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Abstract: We calculate the spectral function of a boson ladder in an artificial magnetic field by means
of analytic approaches based on bosonization and Bogoliubov theory. We discuss the evolution of
the spectral function at increasing effective magnetic flux, from the Meissner to the Vortex phase,
focussing on the effects of incommensurations in momentum space. At low flux, in the Meissner
phase, the spectral function displays both a gapless branch and a gapped one, while at higher flux, in the
Vortex phase, the spectral function displays two gapless branches and the spectral weight is shifted at a
wavevector associated to the underlying vortex spatial structure, which can indicate a supersolid-like
behavior. While the Bogoliubov theory, valid at weak interactions, predicts sharp delta-like features in
the spectral function, at stronger interactions we find power-law broadening of the spectral functions due
to quantum fluctuations as well as additional spectral weight at higher momenta due to backscattering
and incommensuration effects. These features could be accessed in ultracold atom experiments using
radio-frequency spectroscopy techniques.

Keywords: bosonization; Bogoliubov approximation; artificial gauge field; spectral functions

1. Introduction

In quasi-one-dimensional systems, analogs of the Meissner and Vortex phase have been predicted
for the bosonic two-leg ladder [1–5], the simplest system where orbital magnetic field effects are allowed.
It was shown that in this model, the quantum phase transition between the Meissner and the Vortex phase
is a commensurate–incommensurate transition [6–8]. Recently, the advent of ultracold atomic gases has
opened a route to realize low dimensional strongly interacting bosonic systems [9–11] where an artificial
magnetic flux acting on the ladder can be simulated either using geometric phases [12] or the spin-orbit
coupling [13,14]. Indeed, there is a mapping of the two-leg ladder bosonic model to a two-component
spinor boson model in which the bosons in the upper leg become spin-up bosons, and the bosons in the
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lower leg, spin-down bosons. Under such mapping, the magnetic flux of the ladder becomes a spin-orbit
coupling for the spinor bosons. Theoretical proposals to realize either artificial gauge fields and artificial
spin-orbit coupling have been put forward [15,16], and an artificial spin-orbit coupling has been achieved
in a cold atoms experiment [17]. In a two-leg boson ladder, the transition between a commensurate to an
incommensurate phase has been characterized using equal time correlation functions [3,18–20]. However,
we expect a direct signature of the transition also in dynamical correlation functions. In one dimension,
the low energy modes are collective excitations [21,22], and in the two-leg ladder, there is a separation
between a total density (“charge”) and a density difference (“spin”) mode [2,4]. This is analogous to the
well-known spin-charge separation in electronic systems [21] and two-component boson systems [23].
Except at commensurate filling [24–27], the “charge” mode is gapless. By contrast, the “spin” mode
is gapped in the Meissner phase and gapless in the Vortex phase, the transition as a function of flux
being in the commensurate-incommensurate class [6,7]. Thus, the two phases are characterized by very
different dynamical correlation functions. Among those correlation functions, one could, for example,
consider the “spin-spin” dynamical structure factor. This would display a well defined gapped or gapless
dispersion, respectively, in the Meissner and in the Vortex phase. However, such correlation function
would not be sensitive to the incommensuration in the weak interchain hopping regime, although it
displays incommensuration features at weak interactions and large interchain hopping [4,28]. A better
indicator of incommensuration in all regimes is provided by the spectral function of the bosonic particles.
In the Vortex phase, it always displays a shift in the position of the minimum of the dispersion away
from q = 0 as a consequence of the incommensuration, whereas in the Meissner state, the minimum of
the dispersion remains at q = 0. A particular feature of the single-particle spectral function is that it is
incoherent [23,29], i.e., the low energy excitation branches emerge as power-law singularities instead of
delta function singularities. From the experimental point of view, single-particle spectral functions are
accessible via radiofrequency (RF) spectroscopy techniques [30–32]. In the present paper, we calculate the
boson spectral function in the different phases of the boson ladder at incommensurate filling in order to
fully characterize the transition under flux.

2. Model

In the following, we use the notations and definitions of [20]. We consider a model of bosons on a
two-leg ladder in the presence of an artificial U(1) gauge field [14,33]:

H = −t ∑
j,σ
(b†

j,σeiλσbj+1,σ + b†
j+1,σe−iλσbj,σ) +

U
2 ∑

j,σ
njσ(njσ − 1) +

Ω
2 ∑

j,α,β
b†

j,α(σ
x)αβbj,β. (1)

where σ =↑, ↓ represents the leg index or the internal mode index [34–36], bj,σ annihilates a boson on leg σ

on the j−th site, njα = b†
jαbjα, t is the hopping amplitude along the chain, Ω is the tunneling between the

legs or laser-induced tunneling between internal modes, λ is the flux of the effective magnetic field, U is
the repulsion between bosons on the same leg. The low-energy effective theory for the Hamiltonian (1),
where Ω� t is treated as a perturbation, is obtained by using Haldane’s bosonization [37]. By introducing
the fields φα(x) and Πα(x) satisfying canonical commutation relations [φα(x), Πβ(y)] = iδ(x− y) as well
as the dual θα(x) = π

∫ x dyΠα(y) of φα(x), and after introducing the respective combinations of operators
φc,s =

1√
2
(φ↑ ± φ↓), we can represent the low-energy Hamiltonian as H = Hc + Hs, where

Hc =
∫ dx

2π

[
ucKc(πΠc)

2 +
uc

Kc
(∂xφc)

2
]

(2)
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describes the total density (or charge) fluctuations for incommensurate filling when umklapp terms are
irrelevant, and

Hs =
∫ dx

2π

[
usKs

(
πΠs +

λ

a
√

2

)2
+

us

Ks
(∂xφs)

2

]
− 2ΩA2

0

∫
dx cos

√
2θs, (3)

describes the antisymmetric density (or spin) fluctuations. In Equations (2) and (3), us and uc

are, respectively, the velocity of antisymmetric and total density excitations, A0 is a non-universal
coefficient [21] while Ks and Kc are the corresponding Tomonaga–Luttinger (TL) exponents [38]. For two
chains of hard core bosons, we have uc = us = 2t sin(πρ0/2) where ρ0 is the average number of bosons
per site and Ks = Kc = 1.

The phase diagram of the Hamiltonian has been determined by looking at the behavior of the chiral
current, i.e., the difference between the currents in the upper and lower leg, which is defined as

Js(j, λ) = −it ∑
σ

σ(b†
j,σeiλσbj+1,σ − b†

j+1,σe−iλσbj,σ), (4)

=
usKs

π
√

2

(
∂xθs +

λ

a
√

2

)
. (5)

As a function of the flux λ, the chiral current first increases linearly with λ while being in the Meissner
phase, and above a critical value of λ, it starts to decrease in the Vortex phase [2]. In this phase, the rung
current starts to be different from zero. The phase diagram of the model can be obtained by analyzing
the behavior of the rung and chiral current, and in Figure 1, the red-line is the phase boundary between
the Vortex and the Meissner phase for the non-interacting case, while the black-line represents the phase
boundary in the hard-core limit [20]. The major difference with respect to the non-interacting case is the
persistence of the Meissner phase even for large values of the flux [18,19].

Beyond the chiral and rung current, the Meissner to Vortex phase transition can be traced out by
looking at the behavior of the spectral function, which is more sensitive to incommensurations.

For the case of lattice bosons, the spectral function is defined as:

Aσ(q, ω) = i ∑
j

∫
dtθ(t)e−i(qxj−ωt)

[
〈bjσ(t)b†

0σ(0)〉 − 〈b†
0σ(0)bjσ(t)〉

]
, (6)

where xj = ja, a being the lattice spacing, and can be experimentally accessed, for example,
via radiofrequency (RF) spectroscopy techniques [30–32]. In the following, we will focus on the
positive-frequency part of the spectral function, given by the first term in Equation (6).
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Figure 1. Phase diagram for a hard-core bosonic system on a ladder as a function of flux per plaquette λ

and Ω, at the filling value n = 1. The black solid line that joins solid dots is the phase boundary between
the Meissner and the Vortex phase, while the dashed red line is the prediction for this boundary in the
non-interacting system. In the insets, we show the different behavior of the spin-current Js(λ) for two values
of interchain coupling Ω when there is the Meissner–Vortex transition and where there is not, respectively,
panel (b) for Ω = 1.25 and (a) for Ω = 1.75 DMRG simulation results at L = 64 in PBC.

3. Spectral Function in the Meissner Phase for Weak Interchain Hopping

Within the bosonization technique, the boson annihilation operator to the lowest order approximation
can be represented as:

ψσ(x, t) = bj,σ(τ)/
√

a ∼ A0〈ei θs√
2 〉ei θc(ja,τ)√

2 . (7)

A0 is a non-universal constant and σ stands for ↑ in the upper chain and ↓ for the lower chain. Knowing
the Green’s function for the field operator ψσ, one gets the spectral function as:

Aσ(q, ω) ∼ A2
0|〈e

i θs√
2 〉|2

∫ dxdt
2π

e−i(qx−ωt)
(

α2

(α− iuct)2 + x2

) 1
8Kc

, (8)

where α is the theory cutoff taken equal to the lattice spacing. The result of the integral yields

Aσ(q, ω) ∼ (A0α)2π

uc
|〈ei θs(x,t)√

2 〉|2 e2 ω
uc α

Γ2
(

1
8Kc

) ∣∣∣∣(ω2

u2
c
− q2

)
α2
∣∣∣∣

1
8Kc −1

θ(ω)θ

( |ω|
uc
− |q|

)
, (9)

The approximation of Equation (9) only yields the behavior of the spectral function at ω lower
than the gap ∆s in the θs modes. The actual correlation function can be obtained from the form factor
expansion [39–43]. The lowest contribution from a soliton-antisoliton pair yields

〈Tτei θs(x,τ)√
2 e−i θs(0,0)√

2 〉 = |〈ei θs(x,t)√
2 〉|2 + O(e−2∆s

√
(x/us)2+τ2

), (10)
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As a result, the Fourier transform of the full Matsubara Green’s function is the sum of the contribution
of Equation (9) and a second contribution analytic in a strip of the upper iν half plane of width proportional
to the gap. This implies that the analytic continuation to real frequencies of this contribution is real until
ω = 2∆s. There, a cut appears along the real frequency, and the imaginary part of that contribution to the
Green’s function becomes nonzero. This behavior is represented schematically in Figure 2. As the flux
increases, the gap decreases linearly until it becomes zero at the commensurate–incommensurate point.
At the point Ks = 1/2, where the Hamiltonian Hs can be fermionized, [20], the Matsubara Green’s function
can be calculated in terms of Ising order and disorder operators [44–48] correlation functions. If we look
at the spectral function at q = ±2πρ0 + δq, with δq � ρ0, the situation is simpler, and the correlation
function to be calculated is

A↑(2πρ0 + δq, ω) ∼
∫

dxdte−i(δqx−ωt)
〈

ei
(

θc√
2
+
√

2φc

)
(0,0)e−i

(
θc√

2
+
√

2φc

)
(x,t)

〉
〈ψL(0, 0)ψ†

L(x, t)〉, (11)

thus, the spectral function is simply a convolution of the spectral function of a one-dimensional massive free
Dirac fermion ψL and the spectral function of a Tomonaga–Luttinger liquid. A schematic representation of
the spectral function in the Meissner phase is presented in Figure 2.

 0 k

ω

Figure 2. Schematic representation of the spectral function in the Meissner phase. The colored regions have
a non-zero spectral weight. The violet region is the spectral weight coming only from the gapless charge
modes, the spin modes remaining in their ground state. The green region represents the region where the
gapped spin modes contribute to the spectral weight.

4. Spectral Function in the Vortex Phase for Weak Interchain Hopping

In the vortex phase, the boson field to the lowest order reads:

ψσ(x, t) = bj,σ(τ)/
√

a ∼ A0eiσq0(λ)xj ei θs(ja,τ)√
2 ei θc(ja,τ)√

2 , (12)

where xj = ja, q0(λ) is the incommensurate wavevector of the vortex phase, given by q0(λ) '
√

λ2 − λ2
c ,

where λc is the critical spin-orbit coupling at which the degenerate minimum at q = 0 in the single-particle
spectrum splits into a double minima structure.

Thus, we find the Matsubara Green’s function of the bosons in the form

〈Tτbjσ(τ)b†
0σ(0)〉 = A2

0e−iσq0(λ)ja
(

a2

(ja)2 + (ucτ)2

) 1
8Kc
(

a2

(ja)2 + (usτ)2

) 1
8K∗s

(13)
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and the spectral function is obtained by the integral:

Aσ(q, ω) ∼ A2
0

∫ dxdt
2π

e−i(qx−ωt)
(

α

α− i(uct− x)

) 1
8Kc
(

α

α− i(ust− x)

) 1
8Ks

(14)

×
(

α

α− i(uct + x)

) 1
8Kc
(

α

α− i(ust + x)

) 1
8Ks

,

where q0(λ) is absorbed into q and Ks → K?
s . The Fourier transform of the Matsubara Green’s function (13)

can be calculated by the method outlined in [23,29], and after analytic continuation iν→ ω + i0+ it reads:

Gσ(q, ω) = f (Kc, Ks)|ω2 − u2
s (q + σq0(λ))

2|
1

8Kc +
1

8K∗s
−1

e
iπ
(

1− 1
8Kc −

1
8K∗s

)
Θ(ω2−u2

s (q+σq0(λ))
2)

×F1

(
1

8Kc
,

1
8Kc

+
1

8K∗s
− 1

2
, 1− 1

8Kc
− 1

8K∗s
,

1
8Kc

+
1

8K∗s
; 1− u2

c
u2

s
, 1− ω2 − u2

c (q + σq0(λ))
2

ω2 − u2
s (q + σq0(λ))2

)
,(15)

where f (Kc, Ks) =
( a

2
) 1

4Kc +
1

4K∗s
Γ
(

1− 1
8Kc −

1
8K∗s

)
Γ
(

1
8Kc +

1
8K∗s

) u
− 1

4Kc −
1

4K∗s
+1

s and the function F1(a, b1, b2, c; z1, z2) is an Appell

hypergeometric function [49], which has a series representation in terms of two complex variables z1 and
z2 when |z1| < 1 and |z2| < 1.

Singularities appear at ωσ
1 (q, λ) = ±uc(q + σq0(λ)) and at ωσ

2 (q, λ) = ±us(q + σq0(λ)), and the
power-law behavior of the spectral function near these points has been detailed in [29]. Some attention
should be paid to extract the analytic continuation for values outside the radius of convergence of the
Appell’s function resorting to its integral representation possible when <e[c− a] > 0, which in our case is
always true by construction: c− a = 1/(8K∗s ). The behavior of the Green’s function near the singularity
points can be simplified as:

Gσ(q, ω) ' |ω2 −ωσ
1 (q, λ)2|1/(8Kc)+1/(4K∗s )−1 (16)

Gσ(q, ω) ' |ω2 −ωσ
2 (q, λ)2|1/(8K∗s )+1/(4Kc)−1 (17)

In the Vortex phase, near the commensurate–incommensurate transition, the spin velocity
u∗s ∝

√
λ− λc, so we stay with the case where the charge velocity is larger than the spin one: in this

case 1− u2
c /u2

s ≤ 0 and ωσ
2 (q, λ) ≤ ωσ

1 (q, λ). In the Vortex phase, when the hopping between the chains is
not too large, K∗s > 1/2 and Kc is near unity so that the imaginary part of the Green’s function, i.e., the
spectral function Aσ(q, ω) = −=Gσ(q, ω)/π, is divergent at the two poles ω1 and ω2 as shown in panel
(a) of Figure 3. In order to wash out at least one of the divergencies near the two poles, small values of
Kc < 1/2 are required, signaling that density wave correlations are becoming important and eventually
bringing a density-wave phase.

The behavior of the spin resolved spectral function Aσ(q, ω) for a fixed value of the applied flux is
schematically shown in Figure 3 as a function of the q and ω showing the contribution to spectral weight
coming from the different singularities.
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Figure 3. Spectral function Aσ(q, ω) as a function of ω/ωσ

1 (q, λ) (on the top panels) for u∗s /uc = 0.5 and
K∗s = 0.6. In panel (a) we show the typical situation in the Vortex phase (Kc = 0.8), while in panel (b) we
show the case Kc = 0.3. In the lower panel: Aσ(q, ω) as a function of ω and q for a fixed applied field λ

inducing a finite q0(λ) for u∗s /uc = 0.5 with K∗s = Kc = 0.6. Finite spectral weights are present only in the
colored region. The dashed blue lines correspond to ω1(q, λ) and ω1(q, λ)

5. Spectral Functions in the Weakly Interacting Regime From Bosonization

We adopt here an alternative bosonization scheme [4], valid at weak interactions but arbitrary inter-leg
tunnel coupling Ω. In this regime, one can bosonize starting from the exact single-particle excitation
spectrum [4], which displays a single minimum in the Meissner phase and two minima in the Vortex
phase. In the Meissner state, the result of Equation (9) is recovered, but by construction of the bosonization
scheme, the contribution of gapped modes at higher energy is not accessible. In the Vortex phase, at low
energy, the field operators are approximated as [4]

bj↑ = uQβ j+e−iQj + vQβ j−eiQj

bj↓ = vQβ j+e−iQj + uQβ j−eiQj (18)

where uQ and vQ are the single-particle amplitudes, which diagonalize the non-interacting ladder
Hamiltonian, calculated at the minima ±Q of the lower branch dispersion relation, and β j± =

∑q e−iqjaβq±Q with βk being the destruction operator of the lower single-particle excitation branch.

Then, the field operators are bosonized as β j± =
√

n̄eiθ±(xj), and the Luttinger liquid Hamiltonian
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takes the usual quadratic form in the symmetric, antisymmetric sectors corresponding to the operators
θs(a) = (θ+ ± θ−)/

√
2. The associated Luttinger parameters are called Ks, vs Ka, va.

The Green’s function, calculated, for example, for the upper leg σ = 1/2, reads

G↑(j, 0) = 〈bj↑(t)b†
0↑(0)〉 = u2

Q〈β j+(t)β†
0+(0)〉e−iQj + v2

Q〈β j−β†
0−(0)e

iQj (19)

From bosonization, we obtain

〈β j±(t)β†
0±(0)〉 = n̄

(
a2

(ja)2 − (vst)2

)1/(8Ks) ( a2

(ja)2 − (vat)2

)1/(8Ka)

(20)

while 〈β j±(t)β†
0∓(0)〉 = 0. This can be Fourier transformed as done in Section 4, yielding a spectral

function with two incoherent contributions at q = ±Q, each with a power-law singularity at the two
excitation branches ω = vs,a|q±Q|. The same result is obtained in the lower leg, up to an exchange of u2

Q
and v2

Q.

6. Spectral Function in the Bogoliubov Theory

In the previous sections, we have derived the expressions for the spectral function with the
bosonization technique, valid at intermediate and strong interactions. In the regime of very weak
interactions and large filling of the lattice, a complementary approach is provided by the Bogoliubov
theory [28]. The system is described by a two-component Bose–Einstein condensate with wavefunction
Ψ(0)

jσ and small fluctuations on top of it. The condensate wavefunction Ψ(0)
jσ is obtained by solving the

coupled discrete non-linear Schroedinger equations

µΨ(0)
l,1 = −tΨ(0)

l+1,1eiλ − tΨ(0)
l−1,1e−iλ

− (Ω/2)Ψ(0)
l,2 + U|Ψ(0)

l,1 |2Ψ(0)
l,1

µΨ(0)
l,2 = −tΨ(0)

l+1,2e−iλ − tΨ(0)
l−1,2eiλ

− (Ω/2)Ψ(0)
l,1 + U|Ψ(0)

l,2 |2Ψ(0)
l,2 , (21)

where µ is the chemical potential. The field operator is approximated by

bjσ(t) ' Ψ(0)
jσ + ∑

ν

hσ
νjγν −Qσ

νj
∗γ†

ν, (22)

where hσ
νj and Qσ

νj are the Bogoliubov mode wavefunctions with energy ων and γν are the quasiparticle
creation and destruction field operators, satisfying bosonic commutation relations (see [28] for the full
expressions).

Using Definition (6) for the spectral function, together with the mode expansion of the bosonic field
operators of Equation (22), we obtain

Aσ(q, ω)σ = ∑
ν

[|h̃σ
νq|2δ(ω−ων)− |Q̃σ

νq|2δ(ω + ων)] (23)

where h̃σ
νq = ∑j e−ikajhσ

νj and Q̃σ
νq = ∑j e−ikajQσ

νj.
The spectral function in the Bogoliubov approximation is illustrated in Figure 4. In the Meissner

phase, a single branch in the spectrum is identified, corresponding to the Bogoliubov excitation mode,
centered at k = 0. Let us note that a gapped excitation branch of the Meissner phase is expected at energies
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of the order of Ω/t, so well above the scale used in Figure 4. In the Vortex phase, we find two sound modes
at low energy centered at k = ±q0, as well as weaker branches associated with the folding of the excitation
spectrum in the presence of a modulated equilibrium density profile. The incommensurate wavevector q0

corresponds to the non-zero momentum where an excitation may occur at zero energy, corresponding to
the backscattering among the two minima of the single-particle dispersion, in Figure 4 it corresponds to
the first replica of the excitation branch above k = 0.

A(1)(q, ω)

0 π 2π

q

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

−16

−14

−12

−10

−8

−6
(b)

A(1)(q, ω)

0 q0 π 2π − q0

q

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

−16

−14

−12

−10

−8

−6
(a)

Figure 4. Spectral function A↑(q, ω) as a function of ω and q for a fixed applied field λ = π/2, in the
Meissner phase (left panel, Ω/t = 4) and in the Vortex phase (right panel Ω/t = 1.2), for mean-field
interaction parameter UN/(Nst) = 0.6 and number of sites Ns = 60. Spectral lines are broadened by
replacing a delta function with a Lorentzian (the width 10−14 in units of J is not visible on the scale of the
figure, the broadening is mostly the pixelization of the image.

7. Conclusions

We have obtained the spectral functions of a two-leg boson ladder in an artificial gauge field.
The bosonization approach, describing the regime of sufficiently strong interactions, predicts that in
the Meissner phase, the low energy spectral weight is located near ω = 0, q = 0. In the Vortex phase,
it is located near ω = 0,±q0(λ). In both cases, the spectral weight is incoherent and characterized
by power-law singularities at ω = uc|q| (Meissner phase) or ω = uc|q ± q0(λ)| (Vortex phase) with
known exponents, and a specific incommensuration effect due to the shift of the spectral weight for
q ' q0(λ)/2. In the Meissner phase, the gap in the antisymmetric density fluctuations translates as a
power-law singularity of the spectral function at frequency ω > 2∆s. The Bogoliubov approximation,
valid at weak interactions predicts delta-like spectral function, still keeping the main features: a single
gapless excitation branch and a gapped one in the Meissner phase and two gapless excitation branches
displaying incommensuration effects in the Vortex phase. The Bogoliubov theory misses the backscattering
contributions to the spectral function, consistently with the bosonization predictions that their spectral
weight is very small at weak interactions.

The present work could be extended in different directions. Exactly at the commensurate-incommensurate
transition, the antisymmetric excitations are described by a gapless theory [50] with dynamical exponent
z = 2. The finite temperature correlation function has a known scaling form [51,52], and the spectral
function at the commensurate–incommensurate transition can be obtained by convolution of that
correlation function with the one of the charge modes. Such calculation is left for future work. Another
possible extension is to consider the interleg interaction. Previous work has shown [38,53] that it splits
the commensurate–incommensurate transition point into an Ising transition point, a disorder point and
a Berezinskii–Kosterltz–Thouless (BKT) transition point. An intermediate atomic density wave exists
between the Ising and the BKT point, and it develops incommensuration at the disorder point. The atomic



Condens. Matter 2020, 5, 15 10 of 12

density wave could be characterized using the spectral functions as done in the present manuscript, both in
its commensurate and in its incommensurate regime. A final possible extension is to consider the spectral
functions in the presence of the second incommensuration [20,54] at λ = πn.
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