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Abstract: We study a putative (strange) metal-to-insulator transition in a granular array of the
Sachdev–Ye–Kitaev (SYK) quantum dots, each occupied by a large number N � 1 of charge-carrying
fermions. Extending the previous studies, we complement the SYK couplings by the physically
relevant Coulomb interactions and focus on the effects of charge fluctuations, evaluating the
conductivity and density of states. The latter were found to demonstrate marked changes of behavior
when the effective inter-site tunneling became comparable to the renormalized Coulomb energy,
thereby signifying the transition in question.
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1. Introduction

The recent upsurge of interest in the SYK and related models of (super) strongly interacting
dispersionless fermions with all-to-all q-body couplings has been driven, among other reasons, by
the hopes of utilizing them as (asymptotically) solvable examples of the so-called non-Fermi liquid
(NFL) behavior.

Originally, the SYK reincarnation [1–3] of the parent SY (Sachdev-Ye) [4–8] model was formulated
in terms of neutral Majorana fermions that would be abundantly present in the recent theoretical
constructs (albeit less so in their attempted experimental realizations). However, in order to account
for the physically relevant charge (alongside energy) dynamics, one needs to use charged (complex or
Dirac) fermions [9,10].

Regardless of the nature of its constituent fermions, though, the original SYK model lacks any
spatial dispersion, and therefore, can be best thought of as a (zero-dimensional) “quantum dot.”
As such, this system exhibits a characteristic “local NFL” behavior characterized by the anomalous
power-law decay of its temporal (but not spatial) correlations [1–8].

Therefore, while predicting some markedly novel features [11–15] in mesoscopic charge and
heat transport through its proposed (but not yet implemented) realizations in the irregularly shaped
graphene flakes, multi-connected Quantum Hall setups, semiconductor wires and quantum dots,
and topological insulator surfaces [16–20], the complex SYK model has still to be extended into
the spatial dimensions before applying it to the analysis of any documented higher-dimensional
NFL system.

In the early “SYK-lattice” constructions [21–35], the individual SYK dots would be arranged in
a regular array by adding short-range (nearest-neighbor) one- and/or two-body entangling terms
into the Hamiltonian. Alternatively, the immobile SYK fermions would be hybridized with their
conduction counterparts or subject to long-range and distance-dependent many-body couplings.

Such generalizations allow for a variety of the NFL regimes, some of which are even
capable of ostensibly reproducing, e.g., the ubiquitous linear temperature dependence of electrical
resistivity [36–39].

Still different is a formulation of the SYK model directly in the momentum space which approach
appears to be miraculously successful in providing nothing short of a quantitative agreement between
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the computed linear resistivity and its measured values in a sizeable number of the well-studied
experimental compounds [40].

Among the central issues studied in the context of the SYK-lattices are putative phase transitions
between the parent NFL SYK state (often referred to as “strange metal” (SM)) and a more conventional
(disordered) Fermi liquid (FL), or alternatively, a (many-body) Mott insulator (MI).

However, the previous analyses were, by and large, limited to the effects of the (somewhat exotic)
SYK-type entangling correlations, thereby leaving out the far more mundane (yet physically relevant
and practically unavoidable) charge couplings of the Coulomb origin that are going to affect any
feasible solid-state implementations of the SYK system, including those of [16–20].

More specifically, in such electron-based simulations the SYK4 interaction itself would be
simulated through the geometrically randomized intra-site Coulomb couplings. That alone makes it
anything but consistent to neglect the (non-random) inter-site charging effects, if a viable SYK-lattice
were to be engineered out of the single-site SYK building blocks akin to those proposed in [16–20].

In defense of the earlier studies of [21–35], concrete practical realizations of the SYK-lattices did
not seem to be particularly high on their agenda, while any speculations regarding their potential
applications to such long-standing experimental challenges as the high-Tc cuprates or heavy-fermion
materials [36–38,40] would be made largely as a matter of custom.

In the present note, we fill in the gap by investigating the charging effects in a manner similar to
that utilized in the context of the ordinary (FL) granular electronic materials [41–48].

2. SYK Model of Charged Fermions

The Hamiltonian of the SYK array can be written in terms of the complex fermions ψiα localized
at the dot i and carrying a flavor α = 1, . . . , q (hereafter q is an even integer)

H = HSYK + HT + HC (1)

whose sum includes the customary SYK intra-site q-fermion couplings and a chemical potential µ

HSYK = ∑
i;α,...β

Jα...β
i ψ†

iα . . . ψiβ − µψ†
iαψiα (2)

as well as inter-site tunneling
HT = ∑

ij;αβ

tαβ
ij ψ†

iαψjβ (3)

and both intra and inter-site charging energies

HC = ∑
i,j;α,β

Uij

2
(ψ†

iαψiα −Qi)(ψ
†
jβψjβ −Qj) (4)

which include the offset charges Qi, if any (in units of electron charge).
In the SYK model the q-fermion amplitudes Jα...β

i in (2) are treated as Gaussian random variables
with the time and state-independent variances

< Jα...β
i Jα′ ...β′

j >=
J2

Nq−1 δijδ
αα′ . . . δββ′ (5)

Averaging (1) over such distribution results in introducing temporally bi-local 2q-fermion terms
to the effective action [1–8].
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Likewise, in most of the previous studies of the SYK-lattices [21–35] the tunneling amplitudes in
(3) would be treated as random, with the dispersion

< tαβ
ij tα′β′

ij >=
t2

N
δj,i+µ̂δαα′δββ′ (6)

where µ̂ is one of z (coordination number) prime vectors of the SYK lattice. Upon averaging,
the tunneling term would then result in the inter-site SYK2-type coupling.

Alternatively, one might view such amplitudes as fixed at some N-independent value and
diagonal in the “flavor” space, tαβ

ij = tδijδ
αβ.

Lastly, the offset charges can also be thought of as random variables; the degree of their disorder
ranges from strong (described by a uniform distribution within the entire interval −1/2 < Qi < 1/2,
whose situation might be appropriate for naturally assembled networks) to weak (confining the charges
to certain values; e.g., |Qi| � 1, more suitable for artificially patterned arrays).

A systematic investigation into those different situations would definitely be warranted. However,
in much of what follows we drop the offset charges altogether, focusing on the regimes that are farthest
from (accidental) degeneracies. In that regard, our main goal is to demonstrate that a conducting state
could emerge even under the least conducive conditions.

To that end, the previous studies of the hybrid model with the intra-site SYK4 and inter-site SYK2

couplings—but without any charging effects—have repeatedly reported observing a crossover from
the SM described by the ergodic SYK4 model to a disordered FL state corresponding to the non-ergodic
SYK2 one at temperatures of order the effective fermion kinetic energy t∗ ∼ t2/J [21–35]. However,
a potentially critical impact of the Coulomb blockade (CB) due to the charging energy (4) has not
been investigated.

By contrast, in the conventional (FL) granular arrays the latter has long been known to invariably
drive the system insulating [41–48]. On the other hand, a coupling to some dissipative sub-Ohmic bath
was shown to quell the CB, thereby promoting a conducting state [41–44].

Below, we demonstrate that in the problem at hand the role of such sub-Ohmic bath is played by
the intra-site SYK correlations themselves, thereby enabling the metal-to-insulator transition (MIT) in
the granular SYK systems even in the presence of the charging effects.

3. SYK Strange Metal

First, we consider the U → 0 limit where the influence of the tunneling term on the on-site
fermion propagator

Gi(τ) =
1
N ∑

α

< ψiα(τ)ψ
†
iα(0) >= (∂τ − µ− Σi)

−1 (7)

where is captured in terms of the intra-site self-energy

Σi(τ) = J2Gq−1
i (τ) + ∑

j
tijGj(τ)tji (8)

where the first term represents the effect of the SYK correlations. This approximation can be further
improved, thereby systematically recovering all the (even order) tunneling processes.

For t, U → 0 and N � 1 the fermion propagator (7) takes the spatially local SYK form

Gij(τ) = δijGi(τ) = δij Asgn(τ)esgn(τ)πE/(Jτ)2∆ (9)

where ∆ = 1/q, the prefactor A is a known function of q, and the dimensionless parameter E(µ)
controls the fermion density [1–3].

Apart from the mean-field solution (9), in the no-tunneling/zero-charging energy limit the theory
(1) possesses a manifold of nearly degenerate solutions which are continuously connected to (9) by
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virtue of arbitrary diffeomorphisms of the thermodynamic time variable τ → fi(τ), obeying the
boundary conditions fi(τ + 1/T) = fi(τ) + 1/T, combined with local U(1) phase rotations [1–3,9,10].

Gi(τ1, τ2) = AeiΦi(τ1)−iΦi(τ2)(
∂τ fi(τ1)∂τ fi(τ2)

( fi(τ1)− fi(τ2))2 )
∆ (10)

In particular, a finite-temperature counterpart of (9) can be obtained by the conformal mapping
onto a thermal circle, τ → sin(πTτ)/πT.

In addition to being spontaneously broken by the particular choice of the mean-field solution
(9) down to the subgroup formed by the Mobius transformations SL(2, R), the reparametrization
symmetry gets violated explicitly by the temporal gradients ∂τ f , and the tunneling and Coulomb
terms in Equation (1).

Importantly, the U(1) phase fluctuations have no effect on the intra-site SYK terms, whereas the
inter-site tunneling terms can be heavily impacted.

As shown in the earlier studies of the SYK-lattices, the low-energy collective charge and energy
fluctuations about the mean-field solution (9) can propagate even in the absence of a bare single-particle
dispersion (< tij >= 0), as manifested by the same-site localization of the fermion propagator (9).

Small fluctuations are governed by the Gaussian action

SG(δΦ, δ f ) = ∑
q

∫
ω
(

1
2EC
|δΦ|2|ω|(|ω|+Dq2)

+
γN
2J
|δ f |2|ω|(|ω|+D′q2)(ω2 − (2πT)2)) (11)

where γ is a q-dependent coefficient vanishing for q = 2 [9,10] and the momentum sum goes over the
Brillouin zone of the SYK lattice.

The diffusion coefficients D and D′ pertain to the spatial spreading of charge and energy,
respectively. Their values are expected to comply with the lower bound of order (t∗a)2/T (here
a is the lattice constant) in the high-T regime where the inelastic SYK scattering becomes the fastest
equilibration mechanism [9,10].

The phase fluctuations δΦ described by the first term in (11) develop below the (independent of N)
charging energy EC, which alongside the intra-/inter-site capacitive couplings, includes the energy of
induced voltages, E−1

C = U−1 + (∂Q/∂µ)T , the second term being due to the fermion compressibility.
In turn, the second term in (11) describes the low-energy dynamics of the SYK reparametrization

mode and originates from the intra-site Schwarzian derivative Sch{ tan πT f , τ} defined as follows:
Sch{y, x} = (y′′′/y′)− (3y′′/2y′)2 [1].

The changing of variables ∂τ fi = eφi yields, in addition to the quadratic term in Equation (11),
the non-Gaussian (“Liouville”) interaction SNG(δ f ) = (2πT)2 γN

J ∑i
∫

τ e2φi(τ) [1–3].
Importantly, the φ fluctuations can only be activated at exceedingly low energies/temperatures

ω, TJ/N and above that scale their effect can be neglected.
Whenever present, such fluctuations provide “gravitational dressing” of any products of the

vertex operators eφi(τ). This effect can be elegantly carried out with the use of the eigenstates of the
exactly solvable Liouville quantum mechanics deformed by the “quench” potential acting between
consecutive applications of such operators [49,50].

As the result, an arbitrary power p of the fermion propagator of an isolated SYK system develops
a universal asymptotic behavior for all the integer p and q > 2

< Gp
i (τ) >∼ N3/2−2∆p/(Jτ)3/2 (12)

where the averaging stands for a functional integration over the soft “Schwarzian” modes fi(τ) [49,50].
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Moreover, if the local reparametrizations were locked into one global transformation f (τ), thereby
drastically reducing the space of the low-energy deformations of the solution (9), then the universal
asymptotic (12) would even be shared by the multi-local products < ∏i Gpi

i (τ) >.

4. Phase Fluctuations

The phenomenological action (11) conceived in [9,10] under the customary assumption of a
regular gradient expansion does not account for any singular (temporally non-local) effects of the SYK
correlations, nor does it allow for a systematic derivation of any non-Gaussian terms.

The classic studies of such effects in the conventional (FL) granular materials were facilitated by
representing the fermion operator as a product of its energy-related and charge-related constituents:
ψiα = χiαeiΦi [41–44].

Correspondingly, the fermion propagator factorizes

Gij(τ) = Gij(τ)Dij(τ) =

< χi(τ)χ
†
j (0) >< eiΦi(τ)e−iΦi(0) > (13)

onto its “energy” and “charge” components.
The “fractionalized” fermionic degrees of freedom χiα can still be traded for the SYK field φ

corresponding to the quasiparticle-hole excitations, while the phase variable Φ describes the collective
(“plasmon”) mode.

As already mentioned, at a sizeable charging energy the phase fluctuations dominate in the entire
range J/N < T < EC where the SYK fluctuations remain frozen.

Besides affecting the G propagator, as per Equations (7) and (8), the tunneling term (3) introduces
a (singular) non-Gaussian term into the effective action for the phase field

SNG(Φ) =
1
2 ∑

ij

∫
τ1,τ2

Kij(τ1 − τ2) cos(Φij(τ1)−Φij(τ2)) (14)

where Φij(τ) = Φi(τ) − Φj(τ) and the trigonometric functional dependence stem from
the intrinsic compactness of the phase variable subject to the periodic boundary condition,
Φi(τ + 1/T) = Φi(τ) + 2πni.

The kernel Kij(τ) = t2Gi(τ)Gj(−τ) in the “influence functional” (14) represents the effect of a
dissipative particle-hole bath on the phase dynamics.

On the metallic side of the putative metal–insulator transition and for T = 0, this kernel decays
algebraically, albeit with different exponents depending on whether or not the system is near criticality.

Deep in the FL phase and away from the critical regime, the phase propagator Dij(τ) remains
nearly constant and the kernel reads

Kij(τ) = δj,i+µ̂(gE2ε
C /τ2−2ε) (15)

where the strength of tunneling is quantified in terms of the dimensionless “conductance.”
g ∼ t2/J2−2εE2ε

C .
The time dependence is controlled by the exponent ε = 1− 2∆ which varies between 0 (FL, q = 2)

and 1 ( free dispersionless fermions, q→ ∞), thereby making the kernal (15) generically sub-Ohmic for
all q > 2.

This should be contrasted against the case of an ordinary (FL) granular system where such
a regime could only be attained in the presence of a sufficiently strong excitonic enhancement.
Otherwise, the kernel (15) would instead turn super-Ohmic due to the competing effect of orthogonality
catastrophe [41–44].

At a would-be quantum critical point the system is expected to undergo a transition from the
disordered (< cos Φi >= 0, conceivably for g < gc) insulating state governed by the Coulomb
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blockade (CB) to a dissipation-driven ordered (< cos Φi > 6= 0) conducting one for g > gc. In the latter
state, a condensation of the phase field Dij(τ → ∞) = const implies a vanishing effective charging
energy E∗C.

5. Mean-Field Analysis

In the critical regime, the system of coupled equations for the G and D propagators reads

J2
∫

τ
[G]q−1

ik (τ1 − τ)Gkj(τ − τ2) +

t2
∫

τ
[GD2]ik(τ1 − τ)Gkj(τ − τ2) = δijδ(τ1 − τ2)

t2
∫

τ
[G2D]ik(τ1 − τ)Dkj(τ − τ2) = δijδ(τ1 − τ2) (16)

Incidentally, similar equations and their solutions have been explored in a number of recent works
dealing with the mathematically related problem of the transitions between metallic spin-glass and
disordered FL states in the randomized Hubbard and t− J models [51–54].

At the critical point, the spatially local and temporally algebraic behavior inherited from the
pure SYK model extends all the way down to the lowest energies/temperatures. In particular, the
fermion propagator G retains its SYK behavior (4) with the fermion dimension ∆ while the algebraically
decaying phase correlator

Dii(τ) = B/(ECτ)2∆Φ (17)

manifests the exponent ∆Φ = ε/2.
The dimensionless amplitudes A and B then satisfy the equations

Aq + αgB2 A2 = 1 βgA2B2 = 1 (18)

which allow for a non-trivial solution provided that the numerical prefactors obey the condition α < β.
Notably, the overall exponent governing the decay of the physical fermion propagator G attains

the FL value, 2∆Φ + 2∆ = 1, thereby connecting smoothly with that in the FL phase for g > gc.
Thus, invoking the phase fluctuations appears to be instrumental for reconciling the seemingly

conflicting predictions for the fermion dimension [ψ] that one would obtain by approaching the
quantum critical point from the FL phase (where [ψ]FL = 1/2) by lowering g towards gc at T = 0, as
compared to lowering T within the SYK phase (where [ψ]SYK = ∆) at g = gc.

The properties of the critical point can be further discerned by employing a mean-field analysis
akin to those of [41–44]. To that end, a two-component O(2) bosonic variable w1,2 = (cos Φ, sin Φ)

(or equivalently, one unimodular complex-valued variable w = w1 + iw2 = eiΦ) is promoted to a
multi-component vector w1,...,M transforming under O(M) and described by the “dissipative non-linear
σ-model”:

SNLσ(w, λ) = ∑
i

∫
τ
(

1
2EC

(∂τw)2 + iλ(w2 − 1))

+
1
2 ∑

ij

∫
τ1,τ2

K′ij(τ1 − τ2)wi(τ1)wj(τ2) (19)

where the self-consistently determined near-critical kernel differs from (15) due to the extra ∆Φ

K′ij(τ) = Kij(τ)Dij(−τ) = δj,i+µ̂(gEε
C/τ2−ε) (20)
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In the M→ ∞ limit, the Lagrange multiplier enforcing the local normalization condition w2
i (τ) =

1 tends toward a spatially-and temporally-independent value λi(τ) = λ which can be found from the
mean-field integral equation

∑
q

∫
ω

1
ω2/EC(q) + zgEε

C|ω|1−ε + iλ
= 1 (21)

where the propagator of the w-field is read off from (19) and EC(q) is given by the Fourier transform
of the intra/inter-site capacitance matrix Cij.

In the FL case (ε = 0) the (real-valued) mean-field average < iλ > remains finite for all values of
the dimensionless parameter g ∼ (t/J)2, thus signaling the inescapable onset of the classical CB with
a reduced, yet finite, Coulomb gap: E∗C =< iλ >= EC exp(−O(zg)) and EC(1−O(zg)) for zg >> 1
and zg << 1, respectively [41–48].

Qualitatively, this insulating behavior persists for all ε < 0 where the kernel (20) is super-Ohmic
as, e.g., in the universal regime (12), which if applicable, would formally correspond to ε = −1/2.

In contrast, for 0 < ε < 1 the integral (21) remains finite even in the limit of λ→ 0, thanks to the
sub-Ohmic dissipative term. It then gives rise to a finite critical conductance

gc = 1/(zε1+ε) (22)

above which λ = 0, thereby signaling a quenching of CB and onset of a metallic behavior. In the
ordinary FL granular materials, such a behavior could only occur in the presence of sub-Ohmic
dissipation due to either a coupling to external bath or intrinsic excitonic effects [41–44].

In terms of the critical tunneling amplitude, the transition occurs at tc ≈ J1−εEε
C/(zε1+ε)1/2

and its only dependence on the lattice structure is through z. Upon approaching the FL (ε→ 0) the
transition becomes unattainable.

Additionally, in the customary case of q = 4, said transition takes place at tc ∼ (JEC)
1/2 (or

equivalently, EC ∼ t∗), in agreement with the earlier conclusions drawn for the SYK-lattices [21–35].
Upon moving deeper into the insulating phase the renormalized Coulomb (Mott) gap rises, as

dictated by Equation (21)
E∗C = EC(1− g/gc)

ν/ε2 (23)

with the critical exponent ν = (1− ε)/ε.
Notably, for q = 4 the gap scales linearly with a deviation from the critical point while for q→ ∞

the gap emerges abruptly and the transition resembles that of first order.

6. Conductivity

The charge transport properties of a granular array can be assessed by computing the conductivity

σµν(ω) =
ia2−d

ω

∫
τ

eiωτ(Πdia
µν (τ) + Πpara

µν (τ))|ω→−iω+0+ (24)

where d is the spatial dimension.
The diamagnetic and paramagnetic contributions towards the overall conductivity read

Πdia
µν (τ) = δµν

g
π

∫
τ′
(δ(τ)− τδ(τ − τ′))

∑
ρ

K(τ′) < cos(Φi,i+ρ(τ)−Φi,i+ρ(τ
′)) > (25)
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and

Πpara
µν (τ) =

g
π

∫
τ′ ,τ′′

K(τ − τ′)K(τ′′) (26)

< sin(Φi,i+µ(τ)−Φi,i+µ(τ
′)) sin(Φi,i+ν(0)−Φi,i+ν(τ

′′)) >

As in the Ohmic case [45–48], one can show that the dominant contribution comes from the
1st order diamagnetic term while the corresponding second order correction cancels against the
paramagnetic one.

Besides, in contrast to the case of a single junction where the dominant (albeit subleading, ∼ g2)
contribution towards the low-T conductance is provided by inelastic co-tunneling processes [11–15],
the latter appear to be suppressed exponentially with the size of the array [45–48].

Keeping the diamagnetic term, one then arrives at the formula

σµν(T) = a2−d ∑
q

∫
ω

1
ω

∂n(ω)

∂ω
sµ

q sν
q∫

τ
K(τ)(1− cos ωτ)e−W(τ) (27)

where sq = ∂qcq is a gradient of the sum over the nearest neighbors cq = ∑µ̂(1− eiqµ̂), and the
Debye–Waller (DW), which stems from the Gaussian averaging of the exponentials of the phase field
given by the exponential of

W(τ) = ∑
q

∫
ω

sq
2(1− cos ωτ) < |δΦ(ω, q|2) > (28)

Computing (27) one finds an approximate, yet practically convenient expression for the
longitudinal conductivity in terms of the Fourier transform K̃(ω) of the kernel (15)

σ(T) ∼ e−W(1/2T)K̃(T)/T (29)

proposed “ad hoc” in the early work of [41–44].
Away from criticality, the phase fluctuations’ propagator entering the DW factor (28) reads

< |δΦ(ω, q|2 >=
1

ω2/EC(q) + gE2ε
C |ω|1−2εcq

(30)

In the FL case (ε = 0), the diffusion term Dq2 appearing in Equation (11) derived by virtue of a
phenomenological gradient expansion can be identified with (and absorbed into) that proportional
to the conductance g, whereas for ε > 0 it can be neglected altogether compared to the (singular)
latter term.

It is worth pointing out that the momentum sum in (28) turns out to be non-singular even in
the potentially problematic dimensions d = 1 or 2, the only information about the lattice being its
coordination number.

In the deep CB regime corresponding to g� gc one might need to keep track of the large phase
field fluctuations when computing the DW factor

< eiΦi(τ)e−iΦi(0) >= e−
1
2 E∗Cτ ∑

n
e−

E∗C
2T n(n+2Tτ)+2πnE (31)

where the infinite sum over the winding numbers restores the periodicity under τ → τ + 1/T.
The potential importance of the large phase fluctuations (hence, non-trivial winding numbers)

brings about a conductance dependence on the offset charges Qi. Their effects can be studied by
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restoring the topological “θ-term” originating from the cross-terms in the charging energy (4), Stop =

i ∑i(Qi − 2πTE/EC)
∫

τ ∂τΦi, which accounts for the T-dependence of the intrinsic excess charge on
the dots through the relation 2πE = −∂µ/∂T|T→0 [1–10].

In that regard, our discussion pertains to the charge quantization plateaus Qi = n where the
(renormalized) Coulomb gap is maximal and the system is least likely to go metallic. In contrast, at
the transition points between the plateaus (Qi = n + 1/2) where the bare gap E∗C = EC(1− 2 < Qi >)

vanishes, the conductivity takes its maximal values. The discussion of such a (near) degenerate regime
will appear elsewhere.

Nonetheless, at low T the non-trivial winding numbers can be neglected, and for gE∗C < T < E∗C
the conductivity governed by the n = 0 term in the sum (31) shows the ordinary Arrhenius behavior

σ(T) ∼ σ0 exp(−E∗C/T) (32)

where σ0 ∼ ad−2g. For ε = 0 the insulating behavior sustains at all g.
As tunneling increases or temperature decreases, T < gE∗C, Equation (29) yields

σ(T) ∼ σ0(T/gE∗C)
1/πzg (33)

Expanding the DW factor to 1st order reproduces the (negative) logarithmic (in all dimensions)
conductivity correction, σ(T)/σ0 = 1−O(1/zg) ln(gE∗C/T).

Interestingly enough, the above result appears to be accurate to the next, second order
due to the aforementioned cancellation between the higher order diamagnetic and paramagnetic
corrections [45–48].

As temperature decreases, the (negative) logarithmic conductivity correction gets cut off at
energies ∼ gδ (the rate of fermion escape from a dot) and becomes comparable to the bare conductivity
for g ∼ (1/z) ln(E∗C/δ), again in agreement with the results of [45–48].

In contrast, for ε > 0 the conductivity suppression due to the DW factor remains non-singular at
T → 0 and Equation (29) demonstrates the NFL power-law

σ(T) ∼ σ0e−W(0)(E∗C/T)2ε (34)

governed by a generically non-integer exponent.
Incidentally, though, for q = 4 Equation (34) features a linear resistivity, consistent with the

experimental data on a variety of the prospective SM compounds [36–40].
However, with increasing temperature the DW factor starts to contribute as well, resulting in a

competition between the “kinematic”s power-law (34) dictated by the SYK propagator (9) and the
fractional-exponential T-dependence of the correlation-induced W(1/2T)

ln σ(T)/σ0 = (T/E∗C)
2ε/(2εzg)− 2ε ln T/E∗C (35)

The conductivity behavior switches from decreasing to growing, as signified by the sign
change of ln σ(T), at T = t∗ = (2εz)1/2εt1/ε J1−1/ε, consistent with the previously quoted value
of t∗ for q = 4 [21–35].

7. Density of States

Another important marker of the metal-insulator transition is a concomitant “zero-bias anomaly”
in the fermion density of states (DOS). By evaluating the latter with the use of the factorization
formula (13), one obtains

ν(ω) =
1
π

Im
∫

τ
eiωτG(τ)e−W ′(τ)|ω→−iω+0 (36)



Condens. Matter 2020, 5, 37 10 of 13

This time around the DW factor stands for the average of only two (rather then four, as in
Equation (27)) exponentials of the phase field

W ′(τ) = ∑
q

∫
ω
(1− cos ωτ) < |δΦ(ω, q|2) > (37)

Additionally, as opposed to the momentum sum in Equation (28), its counterpart (37) appears to
be rather sensitive to the spatial dimension, whose dependence is not limited to that on (and, in fact,
does not involve) the coordination number z.

In particular, for d = 2 the momentum sum is logarithmic, thereby reproducing the log-normal
“zero-bias anomaly” familiar from the general theory of 2d disordered conductors [45–48] in the FL
case (ε = 0)

ν(ω) ∼ 1
J

exp(− 1
πg

ln2(gE∗C/ω)) (38)

The lack of information about the lattice in Equation (38) can be understood from the fact that the
momentum sum in (37) is dominated by small (rather than large, as in (28)) momenta.

By comparison, for a generic ε > 0 and d = 2 one obtains the tunneling DOS.

ν(ω) ∼ J−1(ω/J)(1/εg1/(1+ε))−ε(J/t)O(1/ε2g) (39)

For g >> 1 and q = 4 Equation (39) behaves as 1/ω1/2, reproducing the salient SYK4 transport
feature [11–15].

The overall sign of this power-law dependence changes from negative (SM) to positive (MI) at the
critical conductance g′c = 1/ε2(1+ε) which appears to be generally consistent with (22).

Instead, for d ≥ 3 the momentum sum in (37) becomes non-singular, thereby making the DW
factor finite at all τ and resulting in a generic linear DOS for ω � E∗C:

ν(ω) ∼ ω/J1−ε(E∗C)
1+ε (40)

thereby showing the development of a “soft” gap.
The latter is markedly different from both the hard gap ν(ω) ∼ θ(ω− E∗C), which is a hallmark of

the CB in a FL with momentum-dependent dispersion, and the bare DOS of the degenerate species,
ν(ω) ∼ δ(ω− E∗C).

Thus, by measuring the tunneling DOS one might be able to access the properties of the physical
fermion propagator across all the different regimes. Overall, its evolution with energy/temperature
can be summarized as follows.

At ω, T � J it is that of free dispersionless fermions, G(τ) ∼ sgn(τ), which corresponds to the
bare fermion dimension [ψ]0 = 0 under the time dilation (τ → lτ). However, as the scale drops below
J and the system enters the SM regime it evolves towards the SYK mean-field value [ψ]SYK = ∆.

Further, once the systems cools down to Tt∗, the strongly relevant tunneling term continues to
monotonically drive the dimension from the SYK value ∆ towards the FL one, [ψ]FL = 1/2. For g > gc

(or equivalently, E∗C < t∗) the SM gives way to a disordered FL, whereas for g < gc (or E∗C > t∗) one
expects a transition to the MI.

8. Discussion

The above scenario of the MIT in a granular SYK array can be viewed as being somewhat
complementary to that presented in the recent [55]. Rather than the CB effects, that work was mainly
concerned with the effects of the Schwarzian fluctuations.

On the technical side, the renormalization group (RG) equations derived in [55] contain a
conveniently chosen scale-dependent fermion dimension [ψ](l). In the standard RG procedure,
though, [ψ] should have instead been found from the corresponding fermion field renormalization
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factor—which, in turn, would have to be computed as a sole function of the independently determined
dimensionless RG charges, obeying their own closed system of equations.

Besides, the MIT studied in [55] occurs at the low tunneling strength, t ∼ J/N, thereby implying
that for N � 1 and finite temperatures the system behaves as a metal for all the practical purposes.

Compared to the above result, our analysis focuses on the role of the charging effects and predicts
the onset of metallic behavior in the SYK array upon increasing the tunneling strength (or equivalently,
the inter-site conductance g) past the N-independent threshold value (see Equation (22)).

While being, at first sight, similar to the observations made in [21–35], our findings appear to be
starkly different, as far as both the underlying mechanism and the actual critical parameter values
are concerned. Besides, the proposed scenario has no analogue in the case of the FL granular system
without an additional source of sub-Ohmic dissipation.

It should be noted, though, that the standard influence functional approach used in this (as well
as much of the previous) work is only applicable when all the relevant energy/temperature scales—
J, t∗, E∗C, etc.—exceed the average single-particle level spacing δ ∼ J/N (moreover, its many body
counterpart, δN ∼ J exp(−O(N)) [1–3,49,50]).

Incidentally, at energies of order δ the renormalizing effects of the Schwarzian fluctuations would
have just started to develop and the universal regime (12) (let alone the MIT scenario of [55] could not
have yet been reached.

Furthermore, as recently shown in the case of a single tunnel junction [15], at such low energies
one might expect an intricate competition between the SYK, charging, tunneling, and single and
multi-level Kondo phenomena. Therefore, for a complete picture it might be necessary to consider the
charging and SYK effects on equal footing with the potentially important local Kondo resonances.

Lastly, by assuming the simplest nearest-neighbor tunneling, we deliberately left out such subtle
topics as variable range hopping (Mott, Efros–Shklovskii, and related mechanisms, all capable yielding
σ(T) ∼ exp(−(E∗C/T)ν) with various fractional exponents ν) whose inclusion is likely to be necessary
if a detailed comparison with experimental data on any actual SYK arrays were ever to be made.

Considering the long and still unfinished history of the studies of the phenomenon of CB even
in the ordinary FL granular materials, it would be rather unrealistic to try to cover a potentially rich
variety of the pertinent regimes all at once. One might hope, however, that the present attempt to shed
some light on the new aspects of this long-standing problem will revitalize the field as a whole.
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