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Abstract: The analysis of level statistics provides a primary method to detect signatures of chaos in
the quantum domain. However, for experiments with ion traps and cold atoms, the energy levels are
not as easily accessible as the dynamics. In this work, we discuss how properties of the spectrum
that are usually associated with chaos can be directly detected from the evolution of the number
operator in the one-dimensional, noninteracting Aubry-André model. Both the quantity and the
model are studied in experiments with cold atoms. We consider a single-particle and system sizes
experimentally reachable. By varying the disorder strength within values below the critical point of
the model, level statistics similar to those found in random matrix theory are obtained. Dynamically,
these properties of the spectrum are manifested in the form of a dip below the equilibration point of
the number operator. This feature emerges at times that are experimentally accessible. This work is a
contribution to a special issue dedicated to Shmuel Fishman.
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1. Introduction

There has been a surprising revival of interest in quantum chaos, especially from a dynamical
perspective, with the exponential growth of out-of-time ordered correlators (OTOC) taken as a main
indication of chaotic behavior [1–9]. The more traditional approach to quantum chaos, however,
focuses on the properties of the spectrum and uses level statistics as in random matrix theory (RMT) as
its main signature [10–13]. There are several examples of cases where a correspondence between the
exponential growth of the OTOC and level repulsion as in RMT has been found [14–18], but exceptions
also exist [19–21]. In the present work, we propose a way to directly detect the effects of level repulsion
in the evolution of a quantum system. The quantity and model that we consider, namely, the number
operator and the Aubry-André model, are accessible to experiments with cold atoms [22].

The Aubry-André model has quasiperiodic disorder [23–27], so is contrary to the Anderson model
where the disorder is random, in one-dimension (1D), and for a single particle, it can present both
localized and delocalized regimes. All states in the Aubry-André model become localized only above a
critical disorder strength, while in the one-particle 1D infinite Anderson model, all states are localized
for any disorder strength [28–31]. Despite this difference, when the systems are finite and have small
disorder strengths, they present similar level spacing distributions; namely, they show distributions as
in RMT, the so-called Wigner–Dyson distributions [32,33]. This is a finite-size effect, not a signature
of chaos. Wigner–Dyson distributions in these non-chaotic 1D models emerge when the localization
length is larger than the system size. However, these models can still be used as a way to demonstrate
how the properties of the spectrum get manifested in the dynamics of realistic quantum systems. Here,
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we show how the level repulsion present in the finite one-particle 1D Aubry-André model affects its
dynamics.

In studies of many-body quantum systems, it has been shown that the survival probability,
that is, the probability to find the system in its initial state later in time, decays below its saturation
value in systems that present level repulsion [34–43]. This dip below saturation is commonly known
as correlation hole [34–41]. In many-body quantum systems, the time for its appearance grows
exponentially with system size [44], which makes its experimental observation very challenging even
for relatively small systems. To circumvent this issue, one could employ systems with few-degrees
of freedom [33,45]. However, two other problems remain: the correlation hole in systems with many
particles emerges at extremely low values of the survival probability, and this quantity is non-local in
real space, while experiments usually deal with local quantities (exceptions include [46]).

To solve these problems, we consider the one-particle 1D Aubry-André model and study the
evolution of the number operator. This is a local quantity routinely measured in experiments with
cold atoms. In the presence of level repulsion, a correlation hole develops at times that grow just
sublinearly with the system size. In addition, for systems that are not too large, the minimum point of
the hole occurs at values that are not very small, and therefore, do not require extraordinary precision
for detection. All these factors should make the experimental observation of the correlation hole viable
in this model.

Before proceeding with the presentation of our results, we note that this work is a contribution to
a special issue dedicated to Shmuel Fishman. As such, we find it pertinent to mention that Griniasty
and Fishman studied a generalization of the Aubry-André model in [47]. We expect our results to be
valid in this broader picture also.

2. Finite One-Particle One-Dimension Aubry-André Model

We study the one-particle 1D Aubry-André model with open boundaries described by the
following Hamiltonian,

H =
L

∑
j=1

h cos[(
√

5− 1)π j + φ]c†
j cj − J

L−1

∑
j=1

(c†
j cj+1 + c†

j+1cj). (1)

Above, c†
j (cj) is the creation (annihilation) operator on site j. The first term defines the quasiperiodic

onsite energies with disorder strength h; φ is a phase offset chosen randomly from a uniform
distribution [0, 2π]; the second term is responsible for hopping the particle along the chain (we choose
J = 1), and L is the number of sites.

The basis vectors |ϕj〉 that we use to write the Hamiltonian matrix correspond to states that have
the particle placed on a single site j, such as |1000 . . .〉. The eigenvalues of the matrix are denoted by Eα

and the corresponding eigenstates are |ψα〉 = ∑j C(j)
α |ϕj〉, where C(j)

α = 〈ϕj|ψα〉 =
(

C(j)
α

)∗
= 〈ψα|ϕj〉.

2.1. Level Statistics

To study the degree of short-range correlations between the eigenvalues, we consider the level
spacing distribution P(s), which requires unfolding the spectrum [11,48], and the ratio r̃α between
neighboring levels [49,50], which does not require unfolding the spectrum. To detect long-range
correlations, we look at the level number variance [11,48], which also requires unfolding the spectrum.

The unfolding procedure consists of locally rescaling the energies. The number of levels with
energy less than or equal to a certain value E is given by the staircase function N(E) = ∑n Θ(E− En),
where Θ is the unit step function. N(E) has a smooth part Nsm(E), which is the cumulative mean level
density, and a fluctuating part N f l(E). By unfolding the spectrum, one maps the energies {E1, E2, . . .}
onto {ε1, ε2, . . .}, where εn = Nsm(En), so that the mean level density of the new energy sequence
becomes one. Statistics that measure long-range correlations are more sensitive to the unfolding
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procedure than short-range correlations [51]. In this paper, we discard 20% of the energies from
the edges of the spectrum, and obtain Nsm(E) by fitting the staircase function with a polynomial of
degree 7.

2.1.1. Short-Range Correlations

In the spectra of full random matrices, neighboring levels repel each other and P(s) follows
the Wigner–Dyson distribution. The exact form of the distribution depends on the symmetries of
the Hamiltonian.

PWD(s) = aβsβ exp(−bβs2) (2)

has β = 1 for the Gaussian orthogonal ensemble (GOE), where the full random matrices are real
and symmetric; β = 2 for the Gaussian unitary ensemble (GUE), where the full random matrices are
Hermitian; and β = 4 for the Gaussian symplectic ensemble (GSE), where the full random matrices
are written in terms of quaternions. The values of the constants for aβ and bβ are found, for example,
in [48]. The degree of correlation between the eigenvalues increases from GOE to GUE to GSE.

In contrast with the spectra of RMT, one may find systems with uncorrelated eigenvalues,
where the level spacing distribution is Poissonian and systems with eigenvalues that are more
correlated than in random matrices and nearly equidistant, as in the "picket-fence"-kind of
spectra [52,53] and the Shnirelman’s peak [54].

The ratio r̃α between neighboring levels is defined as [49,50]

r̃α = min
(

rα,
1
rα

)
, where rα =

sα

sα−1
, (3)

and sα = Eα+1 − Eα is the spacing between neighboring levels. The average value 〈r̃〉 over all
eigenvalues varies as follows: 〈r̃〉 ≈ 0.39 for the Poissonian distribution, 〈r̃〉 ≈ 0.54 for the GOE,
〈r̃〉 ≈ 0.60 for the GUE, 〈r̃〉 ≈ 0.68 for the GSE, and 〈r̃〉 ≈ 1 for picket-fence-like spectra.

For the finite one-particle 1D Aubry-André model, the distribution is Poissonian when h is large.
As the disorder strength decreases towards zero, where the eigenvalues become nearly equidistant,
P(s) passes through all forms mentioned above, from Poisson to GOE-like, from GOE-like to GUE-like,
from GUE-like to GSE-like, and finally from GSE-like to the picket-fence case, with all the intermediate
distributions between each specific case. This is shown in Figure 1a,b.

In Figure 1a, we show the values of β obtained with the expression [55],

Pβ(s) = A
(πs

2

)β
exp

[
−1

4
β
(πs

2

)2
−
(

Bs− β

4
πs
)]

, (4)

where A and B come from the normalization conditions∫ ∞

0
Pβ(s)ds =

∫ ∞

0
sPβ(s)ds = 1. (5)

The values of β are shown as a function of the ratio ξ = 1/(h2L). This scaling factor collapses
the curves for different system sizes on a single curve. In Figure 1b, we depict 〈r̃〉 as a function of ξ.
While both β and 〈r̃〉 capture the crossovers from the Poissonian distribution up to the picket-fence
spectrum as ξ increases, it is evident that there is not an exact one-to-one correspondence between
the two, but a more systematic comparison of the two quantities together with a careful unfolding
procedure is worth doing. In this case, various different models should be taken into account, including
true chaotic models.

It is important to emphasize that the different level spacing distributions obtained with the model
are not linked with the symmetries of the Hamiltonian. The Hamiltonian matrix used here is real and
symmetric for any value of h ≥ 0. The different forms of the distributions are rather a consequence of
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the changes in the level of correlations as one goes from uncorrelated eigenvalues for large disorder to
nearly equidistant levels for the clean chain.
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Figure 1. Level repulsion parameter β (a) and average ratio of spacings between consecutive levels 〈r̃〉
as a function of ξ = 1/(h2L), and level number variance (c). (a,b) Four system sizes are considered,
L = 100, 1000, 2000, and 4000. The four curves overlap, except for the smallest one in panel (a).
The horizontal dot-dashed lines indicate the values for the Gaussian orthogonal ensemble (GOE),
Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) from top to bottom.
(c) Numerical results for L = 4000 (light color) and analytical curves for GOE, GUE, and GSE (dark
color). The numerical curves from top to bottom have values of ξ that, according to β, lead to the
Poissonian distribution, GOE shape, GUE shape, GSE shape, and the picket-fence spectrum for h = 0.
In all panels: averages over 103 random realizations.

There are other theoretical studies where level statistics as in RMT were generated [56–58].
Those approaches are different from the one taken in the present work, where we do not build the
matrix elements with the purpose of generating specific level statistics; instead, they emerge due to
finite size effects.

2.1.2. Long-Range Correlations

The analysis of long-range correlations can be done with the level number variance; that is,
the variance Σ2(`) of the unfolded levels in the interval `. For uncorrelated eigenvalues, Σ2(`) grows
linearly with `. In the case of full random matrices, we have for the GOE [11],

Σ2
1(`) =

2
π2

(
ln(2π`) + γe + 1− π2

8

)
, (6)

for the GUE,

Σ2
2(`) =

1
π2 (ln(2π`) + γe + 1) , (7)

and for the GSE,

Σ2
4(`) =

1
2π2

(
ln(4π`) + γe + 1 +

π2

8

)
, (8)
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where γe = 0.5772 . . . is Euler’s constant. For equidistant levels, as in the case of the harmonic oscillator,
Σ2(`) = 0.

The plot of Σ2(`) in Figure 1c makes it clear that the level of rigidity of the spectrum of the
finite one-particle 1D Aubry-André model is not equivalent to that for full random matrices. There is
agreement for very small `, but then, for an interval of values of `, the correlations are stronger in
the Aubry-André model, until this behavior switches at large values of ` (compare the light and
dark curves). As for the picket-fence spectrum for the clean chain (bottom light curve), we attribute
the oscillations and the latter growth with ` to imperfections in the unfolding procedure and in the
calculation of the level number variance, and to the fact that the eigenvalues are not exactly equidistant.

3. Evolution of the Number Operator

Let us prepare the system in a state |Ψ(0)〉 = |ϕj0〉, where the particle is either on the first site of
the chain, j0 = 1, or on the middle one, j0 = L/2. We then evolve it under H (1), |Ψ(t)〉 = e−iHt|Ψ(0)〉.
The quantity used in the analysis of the dynamics is the number operator,

n1,L/2(t) = 〈Ψ(t)|c†
1,L/2c1,L/2|Ψ(t)〉. (9)

The results for n1(t) and nL/2(t) are shown in Figure 2 on the top [(a), (c), (e)] and bottom (b), (d),
(f)] panels, respectively. In Figure 2a,b, the value of ξ leads to the GOE-like level spacing distribution;
in Figure 2c,d the distribution is GUE-like, and in Figure 2e,f is GSE-like.
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Figure 2. Evolution of the number operator for a particle initially placed on Site 1 (a,c,e) and for one
initially placed on Site L/2 (b,d,f) respectively, for spectra with GOE- (a,b), GUE- (c,d), and GSE-like
(e,f) level spacing distributions. On each panel, the size L of the chain increases from top to bottom,
L = 20, 40, 60, 80, 100, 200, 400, 1000. The red solid lines represent the power-law decays: 1/t3 for (a,c,e)
and 1/t for (b,d,f). The horizontal dashed lines mark the saturation values for the smallest and largest
L’s. In all panels: averages over 103 random realizations.

The main result of Figure 2 is the fact that for experimental sizes (few dozens of sites),
the correlation hole emerges at times (t < 102) and values of the number operator (n1,L/2(t) > 10−2)
that are experimentally reachable. The correlation hole is the dip below the saturation point of the
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dynamics. In all panels of Figure 2, the saturation of the dynamics is marked with a red horizontal
dashed line for the smallest and the largest system sizes. The correlation hole corresponds to the
values of the numerical curves that are below this dashed line. The difference between saturation and
minimum of the hole is most evident for the GSE-like spectrum in Figure 2e.

One can write the number operator in terms of the energy eigenstates and eigenvalues as

n1,L/2(t) =

∣∣∣∣∣∑α

|C(1,L/2)
α |2e−iEαt

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ Emax

Emin

(
∑
α

|C(1,L/2)
α |2δ(E− Eα)

)
e−iEtdE

∣∣∣∣∣
2

, (10)

where Emin is the lower bound of the spectrum and Emax is the upper bound. In the equation above,
the sum in parenthesis,

ρ1,L/2 = ∑
α

|C(1,L/2)
α |2δ(E− Eα), (11)

is the energy distribution of the initial state, often known as local density of states (LDOS) or strength
function [59–62]. The number operator in Equation (10) is the square of the Fourier transform of the
LDOS. We denote the variance of the LDOS by

σ2
1,L/2 = ∑

j 6=j0

|〈ϕj|H|ϕj0〉|
2. (12)

The envelope of the LDOS for the Hamiltonian with GOE-, GUE-, and GSE-like level spacing
distributions is analogous to the shape obtained for the clean model [33]. It is a semicircle when
j0 = 1 and it has a U-shape when jL/2 = 1, as shown in Figure 3 for the GSE-like spectrum and three
system sizes increasing from left to right, L = 20, 80, 400. For small sizes, such as L = 20, one sees
approximately L/2 peaks in the middle of the LDOS. As L increases, the curves become smoother.
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Figure 3. Energy distribution of the initial state (LDOS) for a particle initially on Site 1 (a,c,e) and on
Site L/2 (b,d,f) for spectra with GSE-like level spacing distribution. The sizes of the chain increase
from left to right: L = 20 (a,b); L = 80 (c,d), L = 400 (e,f). Average over 103 random realizations.

The Fourier transform of the semicircle gives

n1(t) =
[J1(2σ1t)]2

σ2
1 t2

, where σ2
1 = 1, (13)
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and J1 is the Bessel function of the first kind. For the U-shaped LDOS, we get

nL/2(t) = [J0(2σL/2t)]2, where σ2
L/1 = 2. (14)

The equations above imply that the initial decay of n1(t < σ1) ≈ 1 − t2 is slower than for
nL/2(t < σL/2) ≈ 1− 2t2, which is noticeable by comparing the top and bottom panels of Figure 2
for t < 1. This is expected, since the particle on Site 1 can only hop to Site 2, while Site L/2 has
two neighbors.

For t > σ1,L/2, the picture changes and the dynamics become faster for n1(t) than for nL/2(t).
The quadratic decay is succeeded by a power-law decay that envelops the oscillations of the Bessel
functions. This non-algebraic decay ∝ 1/tγ is caused by the bounds in the spectrum [63,64].
The exponent is γ = 3 for n1(t) [65] and γ = 1 for nL/2(t) [66].

The power-law decay is followed by a plateau that is below the saturation value,

n1,L/2 = ∑
α

|C(1,L/2)
α |4, (15)

of the number operator. This saturation point is marked with dashed horizontal lines in Figure 2.
The plateau below this point corresponds to the correlation hole. It is related to the level number
variance [11,37], which explains why it gets deeper as we move from the GOE- to the GUE- and to the
GSE-like spectrum (compare Figure 1c and Figure 2). The hole does not develop in integrable models
where the level spacing distribution is Poissonian and the eigenvalues are uncorrelated. But it does
emerge in integrable models with a picket-fence spectrum.

By checking where the curve of the power-law decay first crosses the plateau below n1,L/2,
we estimate numerically, the time thole for the minimum of the correlation hole. As shown in Figure 4,
we find that thole ∝ L1/3 for n1(t) and thole ∝ L2/3 for nL/2(t). The first estimate can be derived from
the fact that the power-law decay is ∝ 1/t3 and the minimum value of n1(t) at the plateau is ∝ 1/L.
The estimate for the thole for nL/2(t) comes from the power-law decay ∝ 1/t and the minimum value
of nL/2(t) at the plateau, which is ∝ 1/L2/3. Both times should be reachable by current experiments
with cold atoms realized with few dozens of sites.
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Figure 4. Log–log plots for the time to reach the correlation hole for a particle initially placed on Site 1
(a) and a particle initially placed on Site L/2 (b) versus the system size for spectra with GSE-like level
spacing distributions. (a) thole ∝ L1/3 and (b) thole ∝ L2/3. Average over 103 random realizations.

The correlation hole holds up to the revival of the dynamics, which first happens at trev ∼ L for
n1(t) and at trev ∼ L/2 for nL/2(t), as seen in Figure 2. The revival is followed by another decay and a
possible correlation hole, but at higher values. This behavior is better seen for the GSE-like spectrum in
Figure 2f, where the correlation is deep. The revival repeats itself at trev ∼ 2L for n1(t) and at trev ∼ L
for nL/2(t) with an yet larger value of the correlation hole. This second revival is better seen for larger
L’s. We may expect subsequent revivals to become visible to even larger system sizes, although they
should eventually become indistinguishable of the temporal fluctuations at the saturation point.
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4. Conclusions

This work shows that the effects of level repulsion can be directly observed by studying the
evolution of the number operator in the finite one-particle 1D Aubry-André model. Level repulsion
is manifested in the form of the so-called correlation hole. The number operator, the Aubry-André
model, the system sizes, and timescales studied here are accessible to experiments with cold atoms.
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