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Abstract: Recently, Kayyalha et al. (Phys. Rev. Lett., 2019, 122, 047003) reported on the
anomalous enhancement of the self-field critical currents (Ic(sf,T)) at low temperatures in Nb/BiSbTeSe2-
nanoribbon/Nb Josephson junctions. The enhancement was attributed to the low-energy Andreev-bound
states arising from the winding of the electronic wave function around the circumference of the topological
insulator BiSbTeSe2 nanoribbon. It should be noted that identical enhancement in Ic(sf,T) and in the
upper critical field (Bc2(T)) in approximately the same reduced temperatures, were reported by several
research groups in atomically thin junctions based on a variety of Dirac-cone materials (DCM) earlier.
The analysis shows that in all these S/DCM/S systems, the enhancement is due to a new superconducting
band opening. Taking into account that several intrinsic superconductors also exhibit the effect of
new superconducting band(s) opening when sample thickness becomes thinner than the out-of-plane
coherence length (ξc(0)), we reaffirm our previous proposal that there is a new phenomenon of additional
superconducting band(s) opening in atomically thin films.

Keywords: superconductivity enhancement in atomically thin films; Dirac-cone materials; single
layer graphene; Josephson junctions; multiple-band superconductivity

1. Introduction

Intrinsic superconductors can be grouped into 32 classes under “conventional”, “possibly
unconventional”, and “unconventional” categories, according to the mechanism believed to give
rise to superconductivity [1]. One of the most widely used concepts to represent all 32 classes of
superconductors was proposed by Uemura et al. [2,3]. The concept of the Uemura plot is based on the
utilization of two fundamental temperatures of superconductors: one is the Fermi temperature (TF)
(X-axis), and the superconducting transition temperature (Tc) (Y-axis). In the most recently updated
Uemura plot (Figure 1), it can be seen that elemental superconductors are located for wide range of
Tc/TF ≤ 0.001, while all unconventional superconductors, including both nearly-room-temperature
superconductors of H3S [4] and LaH10 [5] (for which experimentally measured upper critical field
data [6,7] was analyzed in Refs. [8,9]), are located within a narrow band of 0.01 ≤ Tc/TF ≤ 0.05.

It should be mentioned that Hardy et al. [10] in 1993 (seven years after the discovery of
high-temperature superconductivity in cuprates by Bednoltz and Mueller [11]) were the first to
experimentally find that YBa2Cu2O7-x has nodal superconducting gap. This experimental result was
used to propose d-wave superconducting gap symmetry in HTS cuprates by Won and Maki [12].
It should be noted that several researchers and research groups (over last 33 years) have proposed
different mechanisms for high-temperature superconductivity in cuprates, the first two-band BCS
superconductor (MgB2), pnictides, and hydrogen-rich superconductors, for which we refer the reader
to original papers and comprehensive reviews [13–31].
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where Δ(T) is the temperature-dependent superconducting gap, e is the electron charge, normal-state 
tunneling resistance (Rn) is the normal-state tunneling resistance in the junction, and kB is the 
Boltzmann constant. 

Many interesting physical effects are expected if the non-superconducting part of the S/N/S 
junction is made of single-layer graphene (SLG) [41]; multiple-layer graphene (MLG) [42]; graphene-
like materials [43]; and many other new 2D- and nano-DCMs, which are under on-going 
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superconducting part of the device made of topological insulators (TI) [74–81]. Temperature-
dependent self-field critical currents (Ic (sf, T)) in this class of junctions were first reported by 
Veldhorst et al. in Nb/Bi2Te3/Nb [52], and later by Kurter et al. in Nb/Bi2Se3/Nb [53], by Charpentier 
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Nb/BiSbTeSe2-nanoribon/Nb junction at temperatures of T ≤ 0.25·Tc. They confirmed the effect in all 
five studied junctions [82], for which TI parts were made of BiSbTeSe2 flakes with thicknesses of 2b, 
which varied from 30 nm to 50 nm, and flakes widths of 2a, which varied from 266 nm to 390 nm. It 
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Figure 1. A plot of superconducting transition temperature (Tc) versus Fermi temperature (TF) obtained
for most representative superconducting families. Data was taken from [3,8,9,32–35].

Despite some differences, all intrinsic superconductors can induce superconducting state in
non-superconducting materials via the Holm-Meissner effect [36] (also designated as the proximity
effect [37,38]). As direct consequence of this, non-dissipative transport current can flow throw
the non-superconducting material at superconductor/non-superconductor/superconductor (S/N/S)
junctions. The amplitude of this non-dissipative transport current at self-field conditions (when no
external magnetic field is applied) (Ic (sf,T)) was given by Ambegaokar and Baratoff (AB) [39,40]:

Ic(s f , T) =
π∆(T)
2eRn

tanh
(

∆(T)
2kBT

)
, (1)

where ∆(T) is the temperature-dependent superconducting gap, e is the electron charge, normal-state
tunneling resistance (Rn) is the normal-state tunneling resistance in the junction, and kB is the
Boltzmann constant.

Many interesting physical effects are expected if the non-superconducting part of the S/N/S
junction is made of single-layer graphene (SLG) [41]; multiple-layer graphene (MLG) [42]; graphene-like
materials [43]; and many other new 2D- and nano-DCMs, which are under on-going discovery/invention/

exploration [44–73]. One interesting class of S/N/S junctions is the non-superconducting part of the
device made of topological insulators (TI) [74–81]. Temperature-dependent self-field critical currents
(Ic(sf,T)) in this class of junctions were first reported by Veldhorst et al. in Nb/Bi2Te3/Nb [52], and
later by Kurter et al. in Nb/Bi2Se3/Nb [53], by Charpentier et al. in Al/Bi2Te3/Al [76], and by other
research groups in different systems (extended reference list for studied S/TI/S junctions can be found
in Refs. [79,80]).

Recently, Kayyalha et al. [82] have reported on anomalous enhancement of Ic(sf,T) at the
Nb/BiSbTeSe2-nanoribon/Nb junction at temperatures of T ≤ 0.25Tc. They confirmed the effect in all
five studied junctions [82], for which TI parts were made of BiSbTeSe2 flakes with thicknesses of 2b,
which varied from 30 nm to 50 nm, and flakes widths of 2a, which varied from 266 nm to 390 nm.
It should be noted that in all these S/TI/S junctions, BiSbTeSe2-nanoribbons thicknesses and widths
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were smaller than the ground state superconducting coherence length (2b << 2a < ξ(0) ~ 600 nm) in
these devices [82]. For one junction, made of wider BiSbTeSe2-nanoribon (2a = 4 µm (Figure S4 of
Supplementary Information of Ref. [82])), measurements were performed only at low temperatures
(T < 2 K, which is about T < 0.2Tc (taking into account that Nb has Tc = 8.9–9.6 K [83])), and thus more
experimental studies are required for this 4-µm wide Nb/BiSbTeSe2-nanoribon/Nb junction to see the
Ic(sf,T) enhancement.

It needs to be stressed that identical Ic(sf,T) enhancement (or, in another words, Ic(sf,T) upturn [46])
at approximately the same reduced temperature of T ≤ 0.25Tc in atomically-thin S/N/S junction was
first reported by Calado et al. [46] in MoRe/SLG/MoRe junction in 2015. One year later, less prominent
Ic(sf,T) enhancement (which wass, however, still very clearly visible in raw experimental data [84]) in
nominally the same MoRe/SLG/MoRe junctions at T ≤ 0.25Tc was reported by Borzenets et al. [49].
Based on this, it would be incorrect to attribute the Ic(sf,T) enhancement at low reduced temperatures
in Nb/BiSbTeSe2-nanoribon/Nb [82] to unique property of S/TI/S junctions.

In addition, it is important to mention that Kurter et al. [53] were the first to report Ic(sf,T)
enhancement at the S/TI/S junction at a reduced temperature of T ≤ 0.25Tc. At Nb/Bi2Se3/Nb junctions,
Bi2Se3 flake had a thickness of 2b = 9 nm, and, thus, the condition of 2b < ξc(0) was also satisfied.

Overall, both S/TI/S [53,82], as S/SLG/S [46,49], studied junctions, for which the effect of the
low-temperature Ic(sf,T) enhancement was observed to have non-superconducting parts thinner than
the ground state out-of-plane coherence lengths, ξc(0). SLG thickness is 2b = 0.4–1.7 nm [84], and thus
the condition of 2b << ξc(0) satisfies any SLG-based junctions.

It should be noted that several intrinsic superconductors exhibit multiple-band superconducting
gapping [85,86] and the enhancement of the transition temperature [87–93] when the condition of
2b < ξc(0) [86] is satisfied. The first discovered material in this class of superconductors is atomically
thin FeSe [88–90], in which a 13-fold increase (i.e., 100 K vs 7.5 K) is experimentally registered. Another
milestone experimental finding in this field was reported by Liao et al. [43], who observed the effect
of new superconducting band opening and Tc enhancement in few layers of stanene (which is the
closest counterpart of graphene) by tuning the films’ thicknesses. To date, maximal Tc increase
due to the effect [86] stands with another single-atomic layer superconductor, Td-MoTe2, for which
Rhodes et al. [93] reported a 30-fold Tc increase when samples were thinneed down to a single
atomic layer.

This paper reports the results of an analysis of Ic(sf,T) in Nb/BiSbTeSe2-nanoribbon/Nb [82]
and Nb/(Bi0.06Sb0.94)2Te3/Nb [94] junctions, and of the upper critical field (Bc2(T)) in Sn/single-layer
graphene (SLG)/Sn junctions [95]. In the results, it is shown that a new superconducting band opening
phenomenon in atomically thin superconductors, which we proposed earlier [85,86], has further
experimental support.

2. Models Description

In [85], it was proposed to substitute ∆(T) in Equation (1) by analytical expression given by
Gross et al. [96], as follows:

∆(T) = ∆(0)tanh

πkBTc

∆(0)

√
η
(∆C

C

)(Tc

T
− 1

), (2)

where ∆(0) is the ground-state amplitude of the superconducting band, ∆C/C is the relative jump in
electronic specific heat at the Tc, and η = 2/3 for s-wave superconductors [96]. In result, Tc, ∆C/C, ∆(0),
and Rn of the S/N/S junction can be deduced by fitting experimental of an Ic(sf,T) dataset to Equation (1)
(full expression for Equation (1) is given in Ref. [85]).
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In [85], it was shown that S/SLG/S and S/Bi2Se3/S junctions exhibit two-decoupled band
superconducting state, for which, for general case of multiple-decoupled bands, Ic(sf,T) can be
described by the following equation:

Ic(s f , T) =
∑N

i = 1

π∆i(T)
2eRn,i

θ(Tc,i − T)tanh
(

∆i(T)
2kBT

)
, (3)

where the subscript i refers to the i-band, θ(x) is the Heaviside step function, and each band has its
own independent parameters of Tc,i, ∆Ci/Ci, ∆i(0), and Rn,i.

It should be noted that multiple-band induced superconductivity in junctions should be detectable
by any technique which is sensitive to additional bands crossing the Fermi surface, for instance multiple
distinct gaps should be evident in the temperature-dependence of the upper critical field, Bc2(T), for
which general equation is:

Bc2(T) =
∑N

i = 1
Bc2,i(T)θ(Tc,i − T), (4)

where, within each i-band, the upper critical field can be described by known model. In this paper, four
Bc2(T) models were used to show that main result is model-independent. For instance, the following
was used:

1. Two-fluid Gorter-Casimir (GC) model [97,98], as follows:

Bc2(T) =
∑N

i = 1

Bc2,i(0)

1−
(

T
Tc,i

)2θ(Tc,i − T
) =

φ0

2π

∑N

i = 1

θ
(
Tc,i − T

)
ξ2

i (0)

1−
(

T
Tc,i

)2
, (5)

where ϕ0 = 2.068 × 10−15 Wb is flux quantum and ξi (0) is the ground state in-plane coherence
length of the i–band. This model is widely used for single-band superconductors ranging from 3D
near-room-temperature superconducting hydrides [4,7–9,99,100] to 2D superconductors [88,89,95,101].

2. Jones-Hulm-Chandrasekhar (JHC) model [102], as follows:

Bc2(T) =
φ0

2π

∑N

i = 1

θ(Tc,i − T)

ξ2
i (0)


1−

(
T

Tc,i

)2

1 +
(

T
Tc,i

)2

, (6)

3. Werthamer-Helfand-Hohenberg model [103,104], for which we use analytical expression given
by Baumgartner et al. [105] (we will designate this model as B-WHH herein), as follows:

Bc2(T) =
φ0

2π

∑N

i = 1

θ(Tc,i − T)

ξ2
i (0)


(
1− T

Tc,i

)
− 0.153

(
1− T

Tc,i

)2
− 0.152

(
1− T

Tc,i

)4

0.693

, (7)

4. Gor’kov model [106], for which simple analytical expression was given by Jones et al. [102],
as follows:

Bc2(T) =
φ0

2π

∑N

i = 1

θ(Tc,i − T)

ξ2
i (0)




1.77− 0.43
(

T
Tc,i

)2
+ 0.07

(
T

Tc,i

)4

1.77


1− (

T
Tc,i

)2
, (8)
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3. Results

3.1. Planar Sn/SLG/Sn Array

Superconductivity in planar graphene junctions varies by the change of the charge carrier density
when it moves away from the Dirac point in the dispersion [46,47,51]. This change is usually controlled
by the gate voltage (Vg) that applies to the junction. Han et al. [95] reported on a proximity-coupled
array of Sn discs with diameter of 400 nm on SLG that were placed in a hexagonal lattice separated by
1 µm between disks centers.

In Figures 2 and 3, we show reported Bc2(T) for Sn/SLG/Sn array by Han et al. [95] in their Figures 4
and 5 at gate voltage of Vg = 30 V. We defined Bc2(T) by two criteria of R = 0.01 kΩ (Figure 2) and
R = 0.2 kΩ (Figure 3). It can be seen that there is an obvious upturn in Bc2(T) at T ≤ 0.4Tc, independent
of the upper critical field definition criterion. It should be noted that the upturn occurs at practically
the same reduced temperature at which Borzenets et al. [49] observed the Ic(sf,T) enhancement in
MoRe/SLG/MoRe junctions.
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Figure 2. Experimental upper critical field (Bc2(T)) for Sn/single-layer graphene (SLG)/Sn array at gate
voltage of Vg = 30 V [95] and data fits to Equations (5)–(8). Bc2 criterion is R = 0.01 kΩ. (a) Gorter-Casimir
(GC) model. Derived parameters are as follows: Tc1 = 0.72 ± 0.01 K, ξ1(0) = 408 ± 7 nm, Tc2 = 0.24 ± 0.01 K,
ξ2(0) = 497 ± 22 nm, Tc2

Tc1
= 0.33± 0.02, and fit quality is R = 0.9059; (b) Jones-Hulm-Chandrasekhar (JHC)

model. Derived parameters are as follows: Tc1 = 0.77 ± 0.02 K, ξ1(0) = 378 ± 8 nm, Tc2 = 0.24 ± 0.02 K,
ξ2(0) = 521 ± 34 nm, Tc2

Tc1
= 0.31± 0.04, and fit quality is R = 0.9101; (c) Werthamer-Helfand-Hohenberg

model [103,104], for which we use analytical expression given by Baumgartner et al. [105] (B-WHH) model.
Derived parameters: Tc1 = 0.74 ± 0.02 K, ξ1(0) = 385 ± 7 nm, Tc2 = 0.24 ± 0.01 K, ξ2(0) = 510 ± 28 nm,
Tc2
Tc1

= 0.32± 0.02, and fit quality is R = 0.9093. (d) Gor’kov model. Derived parameters: Tc1 = 0.74± 0.02 K,

ξ1(0) = 398 ± 7 nm, Tc2 = 0.24 ± 0.01 K, ξ2(0) = 504 ± 25 nm, Tc2
Tc1

= 0.32± 0.02, and fit quality is R = 0.9082.



Condens. Matter 2019, 4, 83 6 of 17
Condens. Matter 2019, 4, x 6 of 17 

 

 
Figure 3. Experimental Bc2 (T) for Sn/SLG/Sn array at gate voltage of Vg = 30 V [95] and data fits to 
Equations (5)–(8). Bc2 criterion is R = 0.2 kΩ. (a) GC model. Derived parameters: Tc1 = 1.00 ± 0.01 K,  
ξ1 (0) = 309 ± 3 nm, Tc2 = 0.38 ± 0.01 K, ξ2 (0) = 363 ± 7 nm, = 0.38 ± 0.01, and fit quality is R = 0.9847; 

(b) JHC model. Derived parameters: Tc1 = 1.06 ± 0.01 K, ξ1 (0) = 283 ± 3 nm, Tc2 = 0.39 ± 0.01 K, ξ2 (0) = 
405 ± 11 nm, = 0.37 ± 0.01, and fit quality is R = 0.9903; (c) B-WHH model. Derived parameters: 

Tc1 = 1.02 ± 0.01 K, ξ1 (0) = 289 ± 3 nm, Tc2 = 0.39 ± 0.01 K, ξ2 (0) = 385 ± 9 nm, = 0.38 ± 0.01, and fit 

quality is R = 0.9885. (d) Gor’kov model. Derived parameters: Tc1 = 1.01 ± 0.01 K, ξ1 (0) = 300 ± 3 nm, 
Tc2 = 0.38 ± 0.01 K, ξ2 (0) = 374 ± 7 nm, = 0.38 ± 0.01, and fit quality is R = 0.9873. 

It should be noted that experimental data of Han et al. [95] show that there is a third upturn in 
Bc2 (T) that can be seen at lowest experimentally available temperatures of T < 0.1 K and applied fields 
of about B ~ 4.5 mT in Figures 4 and 5 [95], if the criterion of R ~ 0.05 kΩ (for the Bc2 (T) definition) are 
applied. 

Despite the fact that authors [61] did not mention the presence of these two upturns in raw 
experimental Bc2 (T) data and more detailed measurements of Bc2 (T) requires to reveal more 
accurately the position and parameters for the third band, there is already enough experimental 
evidence that Sn/SLG/Sn array exhibits at least two-superconducting bands gapping, and thus the 
report of Han et al. [61] supports the idea that atomically thin films exhibit multiple-band 
superconducting gapping phenomenon [85,86]. 

3.2. Planar Nb/BiSbTeSe2-Nanoribbon/Nb Junctions 

Recently, Kayyalha et al. [82], in their Figures 2 and S1, reported Ic (sf, T) for five Nb/BiSbTeSe2-
nanopribbon/Nb junctions at different Vgs. The thickness of BiSbTeSe2 flakes varied from 2b = 30 nm 
to 50 nm, and based on reported ξ(0) ~ 600 nm [82], the condition of 2b < ξ(0) [85,86] was satisfied for 
all junctions. 

3.2.1. Nb/BiSbTeSe2-Nanoribbon/Nb Junctions 

In Figure 4, we show experimental Ic (sf, T) datasets for Sample 1 [82] reported for three gate 
voltages: Vg = ₋20 V (Figure 4a), 0 V (Figure 4b), and +45 V (Figure 4c). Ic (sf, T) fits to Equation (3) 

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0 1.2

c

b

Tc1

     Bc2(T)
     GC two-band fit 
     Band 1
     Band 2

B c
2(

T)
 (m

T)

Tc2

Sn/SLG/Sn array
        R = 0.2 kΩ 

a

Tc1

     JHC two-band fit 
     Band 1
     Band 2

Tc2

Tc1

     B-WHH two-band fit 
     Band 1
     Band 2

Tc2

d

Tc1

     Gor'kov two-band fit 
     Band 1
     Band 2

temperature (K)

Tc2

Figure 3. Experimental Bc2(T) for Sn/SLG/Sn array at gate voltage of Vg = 30 V [95] and data fits to
Equations (5)–(8). Bc2 criterion is R = 0.2 kΩ. (a) GC model. Derived parameters: Tc1 = 1.00 ± 0.01 K,
ξ1(0) = 309 ± 3 nm, Tc2 = 0.38 ± 0.01 K, ξ2(0) = 363 ± 7 nm, Tc2

Tc1
= 0.38 ± 0.01 and fit quality is

R = 0.9847; (b) JHC model. Derived parameters: Tc1 = 1.06 ± 0.01 K, ξ1(0) = 283 ± 3 nm, Tc2 = 0.39 ± 0.01 K,
ξ2(0) = 405± 11 nm, Tc2

Tc1
= 0.37± 0.01, and fit quality is R = 0.9903; (c) B-WHH model. Derived parameters:

Tc1 = 1.02 ± 0.01 K, ξ1(0) = 289 ± 3 nm, Tc2 = 0.39 ± 0.01 K, ξ2(0) = 385 ± 9 nm, Tc2
Tc1

= 0.38± 0.01, and fit
quality is R = 0.9885. (d) Gor’kov model. Derived parameters: Tc1 = 1.01 ± 0.01 K, ξ1(0) = 300 ± 3 nm,
Tc2 = 0.38 ± 0.01 K, ξ2(0) = 374 ± 7 nm, Tc2

Tc1
= 0.38± 0.01, and fit quality is R = 0.9873.

Accordingly, these Bc2(T) datasets were fitted to four two-band models (Equations (5)–(8)); they
are shown in Figures 2 and 3. Deduced parameters, including the ratio of transition temperatures
for two bands, Tc2

Tc1
= 0.32 ± 0.02 for R = 0.01 kΩ criterion (Figure 2), and Tc2

Tc1
= 0.38 ± 0.01 for

R = 0.2 kΩ criterion (Figure 3), agreed with each other despite the fact that experimental Bc2(T) data
were processed by four different models.

It should be noted that experimental data of Han et al. [95] show that there is a third upturn in
Bc2(T) that can be seen at lowest experimentally available temperatures of T < 0.1 K and applied fields
of about B ~ 4.5 mT in Figures 4 and 5 [95], if the criterion of R ~ 0.05 kΩ (for the Bc2(T) definition)
are applied.

Despite the fact that authors [61] did not mention the presence of these two upturns in raw
experimental Bc2(T) data and more detailed measurements of Bc2(T) requires to reveal more accurately
the position and parameters for the third band, there is already enough experimental evidence
that Sn/SLG/Sn array exhibits at least two-superconducting bands gapping, and thus the report of
Han et al. [61] supports the idea that atomically thin films exhibit multiple-band superconducting
gapping phenomenon [85,86].
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Figure 4. Experimental self-field critical currents (Ic(sf,T)) for Nb/BiSbTeSe2-nanoribbon/Nb junction
(Sample 1 [82]), data fits to Equation (3), and major deduced parameters. (a) Gate voltage Vg = −20 V.
Derived parameters: Tc1 = 1.74± 0.04 K, ∆1(0) = 190± 40µeV, ∆C1/C1 = 0.84± 0.18, 2∆1(0)/kBTc1 = 2.5± 0.5,
Rn1 = 6.7± 1.6 kΩ, Tc2 = 0.31± 0.02 K, ∆2(0) = 38.2± 9.7µeV, ∆C2/C2 = 0.19± 0.07, 2∆2(0)/kBTc2 = 2.85± 0.70,
Rn2 = 0.75 ± 0.18 kΩ, Tc2

Tc1
= 0.18± 0.02, and fit quality is R = 0.9953. (b) Gate voltage Vg = 0 V. Derived

parameters: Tc1 = 2.07 ± 0.03 K, ∆1(0) = 144 ± 11 µeV, ∆C1/C1 = 0.63 ± 0.19, 2∆1(0)/kBTc1 = 1.6 ± 0.2,
Rn1 = 3.9± 0.4 kΩ, Tc2 = 0.33± 0.02 K, ∆2(0) = 43.5± 8.4µeV, ∆C2/C2 = 0.20± 0.06, 2∆2(0)/kBTc2 = 3.06± 0.70,
Rn2 = 0.81 ± 0.15 kΩ, Tc2

Tc1
= 0.16± 0.01, and fit quality is R = 0.9965. (c) Gate voltage Vg = 45 V. Derived

parameters: Tc1 = 2.19 ± 0.03 K, ∆1(0) = 176 ± 13 µeV, ∆C1/C1 = 0.63 ± 0.09, 2∆1(0)/kBTc1 = 1.9 ± 0.2,
Rn1 = 3.5± 0.3 kΩ, Tc2 = 0.34± 0.01 K, ∆2(0) = 47.6± 8.7µeV, ∆C2/C2 = 0.30± 0.08, 2∆2(0)/kBTc2 = 3.06± 0.70,
Rn2 = 0.63 ± 0.11 kΩ, Tc2

Tc1
= 0.16± 0.01, and fit quality is R = 0.9977. (d) Derived Rni as function of gate

voltage Vg; (e) Derived Tc2
Tc1

and ∆Ci/Ci as function of gate voltage Vg. (f) Derived 2∆i(0)/kBTci as function
of gate voltage Vg.
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Figure 5. Experimental Ic(sf,T) for two atomically thin Dirac-cone materials (DCM)-based junctions and
fits to Equations (3), (9), (10). (a) Nb/BiSbTeSe2/Nb (Sample 3 [82]). Derived parameters: Tc1 = 1.8± 0.1 K,
∆1(0) = 179 ± 51 µeV, ∆C/C = 0.20 ± 0.04, 2∆(0)/kBTc = 2.3 ± 0.7, Rn1 = 5.2 ± 1.4 kΩ, Tc2 = 0.41 ± 0.02 K,
∆2(0) = 41 ± 12 µeV, and Rn2 = 0. 51 ± 0.15 kΩ, Tc2

Tc1
= 0.23± 0.02, R = 0.9954; (b) MoRe/SLG/MoRe

(Sample A [46]). Derived parameters: Tc1 = 1.29 ± 0.07 K, ∆1(0) = 139 ± 36 µeV, ∆C/C = 0.30 ± 0.04,
2∆(0)/kBTc = 2.5 ± 0.7, Rn1 = 5.3 ± 1.4 kΩ, Tc2 = 0.28 ± 0.01 K, ∆2(0) = 30 ± 8 µeV, Rn2 = 0.56 ± 0.16 kΩ,
Tc2
Tc1

= 0.22± 0.01, and R = 0.9981.

3.2. Planar Nb/BiSbTeSe2-Nanoribbon/Nb Junctions

Recently, Kayyalha et al. [82], in their Figure 2 and S1, reported Ic(sf,T) for five Nb/BiSbTeSe2-
nanopribbon/Nb junctions at different Vgs. The thickness of BiSbTeSe2 flakes varied from 2b = 30 nm
to 50 nm, and based on reported ξ(0) ~ 600 nm [82], the condition of 2b < ξ(0) [85,86] was satisfied for
all junctions.

3.2.1. Nb/BiSbTeSe2-Nanoribbon/Nb Junctions

In Figure 4, we show experimental Ic(sf,T) datasets for Sample 1 [82] reported for three gate
voltages: Vg = −20 V (Figure 4a), 0 V (Figure 4b), and +45 V (Figure 4c). Ic(sf,T) fits to Equation (3)
were performed for all parameters to be free, as experimental raw datasets were rich enough to carry
out these sorts of fits.

Deduced Rni,
Tc1
Tc2

, ∆Ci/Ci, ∆i(0), and 2∆i(0)
kBTc,i

for both superconducting bands as functions of Vg are
shown in Figure 4d–f).

It needs to be stressed that within the range of uncertainties, deduced Rn1 values are well agree
with directly measured values by Kayyalha et al. [82] (these values are reported in Figure 1a of Ref. [82]).
Increasingly often, measured raw Ic(sf,T) data, and especially at high reduced temperatures, are
required to reduce the uncertainty for Rn1 values.
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Most notable outcome of our analysis is that, within uncertainty ranges, fundamental
superconducting parameters for both bands, including the ratio of Tc2

Tc1
, remain unchanged vs. gate

voltage variation in the range from −20 V to 45 V. This means that two-band superconducting state in
Nb/BiSbTeSe2-nanoribbon/Nb junction is very robust and mostly independent from the change in Vg.
This is an unexpected result, because there is generally accepted view that because Vg is determined
the electronic state in 2D-systems in the normal state, it should also determine the superconducting
state. However, performed analysis shows that this is not a case in general. As was already mentioned,
there is a need for more frequent measurements of raw Ic(sf,T) data, which will allow one to reduce
uncertainties for all deduced parameters.

3.2.2. Nb/BiSbTeSe2-Nanoribbon/Nb Junction

In Figure 5a, we show experimental Ic(sf,T) dataset for Nb/BiSbTeSe2-nanoribbon/Nb (Sample 3)
reported by Kayyalha et al. [82].

Raw experimental Ic(sf,T) dataset for this sample was not reach enough at T ≥ 0.6 , and thus we
cannot perform the fit to Equation (3) for all parameters to be free. To run the model (Equation (3)), we
make the same model restriction, as we did in our previous work [85]:

∆C1

C1
=

∆C2

C2
=

∆C
C

, (9)

2∆1(0)
kBT1

=
2∆2(0)
kBT2

=
2∆(0)
kBTc

, (10)

i.e., we forced ∆Ci/Ci and 2∆i(0)
kBTc,i

values to be the same for both bands. As a result, deduced Rni, Tci,
Tc2
Tc1
∼

1
4 , ∆C/C, ∆i(0) and 2∆(0)

kBTc
for this junction are very close to ones deduced for Sample 1 (Figure 4).

3.3. Planar MoRe/SLG/MoRe Junction

To demonstrate that findings in regard of Nb/BiSbTeSe2-nanoribbon/Nb junctions are generic for
a much wide range of atomically-thin DCM-based Josephson junctions, in Figure 5b we show raw
Ic(sf,T) dataset and fit to the model (Equation (3)) for MoRe/SLG/MoRe reported by Calado et al. [46]
for their Device A [46]. For the Ic(sf,T) fit for this device, we used the same parameters restrictions
(Equations (9) and (10)), as for Nb/BiSbTeSe2-nanoribbon/Nb Sample 3 [82].

In work [85], this Ic(sf,T) dataset for MoRe/SLG/MoRe Device A [46] was already analyzed.
What was found in this paper was that there is remarkable and practically undistinguishable
similarity between reduced Ic(sf,T) datasets and fits for Nb/BiSbTeSe2-nanoribbon/Nb [48] and
MoRe/SLG/MoRe [46] junctions (Figure 5). In an attempt to further extend atomically-thin S/DCM/S
junctions, in next Section we analyze Ic(sf,T) data for Nb/(Bi0.06Sb0.94)2Te3-nanoribbon/Nb junction [94].

3.4. Planar Nb/(Bi0.06Sb0.94)2Te3-Nanoribbon/Nb Junction

In Figure 6, Ic(sf,T) in Nb/(Bi0.06Sb0.94)2Te3-nanoribbon/Nb reported by Schüffelgen et al. [94]
are shown. TI nanoribbon has thickness of 2b = 10 nm, and, thus the condition of 2b < ξ(0) [85,86]
is satisfied.

Due to the fact that the reported Ic(sf,T) dataset was not rich enough at high reduced temperatures,
we restricted the model by utilizing Equations (9) and (10). Overall, fitted curves and all deduced
parameters were very close to one reported by Borzenets et al. [49] for MoRe/SLG/MoRe junctions
(which we processed and showed in our previous paper [85] in Figure 7).
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Figure 6. Experimental Ic(sf,T) for atomically thin DCM-based junction Nb/(Bi0.06Sb0.94)2Te3-
nanoribbon/Nb [94] and fit to Equations (3), (9) and (10). Derived parameters: Tc1 = 4.30 ± 0.07 K,
∆1(0) = 530 ± 7 µeV, ∆C/C = 0.28 ± 0.04, 2∆(0)/kBTc = 2.87 ± 0.05, Rn1 = 244 ± 32 Ω, Tc2 = 1.53 ± 0.03 K,
∆2(0) = 189 ± 3 µeV, Rn2 = 105 ± 16 Ω, Tc2

Tc1
= 0.36± 0.01 and R = 0.9995.

4. Discussion

It should be noted that the idea of multiple-band superconductivity in bulk superconductors
was proposed by Suhl et al. [107] in 1959, and it took more than forty years to discover the first
two-band BCS superconductor (MgB2) [108] and about fifty years to discover multiple-band iron-based
superconductors in 2006 [109]. Interband scattering in these materials have been discussed in details
elsewhere [24,110–112].

It needs to be mentioned that Shalnikov discussed the discovery of the Tc increase in thin
films [113], who reported the effect for lead and tin thin films more than eighty years ago. Three-fold
increase in the transition temperature of thin granular Al films was reported three decades later
by Cohen and Abeles [114], and the superconductivity in granular Al films is still active scientific
topic [115,116]; the discussion of this effect in intrinsic superconductors, however, is beyond the scope
of this paper.

It needs to be stressed that Calado et al. [46] in 2015 emphasized the necessity for a new model to
explain the upturn in Ic(sf,T) registered in their MoRe/SLG/MoRe junction (Device A) at T ∼ 1

4Tc (which
we show in Figure 5b), because this Ic(sf,T) enhancement was not possible to explain using either the
Eilenberger model (which is used to describe clean S/N/S junctions) [117] or the Usadel model (which
describes diffusive S/N/S junctions) [118].

Our explanation for this upturn [85], which is well aligned with the Ic(sf,T) upturn in natural
atomically thin superconductors [86], is that this Ic(sf,T) enhancement is due to a new superconducting
band opening phenomenon when sample dimensions become smaller than some critical value. For this
critical value, we proposed to use [86] the out-of-plane coherence length, ξc(0), which is still, after
expanding our analysis herein, a good choice for the criterion.

It should be pointed out that this new opening band phenomenon does not necessarily cause the
increase in observed transition temperature in comparison with “bulk” material. For instance, in pure
Nb films [119], this new “thin film” band has lower transition temperature in comparison with “bulk”
band [86]. In these circumstances, the researchers are not able to explore the further creation of devices
or films for new superconducting band.

Thus, in many atomically thin films, which in fact exhibit a new band opening phenomenon, this
effect has not been registered yet, because there is no guarantee that something important/interesting
can be observed at low reduced temperatures, well below “bulk” or observed Tc for given atomically
thin film.
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It should be noted that the effect of new superconducting band opening [86] in atomically thin
films can be detected using any experimental techniques that are sensitive to additional band(s) crossing
the Fermi surface. To date, most evident confirmations for the phenomenon are related to the Ic(sf,T)
upturn [43,85,86] and Bc2(T) upturn [43]; however, other techniques also should be able to detect this.

In this regard, the observation of the Ic(sf,T) upturn reported by Li et al. [78] in their Figure 4a
at T = 2.5 K in Nb/Cd3As2-nanowire/Nb junction should be mentioned. However, raw experimental
Ic(sf,T) dataset [78] was limited by measurements at T < 3.5 K, and thus we are not able to perform the
analysis for this very interesting atomically-narrow S/TI/S junction at the moment.

There are very interesting results reported by Sasaki et al. [120] and by Andersen et al. [121],
who found that temperature-dependent Bc2(T), in nanostructures of topological insulators, cannot be
explained by single-band WHH model [103,104]. However, reported, to date, raw experimental Bc2(T)
datasets [119,120] are insufficient to perform two-band model fit to reveal the presence of additional
band at low reduced temperatures in these structures.

We also need to mention an interesting research field of interfaced superconductivity [71,122–125],
where, as was proposed earlier, the enhancement of the superconductivity is also due to new
superconducting band opening [86]. However, the discussion of this interesting field is beyond the
scope of this paper.

5. Conclusions

In this paper, an analysis of recently reported experimental data on induced superconducting
state in atomically thin Dirac-cone films was performed. It was shown that the phenomenon of
the new superconducting band opening in atomically thin films [85,86], when the film thickness
becomes thinner than the ground state out-of-plane coherence length, ξc(0), can be extended to an
induced superconducting state in atomically thin DCM, as one was established before for natural
superconductors, i.e., pure Nb, exfoliated 2H-TaS2, double-atomic layer FeSe, and a few layers of
stanene [9].
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