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Abstract: In this tribute to K Alex Müller, I describe how his early insights have influenced future
decades of research on perovskite ferroelectrics and more broadly transition metal oxides (TMOs) and
related quantum materials. I use his influence on my own research journey to discuss impacts in three
areas: structural phase transitions, precursor structure, and quantum paraelectricity. I emphasize
materials functionality in ground, metastable, and excited states arising from competitions among
lattice, charge, and spin degrees of freedom, which results in highly tunable landscapes and complex
networks of multiscale configurations controlling macroscopic functions. I discuss competitions
between short- and long-range forces as particularly important in TMOs (and related materials classes)
because of their localized and directional metal orbitals and the polarizable oxygen ions. I emphasize
crucial consequences of elasticity and metal–oxygen charge transfer.
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1. Introduction

This article is a personal perspective on aspects of perovskites, particularly transition metal
oxides (TMOs). It is written through the (limited) lens of my own research journey, as a tribute to
K. Alex Müller and the lessons I have accumulated from his prescient insights into this remarkably
tunable class of materials. I first met Alex during a several-month visit to IBM Ruschlikon in 1977 to
collaborate on nonlinear excitations and structural phase transitions, on which I had begun research
in 1974 with Jim Krumhansl at Cornell. I have been privileged by numerous interactions with Alex
since then. Science advances relentlessly, but some pioneers are able to perceive the truth beyond the
limits of current techniques. Alex is such an individual. I similarly recall many conversations with
Heinrich Rohrer during the 1977 visit concerning prospects for Scanning Tunneling Micsoscopy (STM).
In particular, discommensurations were only indirectly suggested by k-space scattering techniques at
that time and were a topic of strong disagreements regarding data interpretation. STM directly imaged
these structures, resolved many of the disagreements, and contributed to important future research on
commensurate–incommensurate phase transitions.

In this spirit of important insights, I will highlight just three (among many in his illustrious career)
from Alex in the context of his decades of research on TMOs, including ferroelectrics (SrTiO3, BaTiO3,
etc.) and of course cuprate superconductors. These insights have resonated though research history as
experimental, theoretical, and simulation capabilities have improved.

(i) Structural phase transitions

Neutron and X-ray scattering in the 1970s were beginning to have sufficient resolution to
suggest two low-frequency scattering components as the structural phase transition was
approached: “central peaks” and ”soft modes.” Alex recognized the need for judicious experiments
to probe different timescales [1] and was thereby able to separate phonon oscillations from
slow cluster dynamics. This was powerful input to theory and simulation attempting to
distinguish mean-field self-consistent phonon approximations from true critical behavior in
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double-well Landau–Ginzburg phase-transition theories. Advanced time-resolved experiments
have now become essential tools in all classes of coupled charge–lattice–spin–orbital materials,
including TMOs.

(ii) Precursor Structure

Local structure measurements and inferences of the 1970/80s had relatively poor resolution
(spectroscopy, NMR, diffuse scattering, etc.). However, Alex used them [1] to suggest that local
distortions appear as precursor structure as Tc is approached in ferroelectric TMOs. Importantly,
he showed that these precursors onset at temperatures significantly beyond critical regimes above
and below Tc, and are tunable with strain, electric fields, etc. Fifty years later, I can suggest that
many of these properties in TMOs and related materials are elastic microstructures. Indeed, as I
discuss below, tuning phases and functions through elasticity is now emerging as an important
focus in quantum materials [2].

(iii) Quantum Paraelectricity

Unlike, e.g., BaTiO3, SrTiO3 does not undergo a ferroelectric phase transition, but one can be
induced with appropriate doping or pressure (strain). Alex understood the importance of this and
advocated the concept of quantum tunneling between orientations (e.g., octahedral orientations),
which had to be frozen out to stabilize a permanent ferroelectric state. He and others created
the term “quantum paraelectric” to describe this situation and designed elegant experiments to
probe the dynamics [2,3]. This concept now has many diverse analogs, including the internal
dynamics of small polarons (below) and excitons, Kondo spin singlets, dynamic magnetism in Pu,
and concepts for computational qubits such as Josephson junctions.

In the next sections, I will describe connections of these lessons from Alex to some of my own
research on TMOs and related materials.

2. TMOs and Their Lattice

It has long been appreciated (see, e.g., [4]) that TMOs exhibit a striking variety of broken-symmetry
ground states, including magnetic, Peierls, Mott, spin-Peierls (SP), charge density wave, (CDW) bond
order wave (BOW), superconductivity, etc. We can ascribe this variety to sensitive coupling among
degrees of freedom—spin, charge, orbital, and lattice. Much research over recent decades has
emphasized the metal d-orbitals, arguing that since these are substantially localized, competitions
occur between localized states or flat electronic k-space bands, and, through hybridization, wider
(e.g., Op) bands. Many fascinating electronic/magnetic many-body states emerge from modeling these
competitions, some of which surely occur in actual current, future, or engineered materials. However,
here I will deliberately play the devil’s advocate and emphasize the explicit importance of the lattice
degrees of freedom, the oxygen ion polarizability, and functional multiscales beyond asymptotic
scaling limits.

It is a fascinating feature of science sociology that “solid-state and correlated electron physics”
and “materials” research separated so much in the last several decades. In part, this was the result of
experimental, theoretical, and simulation limitations. For example, quantum mechanics could only be
implemented for periodic (and small supercell) structures. This led to the creation of a comprehensive
conceptual framework in which lattice variations were a linear perturbation used to describe extended
phonons, and similarly magnons, etc. In contrast, materials science recognized the functional role of
microstructure (dislocations, grains, twinning, etc.) but often omitted important entropic contributions
and built interpretative frameworks around the observed microstructure. This situation has begun to
change because of decisive advances in experimental probes and their resolution capabilities (real-space,
k-space, time, frequency) and concomitant advances in computing power (for all-atom system sizes,
ab initio electronic methods, non-adiabatic effects, etc.), as well as data analytics and visualization at
scale. Equally importantly, the technologies now based on nanoscales and on active surfaces, internal
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surfaces, and multilayer interfaces require the unification of the disciplines and the explicit roles of all
the degrees of freedom and their coupling.

Under-representing the functional role of the lattice is an oversight for several reasons:

1. Although the d-orbital (and even more so, the f-orbital) is indeed electronically localized, resulting
in localization–delocalization electronic competition, it is also highly directional. This results in
symmetry constrained unit cell structural distortions and a “network” competition for ground
and metastable structural patterns (multiscale “landscapes”). This is not the case for extended and
symmetrical (e.g., s) orbital materials, where dynamic screening dominates. The constraints are
the origin of measured strongly anisotropic elastic constants in these materials, with intrinsically
coupled configuration scales from unit cell to long-range, optic to acoustic—and hence high
tunability by both local and global perturbations (doping, pressure, external fields).

2. Neglecting or “integrating out” the oxygen degrees of freedom in TMOs and related materials is
a significant over-simplification for many properties. The O polarizability and metal–O charge
transfer (and associated bond length/buckling/rotation changes) must be treated explicitly [5].
Pioneers such as Heinz Bilz (Alex’s professional peer and colleague) appreciated this by
augmenting “shell models” of the TMO electronic structure to capture effects of M–O charge
transfer and polarizability [6]. We return to such “nonlinear shell models” below, including
a successful prediction of the observed quantum paraelectric to ferroelectric transition in
O18-doped SrTiO3.

3. The electron–lattice coupling strength is typically not weak in TMOs. It may appear so if measured
by conventional spatial averaging techniques. However, because of the delicate energy balances
affecting electronic/magnetic orders, even rather weak average electron–lattice coupling can
dominate globally and locally. We illustrate this with examples below. In addition, exotic (e.g.,
topological) singularities are usually energetically costly, and nature avoids or smooths them by
engaging additional weaker degrees of freedom—as in dislocations, vortices, superconducting
flux line cores, etc. Even when the globally averaged el-lattice strength is weak, it can be locally
strong around dopants and defects. The formation of small (coupled spin–charge–lattice) polarons
is an important example that we return to below. A finite densities of such polarons can order into
secondary mesoscopic patterns (clumps, stripes, filaments, checkerboard phases, etc.) because of
the long-range, directional elasticity noted above. Small polaron center-of-mass dynamics is very
slow (because of Peierls–Nabarro lattice pinning), but unless dissipation is strong, their internal
dynamics is a fundamental quantum tunneling property, and the internal charge oscillation
is necessarily accompanied by non-adiabatic lattice (e.g., bond–length), and sometimes spin,
oscillation. This coupled charge–lattice dynamics is familiar elsewhere, including quantum
chemistry (e.g., [7]), “macroscopic quantum tunneling” [8], and perhaps also in the context of
quantum paraelectric tunneling [9].

4. Lattice anharmonicity is typically important in TMOs and assuming linear lattice dynamics is
incomplete. Anharmonicity is the result of slaving among lattice, electronic, and magnetic degrees
of freedom, proximity to a structural phase transition, impurities, interfaces, surfaces, etc. The M–O
charge transfer is a particularly important source of nonlinear lattice dynamics. Among many
interesting emergence and complexity consequences are multi-phonon bound states (“intrinsic
local modes,” ILMs). Modern neutron scattering has indeed resolved modes outside linear
phonon bands and attributed them to ILMs (e.g., [10]). Below, we will introduce ILMs embedded
self-consistently in a sea of extended modes as a description of, e.g., relaxor ferroelectrics.

3. Small Polarons, Filamentary Landscapes, and Local Modes

As noted, TMOs as a materials class exhibit a remarkable variety of often competing broken
symmetry ground states, which have been the subject of intensive research using a huge range of
experimental, numerical, and analytical techniques [11,12]. For example, ab initio (e.g., density
functional theory) and even fully non-adiabatic quantum electronic calculations have advanced
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significantly in recent years because of great strides in algorithms and computational power, e.g., [13,14].
However, they remain limited for many properties by technique-imposed assumptions such as system
or supercell size, periodicity, treatment of polarizability, adiabaticity, etc. This means that accurate
TMO description remains a challenge for the inclusion of O polarizability and multiscale (including
elastic) lattice patterns. We are typically driven to separate the mechanisms creating mesoscopic
structures (e.g., stripes) from modeling the signatures and functionality of those structures. I will give
examples of both of these steps below.

Some useful insights can be gained from real-space Hartree–Fock (HF) numerical solutions of 3-band
(M–d and O–p) M–O charge and spin models, including lattice degrees of freedom treated adiabatically
(e.g., in a Su–Schrieffer–Heeger inter-site form for el–lattice coupling). For example, [15] uses such a
model Hamiltonian with parameters appropriate to a Cu–O plane but allowing parameter strengths
(electronic hopping, electron correlation, el–lattice coupling) to vary. A variety of broken-symmetry
ground states are found numerically—including CDW, BOW, SP, AF, co-existing SP and anti-ferromagnet
(AF)—as magnetism, covalency, and lattice distortion compete. In particular, as observed in Section 2,
relatively weak el–lattice coupling is found to induce a zero-temperature ground state transition.

The Hamiltionian studied in [15] is

=
∑

i, j,σ
ti j({uk})c†iσc jσ +

∑
i,σ

ei({uk})c†iσciσ +
∑
i

Uic†i↑c
†

i↓ci↓ci↑

+
∑
〈i, j〉,σ,σ′ Ui jc†iσc

†

jσ′c jσ′ciσ +
∑

l
1

2Ml
p2

l +
∑

k,l
1
2 Kklukul.

(1)

Here, c†iσ creates a hole with a spin σ at the site i in the Cu dx2−y2 or the O px,y orbital. In the lattice part,
for simplicity only, the motion of O ions along the Cu–O bonds are includeed, and it is assumed that only
diagonal components of the spring constant matrix are finite, Kkl = δk.lK. For electron–lattice coupling,
the nearest neighbor Cu–O hopping is modified by the O-ion displacement uk as ti j = tpd ± αuk, where
the +(−) applies if the bond shrinks (stretches) with positive uk. The Cu-site energy is assumed to
be modulated by the O-ion displacements uk linearly, ei = εd + β

∑
k
(±uk), where the sum extends

over the four surrounding O ions; here, the sign takes +(−) if the bond becomes longer (shorter) with
positive uk. The other electronic matrix elements are O–O hopping

(
−tpp

)
for ti j, O-site energy

(
εp

)
for ei, with ∆ = εp − εd, Cu-site (Ud) and O-site

(
Up

)
repulsions for Ui, and the nearest-neighbor

Cu–O repulsion
(
Upd

)
for Ui j. Parameter values are used in regimes relevant to the copper oxides

from local density approximation (LDA) calculations: tpd = 1, tpp = 0.5, ∆ = 3, Ud = 8, Up = 3,

and Upd = 1. These parameters and λα = λb = 0 are used as a reference parameter set: λα = α2/
(
Ktpd

)
,

λβ = β2/
(
Ktpd

)
. λα, λβ, Upd, and Ud are varied and ∆ changed with Upd and Ud so as to maintain a

constant renormalized energy difference between Cu and O levels in the undoped case. A comparison
of results for local lattice distortion and reduced Cu magnetic moments accompanied by added holes
with generalized, inhomogeneous LDA calculations is consistent, e.g., with values of λα = 0.28, λβ = 0,

and K = 32tpd/Å
2
.

It is natural to examine whether electron or hole polarons result upon doping into the various
broken-symmetry ground state: a generalization of the much studied Holstein polarons (see [16])
to coupled spin–charge–lattice local quenching of the broken symmetry. As mentioned above, among the
essential properties of polarons (and excitons) are the center-of-mass translation of the composite local
deformation (resulting in polaronic electronic bands) and the internal (charge, lattice, spin) dynamics
within the composite wave function. “Large” polarons (deforming many lattice sites coherently)
have wide electronic k-space bands and incoherent internal dynamics, and they can translate (tunnel
or, with temperature, diffuse) relatively easily, scattering off phonons, impurities, etc. In contrast,
“small” polarons (deforming few lattice sites) have narrow electronic bands and transport very slowly
from site to site by quantum tunneling or thermal hopping: they are easily pinned by the lattice’s
Peierls–Nabarro barrier, weak impurities, surfaces, or fields. However, the small polaron internal
dynamics exhibit coherent quantum tunneling oscillations. Again, accurate quantum simulations,
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even for model Hamiltonians, are limited to very small systems, despite modern computing power
and efficient algorithms (e.g., [17]). Nevertheless, we can gain important insights by studying the limit
of a single charge added to, e.g., a single O–M–O unit (an example of a Boson–Fermion composite
and relevant to small polarons on cuprates, bismuthates, and nickelates, for example). This limit is,
numerically, exactly solvable, including fully non-adiabatic (i.e., multi-quanta) treatment of lattice,
charge, and spin. This limit is also relevant, since the extremely slow center-of-mass translation can
be essentially decoupled. As described in detail in [18], the total energy of such a unit is a double
well with two degenerate lowest energy configurations, corresponding to the added charge occupying
the left or right O, and the charge oscillates (quantum tunnels) periodically between them. Figure 1
shows the numerically exact (“quantum-entangled”) ground-state wave function as the strength of
el–lattice coupling is varied. As a result of el–lattice (M–O bond length) and spin coupling, the lattice
and spin also oscillate. The symmetric ground state captures the double-well probability, and the
gap to the anti-symmetric first excited state quantifies the tunneling frequency. We can visualize
this situation as an M–O bond length oscillating between short and long M–O bond lengths as the
charge tunnels (a “charged lattice vibration” in some earlier literature). This picture is useful but
an oversimplification, since non-adiabaticity means that the total energy double well is effectively
changing shape as the charge tunnels and thus the frequencies of charge, lattice, and spin are, although
related, not the same: indeed, many interesting resonances are possible [18,19]. In fact, this is a
precise description of lattice/spin-assisted C–T (i.e., dynamic polarization) in this small unit. There
are many relevant issues such as polaronic excited states, decoherence, spectroscopy, etc. Ref. [18]
calculates the tunneling frequencies for parameters relevant to cuprates. These frequencies are indeed
similar to “anomalous” ones measured in cuprates (optical, polarizability, magnetic) and the Cu–O
bond length differences from average Cu–O bond lengths are also similar to those measured by, e.g.,
XAFS and neutron pair-distribution functions [18,20]. These results illustrate the differences between
measurement techniques as a function of their time resolution—recall Alex Müller! An important
additional consideration is the dissipation of energy during tunneling through coupling to the medium
in which the tunneling unit is embedded. If the tunneling is slow, the dissipation freezes the polaron
into a permanent polar distortion. This is similarly important to Caldeira–Leggett [8] or Kondo singlet
freeze-out, to quantum paraelectrics [9], and probably to other TMO functionalities (below).

Although the unit above is directly relevant to small polarons in 1D chains and quasi-1D structures
embedded in higher dimensions, fully quantum, non-adiabatic calculations remain rather limited,
despite continuous progress; for example, Ref [21] reports excellent advances in the first-principle
characterization of a single polaron in WOx. In particular, as the doping level increases in a full M–O
system, we are faced with the question of how multiple polarons interact. This is another problem
beyond current analytical or simulation capability except in rather small systems [17,22]. Qualitatively,
we can expect that at low density, small polarons localize independently; if they are close enough,
they may bind into bi/multi-polaron clumps (depending on lattice deformation and Coulomb energies),
and at densities where the average polaron spacing is near the polaron size, they transform their
broken-symmetry host (probably through a sequence of commensurate–incommensurate transitions)
to a metallic unbroken symmetry with a new Fermi energy (“quantum melting”).

We can again numerically explore aspects of this scenario using the same 3-band Peierls–Hubbard
model (1), treated in a real-space HF approximation but now including electron or hole doping.
This cannot directly describe either center-of-mass or internal tunneling dynamics. However, it is a
useful guide to the (positive) feedbacks leading to polaron formation and multi-polaron patterning,
and the coupled roles of lattice, charge, and spin. Reference [23] shows that single electron and hole
small polarons occur in the various broken-symmetry ground states, as illustrated in Figure 2. At finite
doping, bipolarons can be found [22] but also ordering into filamentary “stripes.” As discussed in [24],
these filamentary patterns share oxygens and thus minimize potential energy. At sufficient doping,
a hysteretic insulator to metal transition is found. Recent progress beyond HF with quantum MC
simulations also suggest the possibility of multi-polaron liquid-like states [22].
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Figure 1. Squared many-body ground-state wave function of an O–Cu–O cluster as a function of the
Raman (UR) and infrared (Uir) coordinates for three IR coupling strengths (weak, intermediate, strong).
When the phonon coordinate is at the left bump, the extra hole is predominately on the leftmost oxygen,
and vice versa. The scale of the coordinates is fixed to be 3 times the root-mean-square fluctuation of
the quantum wave function, and therefore it is different for the three panels (see [18]).

Numerically, a landscape of low-energy polaron configurations can be identified, metastable but
pinned by the lattice, which can be accessed by external fields, photoexcitation, impurity pinning
centers, internal microstructure and interfaces, surfaces, etc. Note that the stripe interfaces are sharp
on the unit-cell lattice scale: as for single small polarons, gradient energy costs are small compared to
those from deviations of the undeformed broken symmetry energy. The broken symmetry host (e.g.,
AF moment) is locally quenched at the stripe.

We can study the lattice, spin, charge fluctuations around these polarons, and multi-polaron
patterns within a real-space random field approximation (RPA) [25,26]. Since the polarons are small
and the stripe interfaces sharp, the stripes are topologically “protected” and the fluctuations include
ones that are spatially localized around the polarons or stripes and thus substantially separated in
frequency from the band of k-space modes in the broken-symmetry host: i.e., symmetry-determined
transverse and longitudinal “edge mode” vibrations of spin, charge, and lattice [25]. As illustrated in
Figure 3, they are all dominated by O ion motion, resulting in Cu–O bond length fluctuations coupled to
charge and spin fluctuations. Of course, any slow diffusion of polarons or stripes introduces a cut-off or
broadening for the local mode frequencies, and any stripe curvature introduces a wave-vector cut-off.



Condens. Matter 2020, 5, 46 7 of 22
Condens. Matter 2020, 5, x FOR PEER REVIEW 7 of 22 

 

 
Figure 2. Polarons calculated in a 2D 3-band Peierls–Hubbard model (see Ref 21). Upper Graph: (a) 
Magnetic moment of the central Cu site of a calculated small polaron and ratio of lattice 
displacement of the surrounding O to Cu–O distance (1.89 Å), (b) gap energy levels, and (c) creation 
energy = − − ̅, for the small polaron state as a function of . Other energy levels in the 
gap close to the bands (shaded areas) are not shown.  is the total energy with i added holes and ̅  is the midgap energy. In addition, (c) also shows  for the intermediate-size ferromagnetic 
polaron. All energies are in units of . Parameters are = 1, = 0.5, Δ = 4, = 10, = 3, = 1 , and = 32 /Å . The dotted line at ≃ 1.68  marks the stability limit of the 
anti-ferromagnet (AF) ground state at stoichiometry. Lower Graph: Charge (radii of the circles) and 
spin (arrows) densities in the one-hole doped systems, (a) with the intermediate-size polaron; and 
(b,c) with the small polaron. The arrows are normalized so as to touch the circle if completely 
polarized. Big (small) circles are Cu (O).  

Numerically, a landscape of low-energy polaron configurations can be identified, metastable 
but pinned by the lattice, which can be accessed by external fields, photoexcitation, impurity pinning 
centers, internal microstructure and interfaces, surfaces, etc. Note that the stripe interfaces are sharp 
on the unit-cell lattice scale: as for single small polarons, gradient energy costs are small compared to 
those from deviations of the undeformed broken symmetry energy. The broken symmetry host (e.g., 
AF moment) is locally quenched at the stripe. 

We can study the lattice, spin, charge fluctuations around these polarons, and multi-polaron 
patterns within a real-space random field approximation (RPA) [25,26]. Since the polarons are small 

Figure 2. Polarons calculated in a 2D 3-band Peierls–Hubbard model (see Ref.[21]). Upper Graph:
(a) Magnetic moment of the central Cu site of a calculated small polaron and ratio of lattice displacement
of the surrounding O to Cu–O distance (1.89 Å), (b) gap energy levels, and (c) creation energy
ε1 = EN+1

− EN
− µ, for the small polaron state as a function of λα. Other energy levels in the gap

close to the bands (shaded areas) are not shown. EN+i is the total energy with i added holes and µ
is the midgap energy. In addition, (c) also shows ε1 for the intermediate-size ferromagnetic polaron.
All energies are in units of tpd. Parameters are tpd = 1, tpp = 0.5, ∆ = 4, Ud = 10, Up = 3, Upd = 1,

and K = 32tpd/Å
2
. The dotted line at λαc ' 1.68 marks the stability limit of the anti-ferromagnet

(AF) ground state at stoichiometry. Lower Graph: Charge (radii of the circles) and spin (arrows)
densities in the one-hole doped systems, (a) with the intermediate-size polaron; and (b,c) with the
small polaron. The arrows are normalized so as to touch the circle if completely polarized. Big (small)
circles are Cu (O).

The frequencies of these local modes are again similar to experimentally observed “anomalous”
signatures in doped cuprates and also some other doped TMOs. For example, in doped nickelates,
the intensity of anomalous modes observed with neutron scattering tracks the doping density [27],
and interesting pressure effects have been proposed [28]. Checkerboard (“liquid crystal”) patterns
have been indicated in doped cuprates [29] and are predicted to have their own signatures of specific
local modes [30].
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Figure 3. Lattice vibrational eigenmodes for the case of a stripe in a 20%-doped CuO2 plane computed
in a 3-band Peierls–Hubbard model. The stripe is centered along the middle of the vertical Cu row.
There are two branches localized at the stripe: one corresponds to the oxygen vibration parallel to the
stripe (low frequency, E = 14.8 meV, left), and the other corresponds to the oxygen displacements
perpendicular to the stripe (high frequency, E = 68.5 meV, right) (see Ref [25]).

Note that the Cu–O stripes share O ions coherently in the above results (see Figure 3). If the
longitudinal O vibrations are extended to strongly nonlinear amplitudes, so that there is full CT,
they will correspond to a coherent filament of O–Cu–O units (the small polaron described above),
periodically tunneling charge between neighboring Os, with concomitant oscillation between short
and long Cu–O bond lengths. This is equivalent to a dynamical charge density wave (CDW) along the
stripe. It is clear conceptually that an infinitesimal external electric field can then coherently transfer
charge along the stripe—a “sliding CDW” avoiding impurity or lattice pinning (cf, [31]). In this
scenario, there is no polaron center-of-mass motion, only resonant transfer of charge. In addition,
the transverse O vibrations at the stripe edge provide a natural local-to-extended mode coupling
with the broken-symmetry host, e.g., anti-ferromagnet (AF) [32]. These observations are intriguing
in terms of conductivity mechanisms. A similar scenario applies to BixK1-xTiO3, where a window of
superconductivity appears around a specific x (doping) value with a transition from a broken-symmetry
CDW (i.e., charge-disproportionated) insulator to metal—in this case, polarons, stripes, and precursor
local structure will be with respect to the CDW, instead of AF, host. We note that if the dissipation
from the coupling to the host medium for the stripes is too strong, then the CT/bond-length vibrations
will freeze into a static CDW/BOW. This sets a lower frequency limit for the CT frequency, which
suggests consequences for models of superconductivity, dynamic versus static magnetic moments (e.g.,
in Pu [33]), etc. For instance, higher superconducting Tc would be aided by a lower CT tunneling
frequency. Partially charged stripes can also be found with the above formalism by tuning the
band-filling. Similarly, topological (including fractionally charged) edge states resulting from boundary
conditions in finite systems, as has been extensively studied in 2D Dirac metals, can be captured.

4. Elasticity and Short–Long-Range Competitions

As suggested earlier, elasticity in TMOs (and related materials such as f-electron and many organic
compounds) is very important because of their localized, directional d-orbitals. This consideration
complements electronic/spin focuses and cannot be ignored. In fact, the elasticity in these materials
is strong (because it is weakly screened and therefore must be integrated over long ranges) and
directional, resulting in constraints and competitions for ground and metastable states. Indeed,
the origin of elasticity is a coupling of optic and acoustic modes [34]: unit cell optic lattice
distortions constrain next-neighbor unit cell distortions and sequentially to acoustic long-range “elastic”
fields. This provides a self-consistent complex network situation, with multiscale microstructure
(twinning, tweed, etc.) as intrinsic sub-grain textures, which is the result of the self-consistent
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short–long-range field competition. Importantly, the network adjusts globally to either local or global
perturbations. Furthermore, solid–solid phase transitions are accompanied by extended regimes of
lattice microstructure around the transition, as well as sensitivity to strain and external fields (electric,
magnetic, etc., depending on the specific material). Recall Alex Müller!

For illustration, consider the class of materials known as ferroelastic martensites. Ferroelasticity
is the existence of two or more stable orientation states of a crystal that correspond to different
arrangements of the atoms but are structurally identical (enantiomorphous). These orientation states
are degenerate in energy in the absence of mechanical stress. The term martensitic usually refers to
a diffusionless first-order phase transition that can be described in terms of one or successive shear
deformations from a parent to a product phase. Schematic illustrations of symmetry-allowed 2D
transitions are shown in Figure 4. The morphology and kinetics of the transition are dominated by the
strain energy, and the transition results in characteristic lamellar (twinned) microstructures. Features
observed in proper ferroelastic crystals include mechanical hysteresis and mechanically switchable
domain patterns. Ferroelasticity usually occurs as a result of a phase transition from a nonferroelastic
high-symmetry parent phase and is associated with the softening of an elastic modulus with decreasing
temperature or increasing pressure in the parent phase. The ferroelastic transition can be described by
Landau theory with spontaneous strain or deviation of a given ferroelastic orientation state from the
parent phase as the order parameter (OP). The strain can be coupled to other fields, such as electric
polarization and magnetic moment; thus, the crystal can have more than one transition.

A comprehensive Ginzburg–Landau (GL) theory of this lattice elasticity can be built using so-called
St. Venant lattice compatibility constraints to capture the symmetry-constrained short–long-range
framework described above. This theory is detailed in [35,36] for many 2D and 3D cases. The theory
successfuly describes key observed features of solid–solid phase transitions, including twins and
twinning periodicity system (e.g., grain) size-dependence; twinning hierarchies at high–low symmetry
interfaces and boundaries; extensive precursor (nucleation/spinodal) microstructure regimes around
the solid–solid phase transition; global, multiscale structural effects of local dopants; (“local stress”);
and global, multiscale, including local, structural effects of external stress and other applied fields.
Figures 5 and 6 show a few examples of the results, illustrating the intrinsic and sensitive landscapes
of microstructure. There is some optimism that this sensitivity might be represented in statistical
configuration ensembles, including the use of Machine Learning/Neural Network techniques for
relevant feature capture (see [37]). The above GL theory (extended to time-dependent GL (TDGL) [35,36])
also self-consistently predicts multi-timescale dynamics and relaxation of the multi-lengthscale
microstructure, including glassy phenomena.

There are several important lessons from this elasticity description. The precursor microstructure
extends over large parameter regimes of temperature, pressure, etc., around solid–solid phase
transitions—recall Alex Müller. The functionality of this microstructure is often as important as
the transition itself. (For example the tetragonal-orthorhomic transition in cuprate superconducors or
hierarchical ordering in shape-memory alloys.) Throughout the precursor regime, local doping sites,
because of their long-range elastic effects, have significant influence on the transition and nucleate
structured precursor domains of the incipient phase. We emphasize that the sensitive microstructural
landscapes are intrinsic free-energy states. Attempts to eliminate the microstructure (e.g., de-twinning),
especially in the extended vicinity of solid–solid transitions, are unhelpful, since they will simply
reform unless pinned into non-equilibrium configurations. With this in mind, it is natural to ask
whether the intrinsic microstructure provides the template on which electronic, magnetic, etc., degrees
of freedom can act, i.e., can the microstructure be the driver of electronic or magnetic properties?

This question has been explored through several examples. For example, [38] examines the
electronic signature of twin boundaries (TB) and anti-phase boundaries in 2D. Here, the boundary
centers constitute a local (e.g., square) lattice symmetry smoothly joining domains (twins) of a
different (e.g., rectangular) lattice symmetry (see Figure 4). This results in locally metallic filaments
in a semiconducting host. In fact, the TB can be considered a 2D Dirac metal with flat electronic
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bands of edge states [39]. WOx provides an excellent example of quasi-periodic patterns of shear
planes [40,41], and intriguingly, in a certain x regime, it is also a high-temperature superconductor,
with the superconductivity probably strongest on the shear planes—recall the comments on possible
filamentary superconductivity above, since dopant (polaronic) charges will preferentially decorate
shear planes (and TBs).Condens. Matter 2020, 5, x FOR PEER REVIEW 10 of 22 
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Figure 4. Symmetry-allowed transitions in 2D for four crystal systems. (See Ref. [35]). The dark
lines are visual guides to indicate deformations. There is a one-component strain order parameter
(OP) for the square-to-rectangle (SR) case, driven by deviatoric strain, ε2: the rectangle-to-oblique
(RO) case, driven by ε2; and the square-to-centered rectangle (SC) case, driven by shear strain, ε3.
A two-component OP, or two one-component OPs, leads to the triangular-to-centered rectangle (TR)
case, driven by ε2, ε3; the triangle-to-oblique (TO) case, driven by ε2, ε3; and the square-to-oblique (SO)
case, driven by ε2 and ε3 independently. Copyright 2020 American Physical Society.

In [42], the effects of long-range anisotropic elastic deformations on electronic structure in
conventional BCS superconductors are analyzed within the framework of Bogoliubov–de Gennes
equations. Cases of TBs and isolated defects are considered there as illustrations. The calculated local
density of states suggests that the electronic structure is strongly modulated in response to lattice
deformations and propagates to longer distances because of the elasticity. In particular, this allows the
trapping of low-lying quasiparticle states around defects. Some of these predictions could be directly
tested by scanning tunneling microscopy.
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Figure 5. Multiscale texture evolution computed in a 2D TDGL elasicity theory (see Ref. [35]).
Square-to-rectangle (Figure 4) case, showing simulated interface propagation. The rows show (left to
right) temporal sequences at 40, 80, 160, and 1000 ps. Top Row: The order parameter (OP) deviatoric
strain, showing domain walls propagating under the repulsive long-range lattice compatibility potential.
Bottom Row: Non-OP shear strain, propagating outward with interfaces, concentrated at the corners.
Copyright 2020 American Physical Society.

Condens. Matter 2020, 5, x FOR PEER REVIEW 11 of 22 

 

time-dependent GL (TDGL) [35,36]) also self-consistently predicts multi-timescale dynamics and 
relaxation of the multi-lengthscale microstructure, including glassy phenomena. 

 
Figure 5. Multiscale texture evolution computed in a 2D TDGL elasicity theory (see Ref. [35]). 
Square-to-rectangle (Figure 4) case, showing simulated interface propagation. The rows show (left to 
right) temporal sequences at 40, 80, 160, and 1000 ps. Top Row: The order parameter (OP) deviatoric 
strain, showing domain walls propagating under the repulsive long-range lattice compatibility 
potential. Bottom Row: Non-OP shear strain, propagating outward with interfaces, concentrated at 
the corners. Copyright 2020 American Physical Society.  

 
Figure 6. Same square-to-rectangle case as Figure 5, demonstrating global effects of a local stress: 
simulated strain evolution, with an added fixed, time-independent, Lorentzian-profile local stress 
(see Ref [33]). The sequence (left to right) is shown for timet = 40, 60, 76, and 106 ps. Top Row: 
Dynamic texturing of deviatoric strain. The system reduces the energy from the imposed single-sign 
strain by elastic photocopying, or adaptive screening, of the long-range elastic interaction, generating 
higher multipoles. Bottom Row: The non-order parameter (OP) shear strain follows the OP 
propagation. Copyright 2020 American Physical Society. 

There are several important lessons from this elasticity description. The precursor 
microstructure extends over large parameter regimes of temperature, pressure, etc., around solid–
solid phase transitions—recall Alex Müller. The functionality of this microstructure is often as 
important as the transition itself. (For example the tetragonal-orthorhomic transition in cuprate 
superconducors or hierarchical ordering in shape-memory alloys.) Throughout the precursor 
regime, local doping sites, because of their long-range elastic effects, have significant influence on 
the transition and nucleate structured precursor domains of the incipient phase. We emphasize that 

Figure 6. Same square-to-rectangle case as Figure 5, demonstrating global effects of a local stress:
simulated strain evolution, with an added fixed, time-independent, Lorentzian-profile local stress
(see Ref [33]). The sequence (left to right) is shown for timet = 40, 60, 76, and 106 ps. Top Row: Dynamic
texturing of deviatoric strain. The system reduces the energy from the imposed single-sign strain by
elastic photocopying, or adaptive screening, of the long-range elastic interaction, generating higher
multipoles. Bottom Row: The non-order parameter (OP) shear strain follows the OP propagation.
Copyright 2020 American Physical Society.

Reference [43] uses the St Venant lattice compatibility constraint theory to predict the role of
elasticity in colossal magnetoresistance (CMR) perovskite manganites. The intrinsic coexistence of
distinct metallic and insulating electronic phases in perovskite manganites, such as La1−x−y Pry Cax

MnO3, is predicted, which presents opportunities for sensitively tuning the electronic properties.
In particular, the CMR in these materials is closely related to the observed texture owing to coexisting
nanometer- and micrometer-scale inhomogeneities. Extensive data from various high-resolution
probes show the existence of such inhomogeneities. Experimental results also support the presence of
metastable states in manganites. For example, magnetic fields or X-rays have been used to convert
insulating regions into ferromagnetic metallic ones, which are stable even when the fields are removed.
Explanations based on electronic mechanisms and chemical disorder have not been sufficient to describe
the multiscale, multiphase coexistence within a unified picture. However, lattice distortions and strain
are known to be important in the manganites [44], and indeed the resistivity transition can be tuned
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with pressure as well as magnetic field. In [43], it is shown how the texturing can be due to the intrinsic
complexity of a system with coupling between the electronic and elastic degrees of freedom. This leads
to landscapes of energetically favorable configurations and provides a self-organizing mechanism for
the observed inhomogeneities. Since the domain formation is self-sustained, external stimulii such
as optical lasers, X-rays, or ultrasonic standing waves can be used to sensitively manipulate patterns
of metallic and insulating regions, thus making the control of nanoengineered functional structures
feasible and technologically important.

The same mechanisms should be applicable to describing intrinsic inhomogeneities in other
materials with strong bonding constraints, such as relaxor ferroelectrics and high transition
temperature superconducting oxides, f-electron materials (including heavy-fermions), organics
(including superconductors), multiferroics, and 2D Dirac materials (such as graphene, dichalcogenides),
etc., where the functionalities may also be mediated through self-organized lattice distortions. We return
to the probable role of polarons below. More generally, there are many materials where the above
approach to coupling lattice, spin, charge and orbital degrees of freedom, including elastically driven
transitions, can be applied. For instance, epitaxial oxide layers and multilayers provide extensive
functional tunability [45], and magnetocalorics [46] are studied for their potential application as efficient
refrigeration and waste-recovery materials. Reference [47] uses the above elasticity framework to
argue that certain metal–insulator transitions are accompanied by precursor elasticity microstructure.
Indeed, early neutron scattering around the metal–insulator transition in VO2 found short magnetic
correlation lengths even very close to the transition, suggesting that the lattice microstructure limits
the electronic/magnetic properties. Modern time-resolved crystallography can now resolve substantial
lattice contributions to several M–I transitions, including VO2, as anticipated in early theory [48].
I suggest that similar roles for elastic fluctuations can be expected around many broken-symmetry
transitions, including many quantum critical points [49]. Note that the elasticity discussion here was
for a single grain. Multigrain interactions are beyond the scope of the present discussion and require
coarser-scale (e.g., phase-field, finite-element) modeling for homogenization and constitutive equations.

Reference [50] uses an extended Holstein polaron model to suggest how elastic interactions can
control the organization of small polaron patterns. This modeling leads to a landscape of filamentary
(stripe) polaron patterns, similarly to those outlined in Section 3. The small polarons have very localized
electronic cores but act as local impurities in the multiscale, directional elastic field, creating anisotropic
elastic fields and driving the filamentary ordering. Figure 7 shows examples calculated for a 2D square
lattice hosting a finite density of small polarons.
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5. Hybridized Bands and more examples of Short–Long-Range Competitions

The coexistence of narrow (d,f) and wider (s,p) electronic bands has motivated a great variety
hybridization studies. Many of these are theoretically rich, and some are surely exhibited in various
TMOs and related electronic and magnetic materials. Below, we summarize a few examples but
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emphasize the additional features and competing phases resulting from the inclusion of lattice degrees
of freedom.

Multi-band superconductivity is a natural candidate. Substantial Tc enhancement and tunability is
possible, which is controlled by the interband coupling strengths and locations (in k-space) (e.g., [51]).
Resonant coupling (e.g., Fermi resonance) is especially intriguing and is well-covered in this volume
and elsewhere [52]. Clearly, the mesoscopic phase separation of lattice, charge, spin broken- and
unbroken-symmetry regions described above provide environments for these scenarios, with stripes
and TBs sources of flat electronic bands.

Intrinsic local modes (ILMs) are spatially localized lattice modes (multi-phonon bound states)
resulting from sufficiently anharmonic lattice vibrations (e.g., [10]), where the anharmonicity is often
the consequence of feedback from electron or spin coupling to the lattice. In fact, as discussed above,
polarons are the result of such a (positive) feedback from linear coupling between charge/spin and
lattice. When this coupling is strong enough to create small polarons, the lattice distortion is locally
anharmonic and can create an ILM, resulting in a composite polaron–ILM state [53]. In addition,
doping sites can locally distort the lattice into an anharmonic regime and create a ILM. An appealing
scenario is that ILMs can be induced in this way by doping and then embedded self-consistently
in an undoped background. Reference [54] uses this approach to model ferroelectrics, including
anomalous phonons and glassy/relaxor phases. This approach has also been used [55] within
nonlinear shell models, which, as as noted above, are an approximate but effective description of O
polarizability and M–O charge transfer. For example, the quantum paraelectric phase of SrTiO3 and
the onset of ferroelectricity with O18 isotope substitution are well explained [56], as are the differences
between ferroelectrics BaTiO3 and EuTiO3 [57]. More generally, this approach provides an excellent
basis for understanding the T-doping-strain phase-diagram of these materials—the doping-induced
superconductivity phase-diagram [58] is reminiscent of cuprates. I note again that nonlinear shell
models owe much to Heinz Bilz and his ability to combine insights from solid-state physics, quantum
chemistry, and nonlinear statistical mechanics long before sufficient ab initio quantum methods
were available.

In [59], dimerized AF (homogeneous SP) and inhomogeneous-lattice AF (inhomogeneous SP)
ground states are predicted in both 1D and 2D periodic Anderson models when el–lattice coupling is
included, as shown schematically in Figure 8. Coexistence and mutual enhancement of the Peierls
distortion and the AF long-range order are found. The stoichiometric phase diagrams are strongly
dependent on the relative hybridization and el–lattice coupling strengths. For non-stiochiometric
fillings, coupled spin–charge–lattice polarons are found containing precursor textures of neighboring
phases. Relations to Ce-based heavy-fermion systems, volume collapse, and inorganic SP materials are
discussed in [59].

Returning to the importance of short–long-range field competitions (Section 4), RKKY is a familiar
magnetic long-range (and oscillatory) interaction. In [60], the magnetic properties of a system of
coexisting localized spins and conduction electrons are investigated within an extended version of the
1D Kondo lattice model in which effects of el–lattice and on-site Coulomb interactions are explicitly
included. It is found that intrinsic inhomogeneities with the statistical scaling properties of a Griffiths
phase appear and determine the spin structure of the localized impurities. The appearance of the
inhomogeneities is enhanced by appropriate phonons and acts destructively on the spin ordering.
The inhomogeneities appear on well-defined length scales and can be compared to the formation
of intrinsic mesoscopic metastable patterns found in two-fluid phenomenologies. A mapping to an
effective random field transverse field Ising model is found to be instructive. The RKKY system can
indeed be viewed as intrinsically frustrated [61].
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function of hybridization and el-lattice coupling strengths. (See [59]). Ground states found are:
long-period spin–Peierls; antiferromagnet (AF); charge density wave (CDW); spin liquid (SL).

I conclude this section with a more general perspective on multiscale landscapes resulting from
coexisting short–long-range interactions. In particular, the appearance of glassy filamentary phases
in windows of intermediate doping concentration (“intermediate phases”) [62,63] is demonstrated
in [64,65] as a model of doped 2D anti-ferromagnets. I believe these intermediate phases are very
important functionally and should be realized in many materials, including doped TMOs. For example,
using efficient numerical methods to handle long-range interactions, references [65,66] study a
quasi-classical model for the charge ordering of holes in TMOs, in which the particles have a Coulomb
repulsion and a dipolar attraction. As a function of hole density (doping), an extended soft phase
comprising partially ordered filaments is found (see Figure 9). Ordered clumps form for low densities
and ordered stripes (Wigner crystal-like phases) at high densities (see Figure 10). The soft filamentary
structures persist to high temperatures. Within the soft phase region, there is an onset at low T of
motion along the filaments: i.e., the filaments act as a template for the correlated percolation of particle
motion. When the particle positions are averaged over long times, the filaments form a checkerboard
pattern (see Figure 11). All of this rich multiscale patterning and dynamics arises from a deceptively
simple 2D model in which the effective interaction between two holes, 1 and 2, a distance r apart is
given by

V(r) =
q2

r
−Ae−

r
a − B cos(2θ−φ1 −φ2)e

−
r
ξ . (2)

Here, q = 1 is the hole charge, θ is the angle between r and a fixed axis, and φ1,2 are the angles of the
magnetic dipoles relative to the same fixed axis, which is allowed to take an arbitrary value. A is
the strength of a short-range anisotropic interaction, and B is that of a magnetic dipolar interaction
[B ≈ A/(2π ξ/2)], which were assumed to be independent variables. Here, for simplicity, we take A = 0
and assume a scaling for the magnetic correlation length ξ∼1/

√
n, with n the hole density. Reference [67]

describes characteristic noise and hysteresis associated with the stripe, clump, and checkerboard
phases. Reference [68] demonstrates how both commensurate and incommensurate checkerboard
configurations are possible.
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TMOs, and related materials, exhibit complex interplays of spin, charge, orbital, and lattice so
that a simplified model such as the above should not be overinterpreted. For instance, as noted earlier,
there are essential roles of polarizable oxygen or equivalent ions [displacements, rotations, charge
transfer, etc. (e.g., [5,12])]. Nevertheless, some implications are suggestive. Namely, charge-ordered
states may persist up to very high temperatures, but signatures of disordered filamentary states occur
at much lower temperatures with a transition to a checkerboard state at intermediate temperatures.
The coexisting short- and long-range interactions will appear only upon the (polaronic) localization of
holes, which happens below a characteristic temperature. Above this temperature, a more metallic-like
electronic state is expected. The soft phase also shows similarities with the inhomogeneous states
observed in manganite oxides (above) between the true critical temperature and a higher temperature
at which short-range order first appears. In addition, as we note below, some stripe-based theories for
superconductivity require fluctuating stripes. An important feature of the soft phase in Figure 9 is that
the fluctuations are predominantly on (correlated) percolating filaments rather than meandering of the
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filaments themselves. Therefore, the fluctuating filamentary and checkerboard states should provide a
reasonable starting point for introducing detailed quantum-mechanical and oxygen effects.
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Although, a full simulation has not yet been performed, we should expect that similar soft
intermediate phase behavior will be found for the multi-polaron patterns introduced in Section 4.
Indeed, in that case, the long- and short-range fields are provided self-consistently by the same
elasticity. In this context, it is worth recalling that elasticity has its origins in the total energy of a
solid including the Coulomb contributions. Hence, if atomic configurations are allowed to relax
self-consistently in a Coulomb field, the elasticity features above must be recovered. Finally, we note
that a quite general framework for intermediate phases can be expressed in a theory describing network
adaptability and rigidity transitions based on the degree of lattice connectivity and the number of
bonding constraints [62,63,69]. The next material frontiers must include understanding reactive networks.
Viz, the network structure adapts to the functioning (lattice, spin, charge) of (or collections of) nodes
because this changes local- and multiscale network connections, and the new structure then initiates
new functioning. This feedback cycle underpins the complementary aspects of learning and aging in
complex materials, similarly to emerging views of hierarchical landscapes and substates in quantitative
biology and other fields adopting network scenarios [70].

6. Conclusions and Discussion

The competitions among spin, charge, orbital, and lattice degrees of freedom in TMOs (and related
materials with directional bonding and coupled localized/narrow band and delocalized/wide band
electronic orbitals) leads to a richness of ground (and excited) states because of delicate free-energy
balances. This is a wonderful situation for tunable functionality and applications, but it challenges
conceptual frameworks created for simpler classes of materials. Asymptotic length and time-scaling
descriptions, although certainly useful, are incomplete, and the community has yet to create a full
palette of experimental, theoretical, and computational tools to understand the resulting multiscale,
multiphysics landscapes of states. However, it is clear that understanding and controlling the
functionality of this “dark matter”(!) will require combining techniques from many disciplines (solid
state, quantum chemistry, correlated electrons, field theory, mathematical physics, nonlinear science,
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high-performance computing, data analytics such as ML, etc.). This is surely the interdisciplinary path
to addressing the challenges and opportunities of “quantum materials” [11].

It is always true that new experimental and modeling techniques motivate new conceptual
frameworks, and vice versa. This also motivates new interpretations of existing data. For example,
I mentioned in Section 1 the birth of STM and its impact. It is striking to trace STM’s history since
then through mesoscopics, Bose–Einstein condensates, to TMOs [71], DNA manipulation, etc. No less
impressive are similar journeys for neutron and X-ray resolution, angle-resoved photoemission, nuclear
magnetic resonance, resonant ultrasound, pump-probe spectroscopy, time-resolved crystallography,
and more. These are all now critical tools for understanding the multiple spatial and temporal
scales that Alex Müller so presciently anticipated in TMOs. They are essential capabilities
to combine with equally impressive revolutions in high-performance computing, visualization,
and data analytics on the path to the holy grail of understanding, controlling, and using materials’
synthesis–structure–property–performance relationships.

I finish with a few open questions.

1. I have deliberately emphasized lattice, including elastic, effects in TMOs (and related d- and
f- orbital materials) because these have often been under-represented in research on “strongly
correlated” quantum matter. The recent workshop [2] is an encouraging community step.
However, clearly, it remains to be understood when lattice, spin, charge, and orbital degrees of
freedom individually dominate and then the others are slaved. There are likely to be classes of
materials that should be so categorized in this fascinating collusion among degrees of freedom.
This is a quantum mechanical adiabaticity question that must be addressed on appropriate spatial
and temporal scales and, as with the importance of el–lattice coupling, not simply in terms of
average properties. Functionality through charge, spin, and lattice at active interfaces, including
between TMOs, is an important direction for applications (e.g., perovskite-based solar cells and
detectors) [45,72]. Similarly, domain boundary engineering, e.g., in multiferroic materials [73],
is a very attractive direction.

2. The recent emphasis on quantum entanglement and the increasing recognition of geometry and
topology in electronic and magnetic materials research raises important questions. For instance,
(1) above in the context of when does the lattice simply renormalize parameters for quantum
phases and when do topological lattice configurations act as the driving template for quantum
mechanics? For example, this is an important issue in materials design for qubits and quantum
information research.

3. I have not focused here on high-temperature (HTC) mechanisms. The wonderful discovery of
HTC in cuprates by Bednorz and Müller certainly propelled remarkable advances in synthesis,
experimental, theoretical and simulation capabilities for complex electronic materials and whole
new classes of materials have benefitted: multilayer TMOs [45], Dirac–Weyl materials, organic
and heavy-fermions SCs, pnictides, multiferroics, over-doped HTC cuprates [74], etc. After these
many years, a generally accepted theory of HTC remains elusive. Which of the multitude of
measured perovskite features are directly relevant to the superconductivity mechanism has yet
to be understood. However, much research falls into the framework of multiscale, coexisting
charge-rich and charge-poor regions [29,75]. Inhomogeneous superconductivity is familiar, e.g.,
in granular superconductors. However, the possibility of inhomogeneity being an intrinsic
template for the SC mechanism. For example, Reference [76] proposes micro (i.e., bond-length)
strain (cf, Section 4) as a primary control parameter in cuprate SCs. The polaron patterns
discussed above are also examples: precursors to CDWs and equilibria with multi-polaron
(including bi-polaron) bound states. Such CDW-like phases embedded in various undoped
broken-symmetry hosts are attractive scenarios, but the AF broken-symmetry host state is not
unique. Rather, the main issue becomes: How do the charge-rich regions communicate? Magnetic,
charge, and elastic fluctuations are all feasible [77]. There is accumulating evidence [29] for a
checkerboard period-4 CDW-like configuration in cuprates. Various small perturbations can
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isolate such a specific periodicity for the ordering illustrated in Section 5 (e.g., [68]). However,
qualitatively different origins are also interesting (e.g., [78]). The charge-transfer (polarizability)
features of perovskites we have discussed lend themselves to W.A. Little’s scenario of enhanced
SC from off-chain/plane polarizable material [79,80]. Finally, an intriguing consideration is that
(correlated) percolating charged filaments organize fractally as doping increases, before finally
over-packing and quantum melting. This would certainly be the optimal space filling to maximize
percolating filamentary properties if those properties are desirable—e.g., for high Tc, as suggested
for many years by J.C. Phillips [81].

Materials play fundamental roles in the health and prosperity of society. It is not accidental that
many new technologies and their impacts on society are rapidly accelerating in this dynamic era of
complexity science: they are results of remarkable new experimental, simulation, and visualization
tools and the resulting data explosion. As throughout history, the new technologies are also producing
new societal challenges—in this century for health, energy, natural resources, climate, national security,
space, cyber, social media, etc., sectors—but now at a very accelerated pace. It is fortunate that this
century is generating the tools for the science, technology, engineering, and mathematics workforce to
play its part in addressing these societal opportunities and challenges, making this an exciting time for
the historic cycle of science–society evolution. Happily, the many disciples of Alex Müller are well
supplied with opportunities to conceive new ideas and create tools to test them as the future history of
quantum materials is written.
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