormalized relaxation rates (Equations (21) and (22)) into Equation (23), we obtain the following
result for the effective parameters:

Γeff
σL(ϕ� 1) ≈

(
2gσ
g⊥

ρFkBT
)
ΓσL, Γeff

SS(ϕ� 1) ≈
π
8}U4

0kBT ln2
(

T
TGK

)
(24)

It is wonderful that all divergent contributions became mutually canceled even in the case of
anisotropic symmetry. Moreover, the renormalized Korringa relaxation rate of the single impurity
(Equation (21)) was transformed in the collective mode in such a way that, instead of a divergence, it
goes to zero at T→ TGK (Equation (24)). Actually, this result explains the existence of the EPR signal
at very low temperatures in the presence of the Kondo effect. As a matter of fact the Kondo effect helps
to observe EPR in compounds with a high concentration of magnetic impurities and especially in the
Kondo lattices, what is contrary to the common belief [28].

For a detailed comparison of the theory with experimental results, it is necessary to take into account
additional interactions of the magnetic impurities and the conduction electrons like spin–phonon,
magnetic dipole–dipole, and RKKY interactions and also an inhomogeneity of the static external
magnetic field. Some results of these investigations can be found in the review [20].

4. Conclusions

The described very different phenomena appearing in different solids at very different phase
transitions have a common reason—these transitions strengthen the electron bottleneck regime and
stimulate the formation of collective spin excitations of localized and conduction electrons. As a
result, we have rather paradoxical situations depending on the concentration of magnetic impurities
in superconductors and normal metals. The reason the Hebel–Slichter peak appeared in the NMR
experiments at the transition into the superconducting state turned out to be also the reason for its
absence in the EPR experiments in superconductors with impurities in the case of their high enough
concentrations. The same paradox happens in the case of the Kondo effect, allowing us to observe the
EPR signal of the localized electrons below the Kondo temperature instead of it being blocked.

The EPR study of superconducting cuprates was more difficult because of unusually strong
spin–phonon interactions of the Cu2+ ions and rather complicated results of the doping process.
Nevertheless, Alex Müller was very interested in the EPR investigations of their HTSC properties.
To continue this work, he invited an experienced experimenter, A. Shengelaya, to Zürich; I was also
later invited for a theoretical support of these investigations. Some of the results are described in the
review [29].

Concerning the possibilities of the EPR method, I cannot resist the temptation to quote the
concluding words (published already in [29]) of Alex Müller’s plenary lecture at the International
Conference held in Kazan, dedicated to the 60th year of the EPR discovery:

“60 years after the discovery of EPR in Kazan the method is able to contribute at the forefront in
condensed matter physics, such as high temperature superconductivity. This is especially so if properly
employed, and the results theoretically interpreted in a scholar way, as well as relate them to other
important experiments. Because the EPR spectrometers used are standard, and low cost as are the
samples, the research budgets are low; this puts the scientist in a serene mood without stress.”
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It seems that the revealed two phenomena described in this communication also confirm these
words and one can expect a similar role of the EPR method in future investigations.

Funding: This work received no external funding.

Acknowledgments: I am pleased to acknowledge Y.N. Proshin for reading the manuscript, offering useful
comments, and helping to improve it.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Müller, K.A. Paramagnetic resonance of Fe3+ in single crystals of SrTiO3. Helv. Phys. Acta 1958, 31, 173–204.
(In German)

2. Müller, K.A.; Kool, T.W. (Eds.). Properties of Perovskites and Other Oxides; World Scientific Publishing Co. Pte. Ltd.:
Singapore, 2010.

3. Barnes, S.E. Theory of electron spin resonance of magnetic ions in metals. Adv. Phys. 1981, 30, 801–938.
[CrossRef]

4. Kochelaev, B.I.; Safina, A.M. Electron-Bottleneck Mode for Magnetic Impurities in Metal in the Case of
Anisotropic Exchange Interactions. Phys. Solid State 2004, 46, 226–230. [CrossRef]

5. Schrieffer, J.R. Theory of Superconductivity; W.A. Benjamin: Menlo Park, CA, USA, 1964.
6. Hebel, L.C.; Slichter, C.P. Nuclear Spin Relaxation Rate in Normal and Superconducting Aluminium.

Phys. Rev. 1959, 113, 1504–1519. [CrossRef]
7. Redfield, A.G. Nuclear Spin Relaxation Time in Superconducting Aluminum. Phys. Rev. Lett. 1959, 3, 85–86.

[CrossRef]
8. Hebel, L.C. Theory of Nuclear Spin Relaxation in Superconductors. Phys. Rev. 1959, 116, 79–81. [CrossRef]
9. Rettori, R.; Davidov, D.; Chaikin, P.; Orbach, R. Magnetic Resonance of a Localized Magnetic Moment in the

Superconducting State: LaRu2:Gd. Phys. Rev. Lett. 1973, 30, 437–440. [CrossRef]
10. Davidov, D.; Rettori, R.; Kim, H.M. Electron-spin resonance of a localized moment in the superconducting

state: BRu2:Gd (B=La,Ce,Th). Phys. Rev. B 1974, 9, 147–153. [CrossRef]
11. Tagirov, L.R.; Trutnev, K.F. Spin kinetics and EPR in superconductors. J. Phys. F Met. Phys. 1987, 17, 695–713.

[CrossRef]
12. Alekseevsky, N.E.; Garifullin, I.A.; Kochelaev, B.I.; Kharakhashyan, E.G. Electron resonance with localized

magnetic moments of Er in superconducting La. Sov. Phys. JETP Lett. 1973, 18, 189–191.
13. Alekseevsky, N.E.; Garifullin, I.A.; Kochelaev, B.I.; Kharakhashyan, E.G. Electron paramagnetic resonance

for localized magnetic states in the superconducting La–Er system. Sov. Phys. JETP 1977, 45, 799–804.
14. Kochelaev, B.I.; Kharakhashyan, E.G.; Garifullin, I.A.; Alekseevsky, N.E. Electron paramagnetic resonance of

localized moments in a type-II superconductor. In Proceedings of the 18th AMPERE Congress, Nottingham,
UK, 9–14 September 1974; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1975; pp. 23–24.

15. Maki, K. Theory of Electron-Spin Resonance in Gapless Superconductors. Phys. Rev. B 1973, 8, 191–199.
[CrossRef]

16. Kosov, A.A.; Kochelaev, B.I. Electron paramagnetic resonance on the localized magnetic moments in
superconductors. Sov. Phys. JETP 1978, 47, 75–83.

17. Kochelaev, B.I.; Tagirov, L.R.; Khusainov, M.G. Spatial dispersion of the spin susceptibility of conduction
electrons in superconductors. Sov. Phys. JETP 1979, 49, 291–301.

18. Kochelaev, B.I.; Tagirov, L.R. “Exchange-Field-Narrowing” process for the inhomogeneously broadened EPR
lines in superconductors. Solid State Commun. 1985, 53, 961–966. [CrossRef]

19. Bogolyubov, N.N.; Tyablikov, S.V. On an application of perturbation theory to the polar model of a metal.
Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki 1949, 19, 251–255.

20. Kochelaev, B.I. Magnetic properties and spin kinetics of a heavy-fermion Kondo lattice. Low Temp. Phys.
2017, 43, 93–103. [CrossRef]

21. Kondo, J. Resistance Minimum in Dilute Magnetic Alloys. Progr. Theor. Phys. 1964, 32, 37–49. [CrossRef]
22. Baberschke, K.; Tsang, E. ESR Study of the Kondo Effect in Au:Yb. Phys. Rev. Lett. 1980, 45, 1512. [CrossRef]
23. Abrikosov, A.A. Electron scattering on magnetic impurities in metals and anomalous resistivity effects.

Physics 1965, 2, 5–20. [CrossRef]

http://dx.doi.org/10.1080/00018738100101447
http://dx.doi.org/10.1134/1.1649414
http://dx.doi.org/10.1103/PhysRev.113.1504
http://dx.doi.org/10.1103/PhysRevLett.3.85
http://dx.doi.org/10.1103/PhysRev.116.79
http://dx.doi.org/10.1103/PhysRevLett.30.437
http://dx.doi.org/10.1103/PhysRevB.9.147
http://dx.doi.org/10.1088/0305-4608/17/3/014
http://dx.doi.org/10.1103/PhysRevB.8.191
http://dx.doi.org/10.1016/0038-1098(85)90469-7
http://dx.doi.org/10.1063/1.4974187
http://dx.doi.org/10.1143/PTP.32.37
http://dx.doi.org/10.1103/PhysRevLett.45.1512
http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.2.5


Condens. Matter 2020, 5, 56 11 of 11

24. Suhl, H. Dispersion Theory of the Kondo Effect. Phys. Rev. 1965, 138, 515–522. [CrossRef]
25. Sichelschmidt, J.; Ivanshin, V.A.; Ferstl, J.; Geibel, C.; Steglich, F. Low Temperature Electron Spin Resonance

of the Kondo Ion in a Heavy Fermion Metal: YbRh2Si2. Phys. Rev. Lett. 2003, 91, 156401. [CrossRef]
26. Sichelschmidt, J.; Wykhoff, J.; Krug von Nidda, H.-A.; Ferstl, J.; Geibel, C.; Steglich, F. Spin dynamics of

YbRh2Si2 observed by electron spin resonance. J. Phys. Condens. Matter 2007, 19, 116204. [CrossRef]
27. Anderson, P.W. A poor man’s derivation of scaling laws for the Kondo problem. J. Phys. C Solid State Phys.

1970, 3, 2436–2441. [CrossRef]
28. Kochelaev, B.I.; Belov, S.I.; Skvortsova, A.M.; Kutuzov, A.S.; Sichelschmidt, J.; Wykhoff, J.; Geibel, C.;

Steglich, F. Why could electron spin resonance be observed in a heavy fermion Kondo lattice? Eur. Phys. J. B
2009, 72, 485–489. [CrossRef]

29. Kochelaev, B.I. Electron Paramagnetic Resonance in Superconducting Cuprates. In Springer Series in Materials
Science 255: High-Tc Copper Oxide Superconductors and Related Novel Materials Dedicated to Prof. K. A. Müller on
the Occasion of His 90th Birthday; Bussmann-Holder, A., Keller, H., Bianconi, A., Eds.; Springer: New York,
NY, USA, 2017; pp. 165–175.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRev.138.A515
http://dx.doi.org/10.1103/PhysRevLett.91.156401
http://dx.doi.org/10.1088/0953-8984/19/11/116204
http://dx.doi.org/10.1088/0022-3719/3/12/008
http://dx.doi.org/10.1140/epjb/e2009-00386-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Peculiarities of the EPR Signal from Impurities in Superconductors 
	The EPR Signal below the Kondo Temperature 
	Conclusions 
	References

